A SnO-graphite composite material, which can deliver high capacities and good cycling stability compared with unsupported SnO, was described. This material prepared via chemical co-precipitation reaction in the presen...A SnO-graphite composite material, which can deliver high capacities and good cycling stability compared with unsupported SnO, was described. This material prepared via chemical co-precipitation reaction in the presence of graphite consists of high dispersion of SnO with a size of about several hundred nanometers in the graphite. The phase structure was analyzed by X-ray diffraction (XRD). The morphology and the element distribution were examined by scanning electron microscopy (SEM) equipped with energy spectrum. The results show that the SnO-graphite composites produced by slowly hydrolysis have higher rechargeable capacities than pure graphite and better cycling performance than SnO.展开更多
SnO2/ graphite nanocomposites with different SnO2 contents were successfully prepared by a co-precipitation method.The nanocomposites, used as the anode material for lithium-ion batteries( LIBs),were characterized by ...SnO2/ graphite nanocomposites with different SnO2 contents were successfully prepared by a co-precipitation method.The nanocomposites, used as the anode material for lithium-ion batteries( LIBs),were characterized by X-ray diffraction( XRD),thermogravimetric analysis( TGA), and transmission electron microscopy( TEM). The SnO2 particles had the average size of about 15 nm and their distribution on graphite matrix much depended on the contents of SnO2 in the nanocomposites. The galvanostatic charge-discharge cycles were used to investigate the effects of SnO2 contents on the electrochemical performance of these composites. The results show that the initial specific capacities increase with the SnO2 contents. However,the cyclic stabilities are determined by the distribution of SnO2 particles in composites. For55% by weight SnO2/ graphite composites, the initial specific capacity is 740 m Ah g- 1and 70% of the initial specific capacity( 518 m Ah·g- 1) can still be retained after 50 charge-discharge cycles.展开更多
Co3O4/graphite composites were synthesized by precipitation of cobalt oxalate on the surface of graphite and pyrolysis of the precipitate, and the effects of graphite content and calcination temperature on the electro...Co3O4/graphite composites were synthesized by precipitation of cobalt oxalate on the surface of graphite and pyrolysis of the precipitate, and the effects of graphite content and calcination temperature on the electrochemical properties of the composites were investigated. The samples were characterized by thermogravimetry and differential thermal analysis (TG/DTA), X-ray diffractometry (XRD), scanning electron microscopy (SEM), cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS) and charge/discharge measurements. With increasing the graphite content, the reversible capacity of the Co3O4/graphite composites decreases, while cycling stability improves dramatically, and the addition of graphite obviously decreases the average potential of lithium intercalation/deintercalation. The reversible capacity of the composites with 50% graphite rises from 583 to 725 mA-h/g as the calcination temperature increases from 300 to 500 ℃, and the Co304/graphite composites synthesized at 400 ℃ show the best cycling stability without capacity loss in the initial 20 cycles. peaks, corresponding to the lithium intercalaction/deintercalation for The CV profile of the composite presents two couples of redox graphite and Co3O4, respectively. EIS studies indicate that the electrochemical impedance decreases with increasing the graphite content.展开更多
Graphite nanopowder is synthesized by mechanical method using ball mill and used as filler in polymer electrolyte film based on Polyvinyl alcohol(PVA)for application in natural dye sensitized solar cell(DSSC).In the p...Graphite nanopowder is synthesized by mechanical method using ball mill and used as filler in polymer electrolyte film based on Polyvinyl alcohol(PVA)for application in natural dye sensitized solar cell(DSSC).In the present work dye sensitized solar cell has been assembled using electrolyte system composed of PVA as host polymer,ethylene carbonate as plasticizer,LiI:I2 as redox couple and graphite as filler;TiO2 modified with Copper oxide(CuO)photoanode in order to provide inherent energy barrier and natural cocktail dye as sensitizer.The obtained solar cell conversion efficiency was about 3.2%with fill factor 52%using an irradiation of 100 mW/cm^(2) at 25℃C.展开更多
The modified graphite anode materials have some prominent advantages over other anode materials in the industrial applications.A novel simple and gentle method is proposed to synthesize the mild expanded graphite micr...The modified graphite anode materials have some prominent advantages over other anode materials in the industrial applications.A novel simple and gentle method is proposed to synthesize the mild expanded graphite microspheres(MEGMs) from flake graphite spheres through a combined modified pressurized oxidation combined with the microwave treatment.The microstructural results demonstrate that moderately expanded MEGMs with an expansion volume between 4 and 10 ml·g^(-1)exhibit a highly microporous structure with an enlarged interlayer spacing,a decreased microcrystalline size,as well as an increased number of functional groups on the surface,resulting in the increased storage sites and spaces for lithium ions and the enhanced diffusion rate of lithium ions.When used as the anode material for lithium-ion batteries,the MEGM-T75t30 obtained by oxidation treatment at 75℃ for 30 min followed by microwave irradiation for expansion displays a high reversible capacity of 446.7 mAh·g^(-1) at 100 mA·g^(-1) after 100 cycles and excellent rate performance(330 and 116 mAh·g^(-1) at 800 and 3200 mA·g^(-1),respectively).Therefore,the MEGMs prepared by this convenient and mild method show excellent electrochemical properties and good application potential.展开更多
The oxidation resistance of the matrix materials is vital to the normal operation of HTGR and is also an important parameter for evaluating the safety response under accidental air or water ingress conditions. The oxi...The oxidation resistance of the matrix materials is vital to the normal operation of HTGR and is also an important parameter for evaluating the safety response under accidental air or water ingress conditions. The oxidation kinetics of the three matrix material components: natural graphite, artificial graphite and resin carbon. was studied in a flowing gas mixture of oxygen and nitrogen using an auto thermogravimetric system. The results indicate that the artificial graphite has the slowest oxidation rate followed by the natural graphite and then the resin carbon with the highest oxidation rate. Vacuum heat treatment of the natural graphite at 1950℃ decreases the impurities and increases the oxidation activation energy. Differences between the activation energy and the oxidation rate of the resin carbon heat treated at 1950℃ and 1600℃ resulted from changes in the micro-pore texture. and the reduction of impurities.展开更多
文摘A SnO-graphite composite material, which can deliver high capacities and good cycling stability compared with unsupported SnO, was described. This material prepared via chemical co-precipitation reaction in the presence of graphite consists of high dispersion of SnO with a size of about several hundred nanometers in the graphite. The phase structure was analyzed by X-ray diffraction (XRD). The morphology and the element distribution were examined by scanning electron microscopy (SEM) equipped with energy spectrum. The results show that the SnO-graphite composites produced by slowly hydrolysis have higher rechargeable capacities than pure graphite and better cycling performance than SnO.
基金the Scientific Research Foundation for the Returned Overseas Chinese Scholarsthe Shanghai Leading Academic Discipline Project,China(No.B603)the Programme of Introducing Talents of Discipline to Universities,China(No.111-2-04)
文摘SnO2/ graphite nanocomposites with different SnO2 contents were successfully prepared by a co-precipitation method.The nanocomposites, used as the anode material for lithium-ion batteries( LIBs),were characterized by X-ray diffraction( XRD),thermogravimetric analysis( TGA), and transmission electron microscopy( TEM). The SnO2 particles had the average size of about 15 nm and their distribution on graphite matrix much depended on the contents of SnO2 in the nanocomposites. The galvanostatic charge-discharge cycles were used to investigate the effects of SnO2 contents on the electrochemical performance of these composites. The results show that the initial specific capacities increase with the SnO2 contents. However,the cyclic stabilities are determined by the distribution of SnO2 particles in composites. For55% by weight SnO2/ graphite composites, the initial specific capacity is 740 m Ah g- 1and 70% of the initial specific capacity( 518 m Ah·g- 1) can still be retained after 50 charge-discharge cycles.
基金Project(2007CB613607) supported by the National Basic Research Program of China Projects(2009FJ1002, 2009CK3062) supported by the Science and Technology Program of Hunan Province, China
文摘Co3O4/graphite composites were synthesized by precipitation of cobalt oxalate on the surface of graphite and pyrolysis of the precipitate, and the effects of graphite content and calcination temperature on the electrochemical properties of the composites were investigated. The samples were characterized by thermogravimetry and differential thermal analysis (TG/DTA), X-ray diffractometry (XRD), scanning electron microscopy (SEM), cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS) and charge/discharge measurements. With increasing the graphite content, the reversible capacity of the Co3O4/graphite composites decreases, while cycling stability improves dramatically, and the addition of graphite obviously decreases the average potential of lithium intercalation/deintercalation. The reversible capacity of the composites with 50% graphite rises from 583 to 725 mA-h/g as the calcination temperature increases from 300 to 500 ℃, and the Co304/graphite composites synthesized at 400 ℃ show the best cycling stability without capacity loss in the initial 20 cycles. peaks, corresponding to the lithium intercalaction/deintercalation for The CV profile of the composite presents two couples of redox graphite and Co3O4, respectively. EIS studies indicate that the electrochemical impedance decreases with increasing the graphite content.
文摘Graphite nanopowder is synthesized by mechanical method using ball mill and used as filler in polymer electrolyte film based on Polyvinyl alcohol(PVA)for application in natural dye sensitized solar cell(DSSC).In the present work dye sensitized solar cell has been assembled using electrolyte system composed of PVA as host polymer,ethylene carbonate as plasticizer,LiI:I2 as redox couple and graphite as filler;TiO2 modified with Copper oxide(CuO)photoanode in order to provide inherent energy barrier and natural cocktail dye as sensitizer.The obtained solar cell conversion efficiency was about 3.2%with fill factor 52%using an irradiation of 100 mW/cm^(2) at 25℃C.
基金financially supported by the National Natural Science Foundation of China(Nos.51702191,51802325 and U1510134)the Natural Science Foundation of Shanxi Province,China(No.201901D111037)+3 种基金Scientific Research Foundation for Young Scientists of Shanxi Province,China(No.201901D211585)the Science and Technology Innovation Planning Project in Universities and Colleges of Shanxi Province of China(No.2019L0012)the Unveiling Bidding Projects of Shanxi Province,China(No.20191101008)the Shanxi“1331 Project”Key Innovative Research Team。
文摘The modified graphite anode materials have some prominent advantages over other anode materials in the industrial applications.A novel simple and gentle method is proposed to synthesize the mild expanded graphite microspheres(MEGMs) from flake graphite spheres through a combined modified pressurized oxidation combined with the microwave treatment.The microstructural results demonstrate that moderately expanded MEGMs with an expansion volume between 4 and 10 ml·g^(-1)exhibit a highly microporous structure with an enlarged interlayer spacing,a decreased microcrystalline size,as well as an increased number of functional groups on the surface,resulting in the increased storage sites and spaces for lithium ions and the enhanced diffusion rate of lithium ions.When used as the anode material for lithium-ion batteries,the MEGM-T75t30 obtained by oxidation treatment at 75℃ for 30 min followed by microwave irradiation for expansion displays a high reversible capacity of 446.7 mAh·g^(-1) at 100 mA·g^(-1) after 100 cycles and excellent rate performance(330 and 116 mAh·g^(-1) at 800 and 3200 mA·g^(-1),respectively).Therefore,the MEGMs prepared by this convenient and mild method show excellent electrochemical properties and good application potential.
文摘The oxidation resistance of the matrix materials is vital to the normal operation of HTGR and is also an important parameter for evaluating the safety response under accidental air or water ingress conditions. The oxidation kinetics of the three matrix material components: natural graphite, artificial graphite and resin carbon. was studied in a flowing gas mixture of oxygen and nitrogen using an auto thermogravimetric system. The results indicate that the artificial graphite has the slowest oxidation rate followed by the natural graphite and then the resin carbon with the highest oxidation rate. Vacuum heat treatment of the natural graphite at 1950℃ decreases the impurities and increases the oxidation activation energy. Differences between the activation energy and the oxidation rate of the resin carbon heat treated at 1950℃ and 1600℃ resulted from changes in the micro-pore texture. and the reduction of impurities.