The mercury species in the ocean(MeHg,Hg^(2+))will be enriched in marine organisms and threaten human health through the food chain.While the excessive H_(2)O_(2)in the metabolic process will produce hydroxyl radicals...The mercury species in the ocean(MeHg,Hg^(2+))will be enriched in marine organisms and threaten human health through the food chain.While the excessive H_(2)O_(2)in the metabolic process will produce hydroxyl radicals and accelerate the aging of human cells,causing a series of diseases.Hence,the cost-effective and rapid detection of mercury and H_(2)O_(2)is of urgent requirement and significance.Here,we synthesized emerging graphitic carbon nitride quantum dots(g-CNQDs)with high fluorescence quantum yield(FLQY)of 42.69%via a bottom-up strategy by a facile one-step hydrothermal method.The g-CNQDs can detect the H_(2)O_(2)and Hg^(2+)through the fluorescence quenching effect between g-CNQDs and detected substances.With the presence of KI,g-CNQDs show concentration-dependent fluorescence toward H_(2)O_(2),with a wide detection range of 1–1000μmolL^(-1)and a low detection limit of 0.23μmolL^(-1).The g-CNQDs also show sensitivity toward Hg^(2+)with a detection range of 0–0.1μmolL^(-1)and a detection limit of 0.038μmolL^(-1).This dual-function detection of g-CNQDs has better practical application capability compared to other quantum dot detection.This study may provide a new strategy for g-CNQDs preparation and construct a fluorescence probe that can be used in various systems involving H_(2)O_(2)and Hg^(2+),providing better support for future bifunctional or multifunction studies.展开更多
Because of the low reactivity of cyclic nitrides,liquid-phase synthesis of carbon nitride introduces challenges despite its favorable potential for energy-efficient preparation and superior applications.In this study,...Because of the low reactivity of cyclic nitrides,liquid-phase synthesis of carbon nitride introduces challenges despite its favorable potential for energy-efficient preparation and superior applications.In this study,we demonstrate a strong interaction between citric acid and melamine through experimental observation and theoretical simulation,which eff ectively activates melamine-condensation activity and produces carbon-rich carbon nitride nanosheets(CCN NSs)during hydrothermal reaction.Under a large specific surface area and increased light absorption,these CCN NSs demonstrate significantly enhanced photocatalytic activity in CO_(2) reduction,increasing the CO production rate by approximately tenfold compared with hexagonal melamine(h-Me).Moreover,the product selectivity of CCN NSs reaches up to 93.5%to generate CO from CO_(2).Furthermore,the annealed CCN NSs exhibit a CO conversion rate of up to 95.30μmol/(g h),which indicates an 18-fold increase compared with traditional carbon nitride.During the CCN NS synthesis,nitrogen-doped carbon quantum dots(NDC QDs)are simultaneously produced and remain suspended in the supernatant after centrifugation.These QDs disperse well in water and exhibit excellent luminescent properties(QY=67.2%),allowing their application in the design of selective and sensitive sensors to detect pollutants such as pesticide 2,4-dichlorophenol with a detection limit of as low as 0.04μmol/L.Notably,the simultaneous synthesis of CCN NSs and NDC QDs provides a cost-eff ective and highly efficient process,yielding products with superior capabilities for catalytic conversion of CO_(2) and pollutant detection,respectively.展开更多
Designing defect-engineered semiconductor heterojunctions can effectively promote the charge carrier separation.Herein,novel ceria(CeO2) quantum dots(QDs) decorated sulfur-doped carbon nitride nanotubes(SCN NTs) were ...Designing defect-engineered semiconductor heterojunctions can effectively promote the charge carrier separation.Herein,novel ceria(CeO2) quantum dots(QDs) decorated sulfur-doped carbon nitride nanotubes(SCN NTs) were synthesized via a thermal polycondensation coupled in situ depositionprecipitation method without use of template or surfactant.The structure and morphology studies indicate that ultrafine CeO2 QDs are well distributed inside and outside of SCN NTs offering highly dispersed active sites and a large contact interface between two components.This leads to the promoted formation of rich Ce^(3+) ion and oxygen vacancies as confirmed by XPS.The photocatalytic performance can be facilely modulated by the content of CeO2 QDs introduced in SCN matrix while bare CeO2 does not show activity of hydrogen production.The optimal catalyst with 10% of CeO2 loading yields a hydrogen evolution rate of 2923.8 μmol h-1 g-1 under visible light,remarkably higher than that of bare SCN and their physical mixtures.Further studies reveal that the abundant surface defects and the created 0 D/1 D junctions play a critical role in improving the separation and transfer of charge carriers,leading to superior solar hydrogen production and good stability.展开更多
Nanozyme antibacterial agents with high enzyme-like catalytic activity and strong bacteria-binding ability have provided an alternative method to efficiently disinfect drug-resistance microorganism.Herein,the carbon n...Nanozyme antibacterial agents with high enzyme-like catalytic activity and strong bacteria-binding ability have provided an alternative method to efficiently disinfect drug-resistance microorganism.Herein,the carbon nitride quantum dots(CNQDs)nanozymes with high nitrogen vacancies(NVs)were mass-productively prepared by a simple ultrasonic-crushing method assisted by propylene glycol.It was found that the NVs of CNQDs were stemmed from the selective breaking of surface N-(C)_(2)sites,accounting for 6.2%.Experiments and density functional theory(DFT)simulations have demonstrated that the presence of NVs can alter the local electron distribution and extend theπ-electron delocalization to enhance the peroxidase-like activity.Biocompatible CNQDs could enter inside microorganisms by diffusion and elevate the bacteria-binding ability,which enhanced the accurate and rapid attack of·OH to the microorganisms.The sterilization rate of CNQDs against Gram-negative bacteria(E.coli),Gram-positive bacteria(S.aureus,B.subtilis),fungi(R.solani)reaches more than 99%.Thus,this work showed great potential for engineered nanozymes for broad-spectrum antibacterial in biomedicine and environmental protection.展开更多
Graphitic carbon nitride quantum dots(CNQDs) are emerging as attractive photoluminescent(PL)materials with excellent application potential in fluorescence imaging and heavy-metal ion detection. However, three limitati...Graphitic carbon nitride quantum dots(CNQDs) are emerging as attractive photoluminescent(PL)materials with excellent application potential in fluorescence imaging and heavy-metal ion detection. However, three limitations, namely, low quantum yields(QYs), self-quenching,and excitation-dependent PL emission behaviors, severely impede the commercial applications of crystalline CNQDs.Here we address these three challenges by synthesizing borondoped amorphous CNQDs via a hydrothermal process followed by the top±down cutting approach. Structural disorder endows the amorphous boron-doped CNQDs(B-CNQDs)with superior elastic strain performance over a wide range of pH values, thus effectively promoting mass transport and reducing exciton quenching. Boron as a dopant could fine-tune the electronic structure and emission properties of the PL material to achieve excitation-independent emission via the formation of uniform boron states. As a result, the amorphous B-CNQDs show unprecedented fluorescent stability(i.e., no obvious fading after two years) and a high QY of 87.4%;these values indicate that the quantum dots obtained are very promising fluorescent materials. Moreover, the B-CNQDs show bright-blue fluorescence under ultraviolet excitation when applied as ink on commercially available paper and are capable of the selective and sensitive detection of Fe^(2+) and Cd^(2+) in the parts-per-billion range. This work presents a novel avenue and scientific insights on amorphous carbon-based fluorescent materials for photoelectrical devices and sensors.展开更多
为加速二苯醚类除草剂在可见光环境的降解,以玉米芯制碳量子点修饰石墨相氮化碳,合成一种非金属型光催化剂.考察在该催化剂作用下,氟磺胺草醚、三氟羧草醚和乙氧氟草醚等的光解行为及光解前后毒性.结果表明,氟磺胺草醚在可见光照射下的...为加速二苯醚类除草剂在可见光环境的降解,以玉米芯制碳量子点修饰石墨相氮化碳,合成一种非金属型光催化剂.考察在该催化剂作用下,氟磺胺草醚、三氟羧草醚和乙氧氟草醚等的光解行为及光解前后毒性.结果表明,氟磺胺草醚在可见光照射下的光解速率最大、其次为乙氧氟草醚,光照3 h的降解率即达99%和91%,而三氟羧草醚的光解速率最低、须光照至8 h才能达到90%的降解率.由高斯软件计算NPA(Natural Population Analysis)电荷分布得福井函数和双描述符,预测反应位点并结合液质联用分析降解产物,推测除草剂的降解过程应包括裂解、水解、脱卤、还原和羟基化等,证明了空穴和羟基自由基在其中的作用.观察玉米种子的生长实验,发现氟磺胺草醚的毒性略高于乙氧氟草醚,但二者经光照处理后毒性均显著下降,三氟羧草醚及其光解产物显示为低毒性.展开更多
In this work,a novel dual Z-scheme Bi_(2)WO_(6)/g-C_(3)N_(4)/black phosphorus quantum dots(Bi_(2)WO_(6)/g-C_(3)N_(4)/BPQDs)composites were fabricated and utilized towards photocatalytic degradation of bisphenol A(BPA)...In this work,a novel dual Z-scheme Bi_(2)WO_(6)/g-C_(3)N_(4)/black phosphorus quantum dots(Bi_(2)WO_(6)/g-C_(3)N_(4)/BPQDs)composites were fabricated and utilized towards photocatalytic degradation of bisphenol A(BPA)under visible-light irradiation.Optimizing the content of g-C_(3)N_(4) and BPQDs in Bi_(2)WO_(6)/g-C_(3)N_(4)/BPQDs composites to a suitable mass ratio can enhance the visible-light harvesting capacity and increase the charge separation efficiency and the transfer rate of excited-state electrons and holes,resulting in much higher photocatalytic activity for BPA degradation(95.6%,at 20 mg/L in 120 min)than that of Bi2WO6(63.7%),g-C_(3)N_(4)(25.0%),BPQDs(8.5%),and Bi_(2)WO_(6)/g-C_(3)N_(4)(79.6%),respectively.Radical trapping experiments indicated that photogenerated holes(h+)and superoxide radicals(•O_(2)−)played crucial roles in photocatalytic BPA degradation.Further,the possible degradation pathway and photocatalytic mechanism was proposed by analyzing the BPA intermediates.Thiswork also demonstrated that the Bi2WO6/g-C_(3)N_(4)/BPQDs as effective photocatalystswas stable and have promising potential to remove environmental contaminants from real water samples.展开更多
Nanomaterials integrated surface acoustic wave(SAW)gas sensing technology has emerged as a promising candidate for realtime toxic gas sensing applications for environmental and human health safety.However,the developm...Nanomaterials integrated surface acoustic wave(SAW)gas sensing technology has emerged as a promising candidate for realtime toxic gas sensing applications for environmental and human health safety.However,the development of novel chemical interface based on two-dimensional(2D)sensing materials for SAW sensors for the rapid and sensitive detection of NH_(3)gas at room temperature(RT)still remains challenging.Herein,we report a highly selective RT NH_(3)gas sensor based on sulfur-doped graphitic carbon nitride quantum dots(S@g-C_(3)N_(4)QD)coated langasite(LGS)SAW sensor with enhanced sensitivity and recovery rate under ultraviolet(UV)illumination.Fascinatingly,the sensitivity of the S@g-C_(3)N_(4)QD/LGS SAW sensor to NH_(3)(500 ppb)at RT is dramatically enhanced by~4.5-fold with a low detection limit(~85 ppb),high selectivity,excellent reproducibility,fast response/recovery time(70 s/79 s)under UV activation(365 nm)as compared to dark condition.Additionally,the proposed sensor exhibited augmented NH_(3)detection capability across the broad range of relative humidity(20%–80%).Such remarkable gas sensing performances of the as-prepared sensor to NH_(3)are attributed to the high surface area,enhanced functional groups,sulfur defects,UV photogenerated charge carriers,facile charge transfer in the S@g-C_(3)N_(4)QD sensing layer,which further helps to improve the gas molecules adsorption that causes the increase in conductivity,resulting in larger frequency responses.The gas sensing mechanism of S@g-C_(3)N_(4)QD/LGS SAW sensor is ascribed to the enhanced electroacoustic effect,which is supported by the correlation of resistive type and COMSOL Multiphysics simulation studies.We envisage that the present work paves a promising strategy to develop the next generation 2D g-C_(3)N_(4)based high responsive RT SAW gas sensors.展开更多
Graphitic carbon nitride(g-C3N4,CN)exhibits inefficient charge separation,deficient CO2 adsorption and activation sites,and sluggish surface reaction kinetics,which have been recognized as the main barriers to its app...Graphitic carbon nitride(g-C3N4,CN)exhibits inefficient charge separation,deficient CO2 adsorption and activation sites,and sluggish surface reaction kinetics,which have been recognized as the main barriers to its application in CO2 photocatalytic reduction.In this work,carbon quantum dot(CQD)decoration and oxygen atom doping were applied to CN by a facile one-step hydrothermal method.The incorporated CQDs not only facilitate charge transfer and separation,but also provide alternative CO2 adsorption and activation sites.Further,the oxygen-atom-doped CN(OCN),in which oxygen doping is accompanied by the formation of nitrogen defects,proves to be a sustainable H^+ provider by facilitating the water dissociation and oxidation half-reactions.Because of the synergistic effect of the hybridized binary CQDs/OCN addressing the three challenging issues of the CN based materials,the performance of CO2 photocatalytic conversion to CH4 over CQDs/OCN-x(x represents the volume ratio of laboratory-used H2O2(30 wt.%)in the mixed solution)is dramatically improved by 11 times at least.The hybrid photocatalyst design and mechanism proposed in this work could inspire more rational design and fabrication of effective photocatalysts for CO2 photocatalytic conversion with a high CH4 selectivity.展开更多
The presence of toxic mercury (Ⅱ) in water is an ever-growing problem on earth that has various harmful effect on human health and aquatic living organisms.Therefore,detection of mercury (Ⅱ) in water is very much cr...The presence of toxic mercury (Ⅱ) in water is an ever-growing problem on earth that has various harmful effect on human health and aquatic living organisms.Therefore,detection of mercury (Ⅱ) in water is very much crucial and several researches are going on in this topic.Metal-organic frameworks (MOFs) are considered as an effective device for sensing of toxic heavy metal ions in water.The tunable functionalities with large surface area of highly semiconducting MOFs enhance its activity towards fluorescence sensing.In this study,we are reporting one highly selective and sensitive luminescent sensor for the detection of mercury (Ⅱ) in water.A series of binary MOF composites were synthesized using in-situ solvothermal synthetic technique for fluorescence sensing of Hg^(2+)in water.The welldistributed graphitic carbon nitride quantum dots on porous zirconium-based MOF improve Hg^(2+)sensing activity in water owing to their great electronic and optical properties.The binary MOF composite (2) i.e.,the sensor exhibited excellent limit of detection (LOD) value of 2.4 nmol/L for Hg^(2+).The sensor also exhibited excellent performance for mercury (Ⅱ)detection in real water samples.The characterizations of the synthesized materials were done using various spectroscopic techniques and the fluorescence sensing mechanism was studied.展开更多
基金support from the Natural Science Foundation of Shandong Province(No.ZR2021 MB075)National Natural Science Foundation of China(No.51602297)the Opening Fund of State Key Laboratory of High-Efficiency Utilization of Coal and Green Chemical Engineering(No.2021-K53).
文摘The mercury species in the ocean(MeHg,Hg^(2+))will be enriched in marine organisms and threaten human health through the food chain.While the excessive H_(2)O_(2)in the metabolic process will produce hydroxyl radicals and accelerate the aging of human cells,causing a series of diseases.Hence,the cost-effective and rapid detection of mercury and H_(2)O_(2)is of urgent requirement and significance.Here,we synthesized emerging graphitic carbon nitride quantum dots(g-CNQDs)with high fluorescence quantum yield(FLQY)of 42.69%via a bottom-up strategy by a facile one-step hydrothermal method.The g-CNQDs can detect the H_(2)O_(2)and Hg^(2+)through the fluorescence quenching effect between g-CNQDs and detected substances.With the presence of KI,g-CNQDs show concentration-dependent fluorescence toward H_(2)O_(2),with a wide detection range of 1–1000μmolL^(-1)and a low detection limit of 0.23μmolL^(-1).The g-CNQDs also show sensitivity toward Hg^(2+)with a detection range of 0–0.1μmolL^(-1)and a detection limit of 0.038μmolL^(-1).This dual-function detection of g-CNQDs has better practical application capability compared to other quantum dot detection.This study may provide a new strategy for g-CNQDs preparation and construct a fluorescence probe that can be used in various systems involving H_(2)O_(2)and Hg^(2+),providing better support for future bifunctional or multifunction studies.
基金supported by the National High Technology Research and Development Program of China(No.2021YFF1200200)the Peiyang Talents Project of Tianjin University。
文摘Because of the low reactivity of cyclic nitrides,liquid-phase synthesis of carbon nitride introduces challenges despite its favorable potential for energy-efficient preparation and superior applications.In this study,we demonstrate a strong interaction between citric acid and melamine through experimental observation and theoretical simulation,which eff ectively activates melamine-condensation activity and produces carbon-rich carbon nitride nanosheets(CCN NSs)during hydrothermal reaction.Under a large specific surface area and increased light absorption,these CCN NSs demonstrate significantly enhanced photocatalytic activity in CO_(2) reduction,increasing the CO production rate by approximately tenfold compared with hexagonal melamine(h-Me).Moreover,the product selectivity of CCN NSs reaches up to 93.5%to generate CO from CO_(2).Furthermore,the annealed CCN NSs exhibit a CO conversion rate of up to 95.30μmol/(g h),which indicates an 18-fold increase compared with traditional carbon nitride.During the CCN NS synthesis,nitrogen-doped carbon quantum dots(NDC QDs)are simultaneously produced and remain suspended in the supernatant after centrifugation.These QDs disperse well in water and exhibit excellent luminescent properties(QY=67.2%),allowing their application in the design of selective and sensitive sensors to detect pollutants such as pesticide 2,4-dichlorophenol with a detection limit of as low as 0.04μmol/L.Notably,the simultaneous synthesis of CCN NSs and NDC QDs provides a cost-eff ective and highly efficient process,yielding products with superior capabilities for catalytic conversion of CO_(2) and pollutant detection,respectively.
基金financially supported by the National Natural Science Foundation of China (21872065, 21763013, and 21503100)the Natural Science Foundation of Jiangxi Province (20192ACBL21027 and 20192BAB203007)the Project of Education Department of Jiangxi Province (GJJ170227)。
文摘Designing defect-engineered semiconductor heterojunctions can effectively promote the charge carrier separation.Herein,novel ceria(CeO2) quantum dots(QDs) decorated sulfur-doped carbon nitride nanotubes(SCN NTs) were synthesized via a thermal polycondensation coupled in situ depositionprecipitation method without use of template or surfactant.The structure and morphology studies indicate that ultrafine CeO2 QDs are well distributed inside and outside of SCN NTs offering highly dispersed active sites and a large contact interface between two components.This leads to the promoted formation of rich Ce^(3+) ion and oxygen vacancies as confirmed by XPS.The photocatalytic performance can be facilely modulated by the content of CeO2 QDs introduced in SCN matrix while bare CeO2 does not show activity of hydrogen production.The optimal catalyst with 10% of CeO2 loading yields a hydrogen evolution rate of 2923.8 μmol h-1 g-1 under visible light,remarkably higher than that of bare SCN and their physical mixtures.Further studies reveal that the abundant surface defects and the created 0 D/1 D junctions play a critical role in improving the separation and transfer of charge carriers,leading to superior solar hydrogen production and good stability.
基金the National Natural Science Foundation of China(Nos.21876099,22106088,and 22276110)Key Research&Developmental Program of Shandong Province(No.2021CXGC011202)Fundamental Research Funds of Shandong University(No.zy202102).
文摘Nanozyme antibacterial agents with high enzyme-like catalytic activity and strong bacteria-binding ability have provided an alternative method to efficiently disinfect drug-resistance microorganism.Herein,the carbon nitride quantum dots(CNQDs)nanozymes with high nitrogen vacancies(NVs)were mass-productively prepared by a simple ultrasonic-crushing method assisted by propylene glycol.It was found that the NVs of CNQDs were stemmed from the selective breaking of surface N-(C)_(2)sites,accounting for 6.2%.Experiments and density functional theory(DFT)simulations have demonstrated that the presence of NVs can alter the local electron distribution and extend theπ-electron delocalization to enhance the peroxidase-like activity.Biocompatible CNQDs could enter inside microorganisms by diffusion and elevate the bacteria-binding ability,which enhanced the accurate and rapid attack of·OH to the microorganisms.The sterilization rate of CNQDs against Gram-negative bacteria(E.coli),Gram-positive bacteria(S.aureus,B.subtilis),fungi(R.solani)reaches more than 99%.Thus,this work showed great potential for engineered nanozymes for broad-spectrum antibacterial in biomedicine and environmental protection.
基金supported by the National Natural Science Foundation of China (51772085 and 12072110)the Natural Science Foundation of Hunan Province (2020JJ4190)。
文摘Graphitic carbon nitride quantum dots(CNQDs) are emerging as attractive photoluminescent(PL)materials with excellent application potential in fluorescence imaging and heavy-metal ion detection. However, three limitations, namely, low quantum yields(QYs), self-quenching,and excitation-dependent PL emission behaviors, severely impede the commercial applications of crystalline CNQDs.Here we address these three challenges by synthesizing borondoped amorphous CNQDs via a hydrothermal process followed by the top±down cutting approach. Structural disorder endows the amorphous boron-doped CNQDs(B-CNQDs)with superior elastic strain performance over a wide range of pH values, thus effectively promoting mass transport and reducing exciton quenching. Boron as a dopant could fine-tune the electronic structure and emission properties of the PL material to achieve excitation-independent emission via the formation of uniform boron states. As a result, the amorphous B-CNQDs show unprecedented fluorescent stability(i.e., no obvious fading after two years) and a high QY of 87.4%;these values indicate that the quantum dots obtained are very promising fluorescent materials. Moreover, the B-CNQDs show bright-blue fluorescence under ultraviolet excitation when applied as ink on commercially available paper and are capable of the selective and sensitive detection of Fe^(2+) and Cd^(2+) in the parts-per-billion range. This work presents a novel avenue and scientific insights on amorphous carbon-based fluorescent materials for photoelectrical devices and sensors.
文摘为加速二苯醚类除草剂在可见光环境的降解,以玉米芯制碳量子点修饰石墨相氮化碳,合成一种非金属型光催化剂.考察在该催化剂作用下,氟磺胺草醚、三氟羧草醚和乙氧氟草醚等的光解行为及光解前后毒性.结果表明,氟磺胺草醚在可见光照射下的光解速率最大、其次为乙氧氟草醚,光照3 h的降解率即达99%和91%,而三氟羧草醚的光解速率最低、须光照至8 h才能达到90%的降解率.由高斯软件计算NPA(Natural Population Analysis)电荷分布得福井函数和双描述符,预测反应位点并结合液质联用分析降解产物,推测除草剂的降解过程应包括裂解、水解、脱卤、还原和羟基化等,证明了空穴和羟基自由基在其中的作用.观察玉米种子的生长实验,发现氟磺胺草醚的毒性略高于乙氧氟草醚,但二者经光照处理后毒性均显著下降,三氟羧草醚及其光解产物显示为低毒性.
基金supported by the National Natural Science Foundation of China (No. 21964006)the Hunan Provincial Natural Science Foundation of China (No. 2020JJ4640)+1 种基金the Scientific Research Fund of Hunan Provincial Education Department (No. 20A050)the Scientific Research Found of Changsha University (No. SF1934)
文摘In this work,a novel dual Z-scheme Bi_(2)WO_(6)/g-C_(3)N_(4)/black phosphorus quantum dots(Bi_(2)WO_(6)/g-C_(3)N_(4)/BPQDs)composites were fabricated and utilized towards photocatalytic degradation of bisphenol A(BPA)under visible-light irradiation.Optimizing the content of g-C_(3)N_(4) and BPQDs in Bi_(2)WO_(6)/g-C_(3)N_(4)/BPQDs composites to a suitable mass ratio can enhance the visible-light harvesting capacity and increase the charge separation efficiency and the transfer rate of excited-state electrons and holes,resulting in much higher photocatalytic activity for BPA degradation(95.6%,at 20 mg/L in 120 min)than that of Bi2WO6(63.7%),g-C_(3)N_(4)(25.0%),BPQDs(8.5%),and Bi_(2)WO_(6)/g-C_(3)N_(4)(79.6%),respectively.Radical trapping experiments indicated that photogenerated holes(h+)and superoxide radicals(•O_(2)−)played crucial roles in photocatalytic BPA degradation.Further,the possible degradation pathway and photocatalytic mechanism was proposed by analyzing the BPA intermediates.Thiswork also demonstrated that the Bi2WO6/g-C_(3)N_(4)/BPQDs as effective photocatalystswas stable and have promising potential to remove environmental contaminants from real water samples.
基金the National Research Foundation of Korea(NRF)grant funded by the Korea government(MSIT)(No.2020R1A2C2013385)Basic Science Research Program through the National Research Foundation of Korea(NRF)funded by the Ministry of Education(No.NRF-2020R1A6A1A03047771)Korea Institute of Planning and Evaluation for Technology in Food,Agriculture and Forestry(IPET),Korea Smart Farm Research and Development Foundation(KosFarm)through Smart Farm Innovation Technology Development Program,funded by Ministry of Agriculture,Food,and Rural Affairs(MAFRA)and Ministry of Science and ICT(MSIT),Rural Development Administration(RDA)(No.421029-4).
文摘Nanomaterials integrated surface acoustic wave(SAW)gas sensing technology has emerged as a promising candidate for realtime toxic gas sensing applications for environmental and human health safety.However,the development of novel chemical interface based on two-dimensional(2D)sensing materials for SAW sensors for the rapid and sensitive detection of NH_(3)gas at room temperature(RT)still remains challenging.Herein,we report a highly selective RT NH_(3)gas sensor based on sulfur-doped graphitic carbon nitride quantum dots(S@g-C_(3)N_(4)QD)coated langasite(LGS)SAW sensor with enhanced sensitivity and recovery rate under ultraviolet(UV)illumination.Fascinatingly,the sensitivity of the S@g-C_(3)N_(4)QD/LGS SAW sensor to NH_(3)(500 ppb)at RT is dramatically enhanced by~4.5-fold with a low detection limit(~85 ppb),high selectivity,excellent reproducibility,fast response/recovery time(70 s/79 s)under UV activation(365 nm)as compared to dark condition.Additionally,the proposed sensor exhibited augmented NH_(3)detection capability across the broad range of relative humidity(20%–80%).Such remarkable gas sensing performances of the as-prepared sensor to NH_(3)are attributed to the high surface area,enhanced functional groups,sulfur defects,UV photogenerated charge carriers,facile charge transfer in the S@g-C_(3)N_(4)QD sensing layer,which further helps to improve the gas molecules adsorption that causes the increase in conductivity,resulting in larger frequency responses.The gas sensing mechanism of S@g-C_(3)N_(4)QD/LGS SAW sensor is ascribed to the enhanced electroacoustic effect,which is supported by the correlation of resistive type and COMSOL Multiphysics simulation studies.We envisage that the present work paves a promising strategy to develop the next generation 2D g-C_(3)N_(4)based high responsive RT SAW gas sensors.
基金the National Natural Science Foundation of China(No.51578488)Zhejiang Provincial “151” Talents Program,the Program for Zhejiang Leading Team of S&T Innovation(No.2013TD07)Changjiang Scholar Incentive Program(Ministry of Education,China,2009)。
文摘Graphitic carbon nitride(g-C3N4,CN)exhibits inefficient charge separation,deficient CO2 adsorption and activation sites,and sluggish surface reaction kinetics,which have been recognized as the main barriers to its application in CO2 photocatalytic reduction.In this work,carbon quantum dot(CQD)decoration and oxygen atom doping were applied to CN by a facile one-step hydrothermal method.The incorporated CQDs not only facilitate charge transfer and separation,but also provide alternative CO2 adsorption and activation sites.Further,the oxygen-atom-doped CN(OCN),in which oxygen doping is accompanied by the formation of nitrogen defects,proves to be a sustainable H^+ provider by facilitating the water dissociation and oxidation half-reactions.Because of the synergistic effect of the hybridized binary CQDs/OCN addressing the three challenging issues of the CN based materials,the performance of CO2 photocatalytic conversion to CH4 over CQDs/OCN-x(x represents the volume ratio of laboratory-used H2O2(30 wt.%)in the mixed solution)is dramatically improved by 11 times at least.The hybrid photocatalyst design and mechanism proposed in this work could inspire more rational design and fabrication of effective photocatalysts for CO2 photocatalytic conversion with a high CH4 selectivity.
文摘The presence of toxic mercury (Ⅱ) in water is an ever-growing problem on earth that has various harmful effect on human health and aquatic living organisms.Therefore,detection of mercury (Ⅱ) in water is very much crucial and several researches are going on in this topic.Metal-organic frameworks (MOFs) are considered as an effective device for sensing of toxic heavy metal ions in water.The tunable functionalities with large surface area of highly semiconducting MOFs enhance its activity towards fluorescence sensing.In this study,we are reporting one highly selective and sensitive luminescent sensor for the detection of mercury (Ⅱ) in water.A series of binary MOF composites were synthesized using in-situ solvothermal synthetic technique for fluorescence sensing of Hg^(2+)in water.The welldistributed graphitic carbon nitride quantum dots on porous zirconium-based MOF improve Hg^(2+)sensing activity in water owing to their great electronic and optical properties.The binary MOF composite (2) i.e.,the sensor exhibited excellent limit of detection (LOD) value of 2.4 nmol/L for Hg^(2+).The sensor also exhibited excellent performance for mercury (Ⅱ)detection in real water samples.The characterizations of the synthesized materials were done using various spectroscopic techniques and the fluorescence sensing mechanism was studied.