期刊文献+
共找到995篇文章
< 1 2 50 >
每页显示 20 50 100
Oxidation Resistance of Form-stable Hightemperature Phase Change Thermal Energy Storage Materials Doped by Impregnated Graphite
1
作者 LI Baorang DAI Jianhuan +2 位作者 ZHANG Wei LIU Xiangchen YANG Liu 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2025年第1期1-12,共12页
We adopted the solution impregnation route with aluminum dihydrogen phosphate solution as liquid medium for effective surface modification on graphite substrate.The mass ratio of graphite to Al(H_(2)PO_(4))_(3) change... We adopted the solution impregnation route with aluminum dihydrogen phosphate solution as liquid medium for effective surface modification on graphite substrate.The mass ratio of graphite to Al(H_(2)PO_(4))_(3) changed from 0.5:1 to 4:1,and the impregnation time changed from 1 to 7 h.The typical composite phase change thermal storage materials doped with the as-treated graphite were fabricated using form-stable technique.To investigate the oxidation and anti-oxidation behavior of the impregnated graphite at high temperatures,the samples were put into a muffle furnace for a cyclic heat test.Based on SEM,EDS,DSC techniques,analyses on the impregnated technique suggested an optimized processing conditions of a 3 h impregnation time with the ratio of graphite:Al(H_(2)PO_(4))_(3) as 1:3 for graphite impregnation treatment.Further investigations on high-temperature phase change heat storage materials doped by the treated graphite suggested excellent oxidation resistance and thermal cycling performance. 展开更多
关键词 phase change materials graphite impregnation method oxidation sintering thermal analysis
下载PDF
Synthesis and thermal characterization of the C-S-H/paraffin composite phase change material utilizing a discontinuous two-step nucleation method
2
作者 Shen Xuyan Feng Pan Zhang Qi 《Journal of Southeast University(English Edition)》 EI CAS 2024年第4期327-335,共9页
The novel calcium-silicate-hydrate(C-S-H)/paraffin composite phase change materials were synthesized using a discontinuous two-step nucleation method.Initially,the C-S-H precursor is separated and dried,followed by im... The novel calcium-silicate-hydrate(C-S-H)/paraffin composite phase change materials were synthesized using a discontinuous two-step nucleation method.Initially,the C-S-H precursor is separated and dried,followed by immersion in an aqueous environment to transform it into C-S-H.This two-step nucleation approach results in C-S-H with a specific surface area of 497.2 m^(2)/g,achieved by preventing C-S-H foil overlapping and refining its pore structure.When impregnated with paraffin,the novel C-S-H/paraffin composite exhibits superior thermal properties,such as a higher potential heat value of 148.3 J/g and an encapsulation efficiency of 81.6%,outperforming conventional C-S-H.Moreover,the composite material demonstrates excellent cyclic performance,indicating its potential for building thermal storage compared to other paraffin-based composites.Compared with the conventional method,this simple technology,which only adds conversion and centrifugation steps,does not negatively impact preparation costs,the environment,and resource consumption.This study provides valuable theoretical insights for designing thermal storage concrete materials and advancing building heat management. 展开更多
关键词 two-step nucleation C-S-H paraffin phase change materials composite building thermal management
下载PDF
Highly conductive solid-solid phase change composites and devices enhanced by aligned graphite networks for solar/electro-thermal energy storage
3
作者 Yiqi Zhao Pengfei Zhang +4 位作者 Yu Qiu Qing Li Hongjie Yan Zhaolong Wang Ciwei Wu 《DeCarbon》 2024年第3期56-64,共9页
Phase change materials(PCMs)are widely considered as promising energy storage materials for solar/electro-thermal energy storage.Nevertheless,the inherent low thermal/electrical conductivities of most PCMs limit their... Phase change materials(PCMs)are widely considered as promising energy storage materials for solar/electro-thermal energy storage.Nevertheless,the inherent low thermal/electrical conductivities of most PCMs limit their energy conversion efficiencies,hindering their practical applications.Herein,we fabricate a highly thermally/electrically conductive solid-solid phase change composite(PCC)enabled by forming aligned graphite networks through pressing the mixture of the trimethylolethane and porous expanded graphite(EG).Experiments indicate that both the thermal and electrical conductivities of the PCC increase with increasing mass proportion of the EG because the aligned graphite networks establish highly conductive pathways.Meanwhile,the PCC4 sample with the EG proportion of 20wt%can achieve a high thermal conductivity of 12.82±0.38W·m^(-1)·K^(-1)and a high electrical conductivity of 4.11±0.02S·cm^(-1)in the lengthwise direction.Furthermore,a solar-thermal energy storage device incorporating the PCC4,a solar selective absorber,and a highly transparent glass is developed,which reaches a high solar-thermal efficiency of 77.30±2.71%under 3.0 suns.Moreover,the PCC4 can also reach a high electro-thermal efficiency of 91.62±3.52%at a low voltage of 3.6V,demonstrating its superior electro-thermal storage performance.Finally,stability experiments indicate that PCCs exhibit stabilized performance in prolonged TES operations.Overall,this work offers highly conductive and cost-effective PCCs,which are suitable for large-scale and efficient solar/electro-thermal energy storage. 展开更多
关键词 phase change composite Aligned graphite networks High thermal conductivity High electrical conductivity Solar/electro-thermal energy storage
下载PDF
Preparation and hygrothermal performance of composite phase change material wallboard with humidity control based on expanded perlite/diatomite/paraffin 被引量:14
4
作者 YANG Hua LIU Yun +2 位作者 KONG Xiang-fei CHEN Wan-he YAO Cheng-qiang 《Journal of Central South University》 SCIE EI CAS CSCD 2018年第10期2387-2398,共12页
Phase change material(PCM)can reduce the indoor temperature fluctuation and humidity control material can adjust relative humidity used in buildings.In this study,a kind of composite phase change material particles(CP... Phase change material(PCM)can reduce the indoor temperature fluctuation and humidity control material can adjust relative humidity used in buildings.In this study,a kind of composite phase change material particles(CPCMPs)were prepared by vacuum impregnation method with expanded perlite(EP)as supporting material and paraffin as phase change material.Thus,a PCM plate was fabricated by mould pressing method with CPCMPs and then composite phase change humidity control wallboard(CPCHCW)was prepared by spraying the diatom mud on the surface of PCM plate.The composition,thermophysical properties and microstructure were characterized using X-ray diffraction instrument(XRD),differential scanning calorimeter(DSC)and scanning electron microscope(SEM).Additionally,the hygrothermal performance of CPCHCW was characterized by temperature and humidity collaborative test.The results can be summarized as follows:(1)CPCMPs have suitable phase change parameters with melting/freezing point of 18.23°C/29.42°C and higher latent heat of 54.66 J/g/55.63 J/g;(2)the diatom mud can control the humidity of confined space with a certain volume;(3)the combination of diatom mud and PCM plate in CPCHCW can effectively adjust the indoor temperature and humidity.The above conclusions indicate the potential of CPCHCW in the application of building energy efficiency. 展开更多
关键词 thermal storage humidity control phase change material paraffin expanded perlite diatom mud
下载PDF
Multiple structure graphite stabilized stearic acid as composite phase change materials for thermal energy storage 被引量:3
5
作者 Xinbo Zhao Chuanchang Li +3 位作者 Kaihao Bai Baoshan Xie Jian Chen Qingxia Liu 《International Journal of Mining Science and Technology》 SCIE EI CAS CSCD 2022年第6期1419-1428,共10页
This paper used 3 types of graphite with different physical structures as the porous matrix to prepare composite phase change materials(PCMs),and investigated their photo-thermal conversion performance and application... This paper used 3 types of graphite with different physical structures as the porous matrix to prepare composite phase change materials(PCMs),and investigated their photo-thermal conversion performance and application in battery thermal management.Multiple structure graphite minerals,including microcrystalline graphite(MG),scale graphite(SG),and expanded graphite(EG)were used as porous matrix,while stearic acid(SA)acts as the phase change material.The vacuum impregnation method was applied to prepare SA/MG,SA/SG,SA/EG,and SA/MG1,and SA/EG1was/were prepared by the ethyl alcohol method.Results show that the thermal conductivities of all composite phase change materials were 10.82 to 22.06 times higher than that of the pure SA.Thermogravimetric(TG)analysis showed that the loadages of SA were 43.61%,18.74%,and 92.66%for SA/MG,SA/SG,and SA/EG respectively.The load rates of SA were 18.98%and 18.88%for SA/MG1 and SA/EG1,respectively.For the 3 types of graphite materials of different dimensions,the BET(Brunauer,Emmett,and Teller)surface area determines the maximum load of SA.The Fourier-transform infrared(FTIR)and X-ray diffraction(XRD)results indicated that there was good compatibility between the SA and the supports.The SA/EG1 has better thermophysical properties in heat energy storage and release process.The thermal infrared images show that SA/EG1 has higher sensitivity to the temperature changes.SA/EG1 has better photo-heat conversion performance than SA/SG and SA/MG1 attributed to the multilayer structure of EG.SA/EG has better thermal management performance in the Li-ion batteries discharge process. 展开更多
关键词 phase change material Microcrystalline graphite Scale graphite Expanded graphite Photo-thermal conversion Thermal management
下载PDF
Emerging low-density polyethylene/paraffin wax/aluminum composite as a form-stable phase change thermal interface material 被引量:2
6
作者 Chuanchang Li Weixuan Wang +2 位作者 Xiaoliang Zeng Chunxuan Liu Rong Sun 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2023年第4期772-781,共10页
Thermal interface materials(TIMs) play a vital role in the thermal management of electronic devices and can significantly reduce thermal contact resistance(TCR). The TCR between the solid–liquid contact surface is mu... Thermal interface materials(TIMs) play a vital role in the thermal management of electronic devices and can significantly reduce thermal contact resistance(TCR). The TCR between the solid–liquid contact surface is much smaller than that of the solid–solid contact surface, but conventional solid–liquid phase change materials are likely to cause serious leakage. Therefore, this work has prepared a new formstable phase change thermal interface material. Through the melt blending of paraffin wax(PW) and low-density polyethylene(LDPE), the stability is improved and it has an excellent coating effect on PW. The addition of aluminum(Al) powder improves the low thermal conductivity of PW/LDPE, and the addition of 15wt% Al powder improves the thermal conductivity of the internal structure of the matrix by 67%. In addition, the influence of the addition of Al powder on the internal structure, thermal properties, and phase change behavior of the PW/LDPE matrix was systematically studied. The results confirmed that the addition of Al powder improved the thermal conductivity of the material without a significant impact on other properties, and the thermal conductivity increased with the increase of Al addition. Therefore, morphologically stable PW/LDPE/Al is an important development direction for TIMs. 展开更多
关键词 paraffin wax low-density polyethylene phase change materials thermal interface materials form stability
下载PDF
Fly Ash/Paraffin Composite Phase Change Material Used to Treat Thermal and Mechanical Properties of Expansive Soil in Cold Regions 被引量:3
7
作者 Yong Chen Yinghao Huang +1 位作者 Min Wu Shuo Wang 《Journal of Renewable Materials》 SCIE EI 2022年第4期1153-1173,共21页
Phase change materials(PCMs)can store large amounts of energy in latent heat and release it during phase changes,which could be used to improve the freeze-thaw performance of soil.The composite phase change material w... Phase change materials(PCMs)can store large amounts of energy in latent heat and release it during phase changes,which could be used to improve the freeze-thaw performance of soil.The composite phase change material was prepared with paraffin as the PCM and 8%Class C fly ash(CFA)as the supporting material.Laboratory tests were conducted to reveal the influence of phase change paraffin composite Class C fly ash(CFA-PCM)on the thermal properties,volume changes and mechanical properties of expansive soil.The results show that PCM failed to establish a good improvement effect due to leakage.CFA can effectively adsorb phase change materials,and the two have good compatibility.CFA-PCM reduces the volume change and strength attenuation of the soil,and 8 wt.%PCM is the optimal content.CFA-PCM turns the phase change latent heat down of the soil and improves its thermal stability.CFA-PCM makes the impact small of freeze-thaw on soil pore structure damage and improves soil volume change and mechanical properties on a macroscopic scale.In addition,CFA-8 wt.%PCM treated expansive soil has apparent advantages in resisting repeated freeze-thaw cycles,providing a reference for actual engineering design. 展开更多
关键词 composite phase change material freeze-thaw performance expansive soil thermal properties mechanical properties
下载PDF
Preparation of Paraffin/γ-Al2O3 Composites as Phase Change Energy Storage Materials 被引量:1
8
作者 赵亮 《沈阳建筑大学学报(自然科学版)》 CAS 北大核心 2011年第5期921-924,951,共5页
Paraffin/γ-Al2O3 composites as phase change energy storage materials were prepared by absorbing paraffin in porous network of γ-Al2O3.In the composite materials,paraffin was used as a phase change material(PCM)for t... Paraffin/γ-Al2O3 composites as phase change energy storage materials were prepared by absorbing paraffin in porous network of γ-Al2O3.In the composite materials,paraffin was used as a phase change material(PCM)for thermal energy storage,and γ-Al2O3 acted as supporting materials.Characterizations were conducted to evaluate the energy storage performance of the composites,and differential scanning calorimeter results showed that the PCM-3 composite has melting latent heat of 112.9 kJ/kg with a melting temperature of 62.9 ℃.Due to strong capillary force and surface tension between paraffin and γ-Al2O3,the leakage of melted paraffin from the composites can be effectively prevented.Therefore,the paraffin/γ-Al2O3 composites have a good thermal stability and can be used repeatedly. 展开更多
关键词 phase change material thermal energy storage Γ-AL2O3 paraffin
下载PDF
Preparation and Properties of 1-octadecanol/1,3:2,4-di-(3,4-dimethyl) Benzylidene Sorbitol/Expanded Graphite Form-stable Composite Phase Change Material
9
作者 XU Jun CHENG Xiaomin 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2019年第3期728-735,共8页
A 1-octadecanol(OD)/1,3:2,4-di-(3,4-dimethyl) benzylidene sorbitol(DMDBS)/expander graphite(EG) composite was prepared as a form-stable phase change material(PCM) by vacuum melting method. The results of fie... A 1-octadecanol(OD)/1,3:2,4-di-(3,4-dimethyl) benzylidene sorbitol(DMDBS)/expander graphite(EG) composite was prepared as a form-stable phase change material(PCM) by vacuum melting method. The results of field emission-scanning electron microscopy(FE-SEM) showed that 1-octadecanol was restricted in the three-dimensional network formed by DMDBS and the honeycomb network formed by EG. X-ray diffraction(XRD) and Fourier transform infrared spectroscopy(FT-IR) results showed that no chemical reaction occurred among the components of composite PCM in the preparation process. The gel-to-sol transition temperature of the composite PCMs containing DMDBS was much higher than the melting point of pure 1-octadecanol. The improvements in preventing leakage and thermal stability limits were mainly attributed to the synergistic effect of the three-dimensional network formed by DMDBS and the honeycomb network formed by EG. Differential scanning calorimeter(DSC) was used to determine the latent heat and phase change temperature of the composite PCMs. During melting and freezing process the latent heat values of the PCM with the composition of 91% OD/3% DMDBS/6% EG were 214.9 and 185.9 kJ·kg-1, respectively. Its degree of supercooling was only 0.1 ℃. Thermal constant analyzer results showed that its thermal conductivity(κ) changed up to roughly 10 times over that of OD/DMDBS matrix. 展开更多
关键词 1-octadecanol 1 3 4-di-(3 4-dimethyl) benzylidene sorbitol expander graphite composite phase change materials synergistic effect GELATOR
下载PDF
Preparation and Properties of Paraffin/PMMA Shape-stabilized Phase Change Material for Building Thermal Energy Storage 被引量:5
10
作者 孟多 ZHAO Kang +1 位作者 WANG Anqi WANG Baomin 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2020年第1期231-239,共9页
The composite phase change material(PCM) consisting of phase change paraffin(PCP) and polymethyl methacrylate(PMMA) was prepared as a novel type of shape-stabilized PCM for building energy conservation through the met... The composite phase change material(PCM) consisting of phase change paraffin(PCP) and polymethyl methacrylate(PMMA) was prepared as a novel type of shape-stabilized PCM for building energy conservation through the method of bulk polymerization. The chemical structure, morphology, phase change temperature and enthalpy, and mechanical properties of the composite PCM were studied to evaluate the encapsulation effect of PMMA on PCP and determine the optimal composition proportion. FTIR and SEM results revealed that PCP was physically immobilized in the PMMA so that its leakage from the composite was prevented. Based on the thermo-physical and mechanical properties investigations, the optimal mass fraction of PCP in the composite was determined as 70%. The phase change temperature of the composite was close to that of PCP, and its latent heat was equivalent to the calculated value according to the mass fraction of PCP in the composite. For estimating the usability in practical engineering, thermal stability, reliability and temperature regulation performance of the composite were also researched by TG analysis, thermal cycling treatments and heating-cooling test. The results indicated that PCP/PMMA composite PCM behaved good thermal stability depending on the PMMA protection and its latent heat degraded little after 500 thermal cycling. Temperature regulation performance of the composite before and after thermal cycling was both noticeable due to its latent heat absorption and release in the temperature variation processes. The PCP/PMMA phase change plate was fabricated and applied as thermal insulator in miniature concrete box to estimate its temperature regulation effect under the simulated environmental condition. It can be concluded that this kind of PCP/PMMA shape-stabilized PCM with the advantages of no leakage, suitable phase change temperature and enthalpy, good thermal stability and reliability, and effective temperature regulation performance have much potential for thermal energy storage in building energy conservation. 展开更多
关键词 shape-stabilized phase change material phase change paraffin polymethyl METHACRYLATE temperature regulation BUILDING energy conservation
下载PDF
Role of Composite Phase Change Material on the Thermal Performance of a Latent Heat Storage System: Experimental Investigation 被引量:2
11
作者 Jasim Abdulateef Ahmed F.Hasan Mustafa S.Mahdi 《Journal of Harbin Institute of Technology(New Series)》 EI CAS 2020年第1期44-51,共8页
Paraffin wax is a perfect phase change material(PCM)that can be used in latent heat storage units(LHSUs).The utilization of such LHSU is restricted by the poor conductivity of PCM.In the present work,a metal foam made... Paraffin wax is a perfect phase change material(PCM)that can be used in latent heat storage units(LHSUs).The utilization of such LHSU is restricted by the poor conductivity of PCM.In the present work,a metal foam made of aluminium with PCM was used to produce a composite PCM as a thermal conductivity technique in PCM⁃LHSU and water was used as heat transfer fluid(HTF).An experimental investigation was carried out to evaluate the heat transfer characteristics of LHSU using pure PCM and composite PCM.The study included time⁃dependent visualization of the PCM during the melting and solidification processes.Besides,a thermocouple network was placed inside the heat storage to record the temperature profile during each process.Results showed that better performance could be obtained using composite PCM⁃LHSU for both melting and solidification processes.The melting time of composite PCM⁃LHSU was about 83%faster than that of a simple PCM⁃LHSU,and the percentage decreasing in the solidification time was about 85%due to the provision of metal foam. 展开更多
关键词 phase change material metal foam latent heat composite PCM
下载PDF
Preparation of Composite Phase Change Material Based on Sol-Gel Method and Its Temperature-Adjustable Textile 被引量:2
12
作者 易世雄 马晓光 +1 位作者 张莹 李桦 《Journal of Donghua University(English Edition)》 EI CAS 2009年第3期284-289,共6页
In this study,the sol-gel method was introduced to prepare the composite phase change material (CPCM). The CPCM was added to fabric with coating techniques and the thermal activity of modified fabric was studied. In a... In this study,the sol-gel method was introduced to prepare the composite phase change material (CPCM). The CPCM was added to fabric with coating techniques and the thermal activity of modified fabric was studied. In addition,the thermal property and the microstructure of CPCM were also discussed in detail by means of polarization microscope and differential scanning calorimeter,respectively. According to the analysis of main influencial factors of the property of CPCM,the optimal preparing technique was determined. It was proved that CPCM could exhibit a good thermal property while phase transformation process took place,and a better appearance of the fabric modified with CPCM could be obtained due to the fact that in a warm circumstance,the liquid-state phase change material could be firmly enwrapped and embedded in the three-dimensional network all the time during the phase transformation. Besides,the fabric treated with CPCM had a high phase-transition enthalpy and an appropriate phase-transition temperature. As a result,a desirable temperature-adjustable function appeared. 展开更多
关键词 composite phase change material SOL-GEL temperature-adjustable TEXTILE
下载PDF
Direct incorporation of paraffin wax as phase change material into mass concrete for temperature control: mechanical and thermal properties
13
作者 Tao Luo JuanJuan Ma +4 位作者 Fang Liu MingYi Zhang ChaoWei Sun YanJun Ji XiaoSa Yuan 《Research in Cold and Arid Regions》 CSCD 2021年第1期30-42,共13页
Taking advantage of heat absorbing and releasing capability of phase change material(PCM),Paraffin wax-based concrete was prepared to assess its automatic temperature control performance.The mechanical properties of P... Taking advantage of heat absorbing and releasing capability of phase change material(PCM),Paraffin wax-based concrete was prepared to assess its automatic temperature control performance.The mechanical properties of PCM concrete with eight different Paraffin wax contents were tested by the cube compression test and four-point bending test.The more Paraffin wax incorporated,the greater loss of the compressive strength and bending strength.Based on the mechanical results,four contents of Paraffin wax were chosen for studying PCM concrete's thermal properties,including thermal conductivity,thermal diffusivity,specific heat capacity,thermal expansion coefficient and adiabatic temperature rise.When the Paraffin wax content increases from 10%to 20%,the thermal conductivity and the thermal diffusivity decrease from 7.31 kJ/(m·h·°C)to 7.10 kJ/(m·h·°C)and from 3.03×10−3 m2/h to 2.44×10−3 m2/h,respectively.Meanwhile the specific heat capacity and thermal expansion coefficient rise from 5.38×10−1 kJ/(kg·°C)to 5.76×10−1 kJ/(kg·°C)and from 9.63×10−6/°C to 14.02×10−6/°C,respectively.The adiabatic temperature rise is found to decrease with an increasing Paraffin wax content.Considering both the mechanical and thermal properties,15%of Paraffin wax was elected for the mass concrete model test,and the model test results confirm the effect of Paraffin wax in automatic mass concrete temperature control. 展开更多
关键词 phase change material paraffin wax temperature control mechanical properties thermal properties mass concrete
下载PDF
Preparation and Characterization of CA-MA Eutectic/Silicon Dioxide Nanoscale Composite Phase Change Material from Water Glass via Sol-Gel Method
14
作者 孟多 ZHAO Kang +1 位作者 ZHAO Wei JIANG Guowei 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2017年第5期1048-1056,共9页
This work mainly involved the preparation of a nano-scale form-stable phase change material(PCM) consisting of capric and myristic acid(CA-MA) binary eutectic acting as thermal absorbing material and nano silicon ... This work mainly involved the preparation of a nano-scale form-stable phase change material(PCM) consisting of capric and myristic acid(CA-MA) binary eutectic acting as thermal absorbing material and nano silicon dioxide(nano-SiO_2) serving as the supporting material. Industrial water glass for preparation of the nano silicon dioxide matrix and CA-MA eutectic mixture were compounded by single-step sol-gel method with the silane coupling agent. The morphology, chemical characterization and form stability property of the composite PCM were investigated by transmission electron microscopy(TEM), scanning electron microscopy(SEM), Fourier-transform infrared(FT-IR) spectroscopy and polarizing microscopy(POM). It was indicated that the average diameter of the composite PCM particle ranged from 30-100 nm. The CA-MA eutectic was immobilized in the network pores constructed by the Si-O bonds so that the composite PCM was allowed no liquid leakage above the melting temperature of the CA-MA eutectic. Differential scanning calorimetry(DSC) and thermogravimetric analysis(TGA) measurement were conducted to investigate the thermal properties and stability of the composite PCM. From the measurement results, the mass fraction of the CA-MA eutectic in the composite PCM was about 40%. The phase change temperature and latent heat of the composite were determined to be 21.15 ℃ and 55.67 J/g, respectively. Meanwhile, thermal conductivity of the composite was measured to be 0.208 W·m^(-1)·K^(-1) by using the transient hot-wire method. The composite PCM was able to maintain the surrounding temperature close to its phase change temperature and behaved well in thermalregulated performance which was verified by the heat storage-release experiment. This kind of form-stable PCM was supposed to complete thermal insulation even temperature regulation by the dual effect of relatively low thermal conductivity and phase change thermal storage-release properties. So it can be formulated that the nanoscale CA-MA/SiO_2 composite PCM with the form-stable property, good thermal storage capacity and relatively low thermal conductivity can be applied for energy conservation as a kind of thermal functional material. 展开更多
关键词 fatty acid eutectic silicon dioxide nanoscale composite phase change material water glass sol-gel
下载PDF
Design of the flame retardant form-stable composite phase change materials for battery thermal management system
15
作者 Xinxi Li Zixin Wu +7 位作者 Qiqiu Huang Canbing Li Yang Jin Guoqing Zhang Wensheng Yang Jian Deng Kang Xiong Yuhang Wu 《iEnergy》 2022年第2期223-235,共13页
Phase change materials have attracted significant attention owing to their promising applications in many aspects.However,it is seriously restricted by some drawbacks such as obvious leakage,relatively low thermal con... Phase change materials have attracted significant attention owing to their promising applications in many aspects.However,it is seriously restricted by some drawbacks such as obvious leakage,relatively low thermal conductivity,and easily flame properties.Herein,a novel flame retardant form-stable composite phase change material(CPCM)with polyethylene glycol/epoxy resin/expanded graphite/magnesium hydroxide/zinc hydroxide(PEG/ER/EG/MH/ZH)has been successfully prepared and utilized in the battery module.The addition of MH and ZH(MH:ZH=1:2)as flame retardant additions can not only greatly improve the flame retardant effect but also maintain the physical and mechanical properties of the polymer.Further,the EG(5%)can provide the graphitization degree of residual char which is beneficial to building a more protective barrier.This designation of CPCM can exhibit leakage-proof,high thermal conductivity(increasing 400%-500%)and prominent flammable retardant performance.Especially at 3C discharge rate,the maximum temperature is controlled below 54.2℃and the temperature difference is maintained within 2.2℃in the battery module,which presents a superior thermal management effect.This work suggests an efficient and feasible approach toward exploiting a multifunctional phase change material for thermal management systems for electric vehicles and energy storage fields. 展开更多
关键词 Battery thermal safety thermal management system composite phase change material form stable flame retardant con-trolling strategy
下载PDF
Preparation of Palygorskite-based Phase Change Composites for Thermal Energy Storage and Their Applications in Trombe Walls 被引量:2
16
作者 施韬 LI Shanshan +2 位作者 张豪 LI Zexin ZHU Min 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2017年第6期1306-1317,共12页
Palygorskite/paraffin phase-change composites were prepared by the combination of purified palygorskite clay and sliced paraffin. Then, this composite was used in the Trombe wall to improve its energy storage ability.... Palygorskite/paraffin phase-change composites were prepared by the combination of purified palygorskite clay and sliced paraffin. Then, this composite was used in the Trombe wall to improve its energy storage ability. Further, its energy storage ability was compared to that of ordinary concrete wall through contrastive test. The experiments show that palygorskite clay is a type of clay mineral with strong adsorption ability, and the purity of natural palygorskite clay can reach up to 97.1% after certain purification processes. Paraffin is well adsorbed by palygorskite, and the test results show that the optimal adsorption ratio is palygorskite: paraffin = 2:1(mass ratio). Palygorskite/paraffin phase change composites can be obtained by using palygorskite as the adsorbing medium to adsorb paraffin. The composite materials exhibit good heat storage(release) performance, which can store heat with increasing environment temperature and release heat with decreasing temperature. This property not only increases the inertia to environment temperature change, but also promotes the energy migration in different time and space, thus achieving a certain energy-saving effect. The application of palygorskite/paraffin phase change composite materials to the Trombe wall can significantly reduce the fluctuation of indoor temperature and enhance the thermal inertia of indoor environment. From the aspect of energy storage effect, the Trombe wall fabricated using PCMs is significantly superior to the concrete wall with the same thickness. 展开更多
关键词 phase change materials PALYGORSKITE ATTAPULGITE trombe wall thermal energy storage paraffin
下载PDF
Numerical Investigation of the Thermal Behavior of a System with a Partition Wall Incorporating a Phase Change Material
17
作者 Nisrine Hanchi Hamid Hamza +2 位作者 Jawad Lahjomri Khalid Zniber Abdelaziz Oubarra 《Fluid Dynamics & Materials Processing》 EI 2023年第5期1227-1236,共10页
The work deals with the thermal behavior of a conventional partition wall incorporating a phase change material(PCM).The wall separates two environments with different thermal properties.The first one is conditioned,w... The work deals with the thermal behavior of a conventional partition wall incorporating a phase change material(PCM).The wall separates two environments with different thermal properties.The first one is conditioned,while the adjacent space is characterized by a temperature that changes sinusoidally in time.The effect of the PCM is assessed through a comparative analysis of the cases with and without PCM.The performances are evaluated in terms of dimensionless energy stored within the wall,comfort temperature and variations of these quantities as a function of the amount of PCM and its emplacement. 展开更多
关键词 phase change materials rangemelting temperature composite wall comfort temperature dimensionless energy stored
下载PDF
Experimental Approaches to Improve Thermal Stability of Organic Phase Change Properties
18
作者 Amin Al Irobaidi 《Journal of Materials Science and Chemical Engineering》 2018年第7期125-135,共11页
This study investigates the thermal behavior of Polyolefin containing Paraffin and Nano Hydrated aluminum silicate Al2Si2O5 (OH) 4 (Kaolin) particles to enhance store energy at ambient temperature. The hybrid Nano com... This study investigates the thermal behavior of Polyolefin containing Paraffin and Nano Hydrated aluminum silicate Al2Si2O5 (OH) 4 (Kaolin) particles to enhance store energy at ambient temperature. The hybrid Nano composite is based on polyolefin PE as a matrix, whereby paraffin wax and Kaolin were hot blended at varying concentrations. In addition Carbon Nanotube (CNTs) was added in different relative low concentrations to improve the thermal transition among the polymer matrix, since polymer domains are considered as isolator. The composite was prepared by melt mixing using a Brabender Plasrograph and a Two Role Mill. Thermal properties of the composite were determined using DSC and Melt flow Index. Because TES materials are subjected to melting and freezing during life time, multiple extrusion tests to simulate the degradation process of the composite were carried out. FTIR was applied to determine the degradation effect and investigate microstructure changes of the composite. The results obtained demonstrate that the blend shows a tendency to be thermally active at low temperatures. DSC tests evidenced a decrease in melt tempera-ture as a result of increasing Kaolin content and some changes in the latent heat of the compound. 展开更多
关键词 phase change materials Polymer composites Nano KAOLIN TES Carbon NANOTUBES PE-Wax
下载PDF
Experimental Study of Temperature Control Based on Composite Phase Change Materials during Charging and Discharging of Battery
19
作者 LI Xiaolin WANG Jun +1 位作者 CAO Wenxiang ZHANG Xuesong 《Journal of Thermal Science》 SCIE EI CAS CSCD 2024年第2期578-590,共13页
This study is to utilize the heat-absorbing and releasing capabilities of phase change materials(PCM)to regulate the surface temperature fluctuations of batteries during charging and discharging.The goal is to keep th... This study is to utilize the heat-absorbing and releasing capabilities of phase change materials(PCM)to regulate the surface temperature fluctuations of batteries during charging and discharging.The goal is to keep the battery within the optimal operating temperature range.The impact of PCM thickness and phase change temperature on battery temperature is investigated by encircling a cylindrical battery with a PCM ring.To improve the thermal conductivity of PCM,expanded graphite(EG) is added to make a composite phase change material(CPCM),and the effects of various EG mass ratios on battery surface temperature and CPCM utilization level are investigated.The findings indicate that increasing PCM thickness effectively extends temperature control time,but its impact is limited.The difference in phase change temperature of PCM controls the battery temperature in different temperature ranges.Lower phase change temperatures are unsuitable for controlling battery temperature in high temperature environments.The addition of EG enhances the thermal conductivity of PCM,leading to further control of battery temperature.The results show that the addition of 6%(mass ratio) EG to CPCM extends the effective temperature control time by 11 min and improves by 28% compared to a single PCM.The CPCM utilization is also more satisfactory and achieved a balance between heat storage and thermal conductivity in a battery thermal management system(BTMS) based on PCM. 展开更多
关键词 phase change material expanded graphite thermal management system effective control time
原文传递
Passive battery thermal management and thermal safety protection based on hydrated salt composite phase change materials
20
作者 Jingshu Zhang Qian Liu +4 位作者 Xiaole Yao Chen Sun Xiaoqing Zhu Chao Xu Xing Ju 《Energy Storage and Saving》 2024年第4期305-317,共13页
Lithium-ion batteries(LIBs)are progressing towards higher energy densities,extended lifespans,and improved safety.However,battery thermal management systems are facing increased demand owing to high-rate charging and ... Lithium-ion batteries(LIBs)are progressing towards higher energy densities,extended lifespans,and improved safety.However,battery thermal management systems are facing increased demand owing to high-rate charging and discharging,dynamic operating conditions,and heightened thermal safety concerns.Therefore,this paper proposes a novel composite phase change material(CPCM)comprising Na2SO4–10H2O as the core phase change material(PCM)and expanded graphite as the thermal conductivity enhancer.The CPCM offers high latent heat,superior thermal conductivity,and a two-stage temperature control function for battery thermal management and safety.The optimal mass CPCM ratio,determined through comprehensive characterization and thermal property tests,resulted in a melting point of 29.05℃,latent heat of 183.7 J·g^(-1),and high thermal conductivity of 3.926 W·m^(-1)·K^(-1).During normal LIB operations,the CPCM efficiently absorbs and transfers heat,reducing the peak LIB temperature from 66 to 34℃at 15℃ambient temperature during a 3.7C high-rate discharge.Under dynamic conditions,the peak temperatures across the three cycles were consistently controlled at 36.7,36.4,and 35.8℃,respectively.In a thermal runaway state,the thermochemical heat storage of hydrated salt dehydration effectively slowed LIB temperature increase,delaying the time to reach 130℃by 187 s.Suppression of the temperature rise outside the CPCM,combined with an extended dehydration plateau of up to 320 s,prevented the occurrence and propagation of thermal runaway in the battery. 展开更多
关键词 Battery thermal management system Thermal runaway Lithium-ion battery composite phase change materials Hydrated salt DEHYDRATION
原文传递
上一页 1 2 50 下一页 到第
使用帮助 返回顶部