As an improvement on the conventional two-layer electrode (active material layerlcurrent collector), a novel sandwich-like three-layer electrode (conductive layerlactive material layertcurrent collector) for catho...As an improvement on the conventional two-layer electrode (active material layerlcurrent collector), a novel sandwich-like three-layer electrode (conductive layerlactive material layertcurrent collector) for cathode material LiFePO4/C was introduced in order to improve its electrochemical performance. LiFePO4/C in the three-layer electrode exhibited superior rate capability in comparison with that in the two-layer electrode in accordance with charge-discharge examination. Cyclic voltammetry and electrochemical impedance spectroscopy indicated that Fe3+/Fe2+ redox couple for LiFePO4 in the three-layer electrode displayed faster kinetics, better reversibility and much lower charge transfer resistance than that in the two-layer electrode in electrochemical process. For three-layer electrode, the holes in the surface of active material layer were filled by smaller acetylene black grains, which formed electrical connections and provided more pathways to electron transport to/from LiFePO4/C particles exposed to the bulk electrolyte.展开更多
Co2+-doped LiFePO4/C composite material was prepared by solid-state synthesis method using Fe2O3,Li2CO3 and NH4H2PO4 as the starting materials.The structures and elec-trochemical performance of samples were studied b...Co2+-doped LiFePO4/C composite material was prepared by solid-state synthesis method using Fe2O3,Li2CO3 and NH4H2PO4 as the starting materials.The structures and elec-trochemical performance of samples were studied by XRD,SEM and constant current charge-discharge method.The results showed that the Co2+ doping did not change the crystal structure of LiFePO4.The unit cell volume changed with the increase of Co2+,and reached the maximum at x = 0.04.The LiFe0.96Co0.04PO4/C sample proved the best electrochemical properties.Its initial discharge capacity was 138.5 mA·h /g at 1 C rate.After 30 cycles,the capacity remained 127.7 mA·h /g,and the capacity retention rate was 92.2%.展开更多
A facile and practical route was introduced to prepare LiFePO4/C cathode material with nano-sized primary particles and excellent electrochemical performance. LiH2PO4 was synthesized by using H3PO4 and LiOH as raw mat...A facile and practical route was introduced to prepare LiFePO4/C cathode material with nano-sized primary particles and excellent electrochemical performance. LiH2PO4 was synthesized by using H3PO4 and LiOH as raw materials. Then, as-prepared LiH2PO4, reduced iron powder andα-D-glucose were ball-milled, dried and sin-tered to prepare LiFePO4/C. X-ray diffractometry was used to characterize LiH2PO4, ball-milled product and LiFePO4/C. Differential scanning calorimeter-thermo gravimetric analysis was applied to investigate possible reac-tions in sintering and find suitable temperature for LiFePO4 formation. Scanning electron microscopy was em-ployed for the morphology of LiFePO4/C. As-prepared LiH2PO4 is characterized to be in P21cn(33) space group, which reacts with reduced iron powder to form Li3PO4, Fe3(PO4)2 and H2 in ball-milling and sintering. The appro-priate temperature for LiFePO4/C synthesis is 541.3-976.7 ℃. LiFePO4/C prepared at 700 ℃ presents nano-sized primary particles forming aggregates. Charge-discharge examination indicates that as-prepared LiFePO4/C displays appreciable discharge capacities of 145 and 131 mA·h·g^-1 at 0.1 and 1 C respectively and excellent discharge ca-pacity retention.展开更多
The anoxic decomposition and influence of carbon precursors on the properties of LiFePO_4/C prepared by using Fe_2O_3 were investigated.X-ray powder diffractometry,Fourier transform infrared spectroscopy(FTIR),scannin...The anoxic decomposition and influence of carbon precursors on the properties of LiFePO_4/C prepared by using Fe_2O_3 were investigated.X-ray powder diffractometry,Fourier transform infrared spectroscopy(FTIR),scanning electron microscopy(SEM) and carbon content and charge–discharge tests were applied to the characterization of the as-synthesized cathodes.Partial carbon is lost in the anaerobic decomposition of organic precursors and a high hydrogen content leads to a high residual carbon rate.Pyromellitic anhydride and citric acid participate in reactions before and in ball-milling.All the chosen carbon precursors are capable of producing LiFePO_4 with high degree of crystallinity and purity.The carbon derived from α-D-glucose,pyromellitic anhydride,soluble starch,citric acid and polyacrylamide has a loose and porous texture in LiFePO_4/C which forms conduction on and between LiFePO_4 particles.LiFePO_4/C prepared by using α-D-glucose,pyromellitic anhydride,citric acid and sucrose exhibits appreciable electrochemical performance.Graphite alone is able to enhance the electrochemical performance of LiFePO_4 to a limited extent but incapable of preparing practical cathode.展开更多
Li Fe PO4/C was prepared via solid state reaction and characterized with X-ray powder diffraction and charge–discharge test. As-prepared Li Fe PO4/C has a triphylite structure and exhibits an excellent rate capabilit...Li Fe PO4/C was prepared via solid state reaction and characterized with X-ray powder diffraction and charge–discharge test. As-prepared Li Fe PO4/C has a triphylite structure and exhibits an excellent rate capability and capacity retention. Electrochemical impedance spectroscopy(EIS) was applied to investigate LixFe PO4/C(0<x<1) electrode on temperature variation. The valid equivalent circuit for EIS fitting was determined which contains an intercalation capacitance for Li+ ion accumulation and consumption in the electrode reaction. The surface layer impedance needs to be included in the equivalent circuit when Li Fe PO4/C is deeply delithiated at a relatively high temperature. EIS examination indicates that a temperature rise leads to a better reversibility, lower charge transfer resistance, higher exchange current density J0 and greater Li+ ion diffusion coefficient for the LixFe PO4/C electrode process. The Li+ ion concentration in LixFe PO4/C is potential to impact the Li+ ion diffusion coefficient, and a decrease in the former results in an increase in the latter.展开更多
基金Project(2010ZCO51)supported by Natural Science Foundation of Yunnan ProvinceProject supported by Analysis and Testing Foundation(2009-041)Starting Research Fund(14118245)from Kunming University of Science and Technology
文摘As an improvement on the conventional two-layer electrode (active material layerlcurrent collector), a novel sandwich-like three-layer electrode (conductive layerlactive material layertcurrent collector) for cathode material LiFePO4/C was introduced in order to improve its electrochemical performance. LiFePO4/C in the three-layer electrode exhibited superior rate capability in comparison with that in the two-layer electrode in accordance with charge-discharge examination. Cyclic voltammetry and electrochemical impedance spectroscopy indicated that Fe3+/Fe2+ redox couple for LiFePO4 in the three-layer electrode displayed faster kinetics, better reversibility and much lower charge transfer resistance than that in the two-layer electrode in electrochemical process. For three-layer electrode, the holes in the surface of active material layer were filled by smaller acetylene black grains, which formed electrical connections and provided more pathways to electron transport to/from LiFePO4/C particles exposed to the bulk electrolyte.
基金Sponsored by the Graduate Innovation Fund of Shaanxi University of Science and Technology
文摘Co2+-doped LiFePO4/C composite material was prepared by solid-state synthesis method using Fe2O3,Li2CO3 and NH4H2PO4 as the starting materials.The structures and elec-trochemical performance of samples were studied by XRD,SEM and constant current charge-discharge method.The results showed that the Co2+ doping did not change the crystal structure of LiFePO4.The unit cell volume changed with the increase of Co2+,and reached the maximum at x = 0.04.The LiFe0.96Co0.04PO4/C sample proved the best electrochemical properties.Its initial discharge capacity was 138.5 mA·h /g at 1 C rate.After 30 cycles,the capacity remained 127.7 mA·h /g,and the capacity retention rate was 92.2%.
基金Supported partially by the Natural Science Foundation of Yunnan Province(2010ZC051)Analysis and Testing Foundation(2009-041)Starting Research Fund(14118245) from Kunming University of Science and Technology
文摘A facile and practical route was introduced to prepare LiFePO4/C cathode material with nano-sized primary particles and excellent electrochemical performance. LiH2PO4 was synthesized by using H3PO4 and LiOH as raw materials. Then, as-prepared LiH2PO4, reduced iron powder andα-D-glucose were ball-milled, dried and sin-tered to prepare LiFePO4/C. X-ray diffractometry was used to characterize LiH2PO4, ball-milled product and LiFePO4/C. Differential scanning calorimeter-thermo gravimetric analysis was applied to investigate possible reac-tions in sintering and find suitable temperature for LiFePO4 formation. Scanning electron microscopy was em-ployed for the morphology of LiFePO4/C. As-prepared LiH2PO4 is characterized to be in P21cn(33) space group, which reacts with reduced iron powder to form Li3PO4, Fe3(PO4)2 and H2 in ball-milling and sintering. The appro-priate temperature for LiFePO4/C synthesis is 541.3-976.7 ℃. LiFePO4/C prepared at 700 ℃ presents nano-sized primary particles forming aggregates. Charge-discharge examination indicates that as-prepared LiFePO4/C displays appreciable discharge capacities of 145 and 131 mA·h·g^-1 at 0.1 and 1 C respectively and excellent discharge ca-pacity retention.
基金Project(2010ZC051)supported by Natural Science Foundation of Yunnan Province,ChinaProject(20140439)supported by Analysis and Testing Foundation of Kuming University of Science and Technology,ChinaProject(14118245)supported by the Starting Research Fund from Kunming University of Science and Technology,China
文摘The anoxic decomposition and influence of carbon precursors on the properties of LiFePO_4/C prepared by using Fe_2O_3 were investigated.X-ray powder diffractometry,Fourier transform infrared spectroscopy(FTIR),scanning electron microscopy(SEM) and carbon content and charge–discharge tests were applied to the characterization of the as-synthesized cathodes.Partial carbon is lost in the anaerobic decomposition of organic precursors and a high hydrogen content leads to a high residual carbon rate.Pyromellitic anhydride and citric acid participate in reactions before and in ball-milling.All the chosen carbon precursors are capable of producing LiFePO_4 with high degree of crystallinity and purity.The carbon derived from α-D-glucose,pyromellitic anhydride,soluble starch,citric acid and polyacrylamide has a loose and porous texture in LiFePO_4/C which forms conduction on and between LiFePO_4 particles.LiFePO_4/C prepared by using α-D-glucose,pyromellitic anhydride,citric acid and sucrose exhibits appreciable electrochemical performance.Graphite alone is able to enhance the electrochemical performance of LiFePO_4 to a limited extent but incapable of preparing practical cathode.
基金Project(2010ZC051)supported by the Natural Science Foundation of Yunnan Province,ChinaProject(20140439)supported by Analysis and Testing Foundation from Kunming University of Science and Technology,ChinaProject(14118245)supported by Starting Research Fund from Kunming University of Science and Technology,China
文摘Li Fe PO4/C was prepared via solid state reaction and characterized with X-ray powder diffraction and charge–discharge test. As-prepared Li Fe PO4/C has a triphylite structure and exhibits an excellent rate capability and capacity retention. Electrochemical impedance spectroscopy(EIS) was applied to investigate LixFe PO4/C(0<x<1) electrode on temperature variation. The valid equivalent circuit for EIS fitting was determined which contains an intercalation capacitance for Li+ ion accumulation and consumption in the electrode reaction. The surface layer impedance needs to be included in the equivalent circuit when Li Fe PO4/C is deeply delithiated at a relatively high temperature. EIS examination indicates that a temperature rise leads to a better reversibility, lower charge transfer resistance, higher exchange current density J0 and greater Li+ ion diffusion coefficient for the LixFe PO4/C electrode process. The Li+ ion concentration in LixFe PO4/C is potential to impact the Li+ ion diffusion coefficient, and a decrease in the former results in an increase in the latter.