The Lungmachi Formation is widely distributed in Guizhou, Chongqing and the adjacent area. It is important for the study of Silurian biostratigraphy and shale-gas investigation. Based on those biostratigraphically wel...The Lungmachi Formation is widely distributed in Guizhou, Chongqing and the adjacent area. It is important for the study of Silurian biostratigraphy and shale-gas investigation. Based on those biostratigraphically well-studied sections from Guiyang to Huayingshan, we reveal the stage-progressive distribution pattern of the Lungmachi black shales. The distribution of the Lungmachi black shales in the studying area can be subdivided into four geographic belts from the south to the north,reflecting the joint effect of regional and global environmental changes. The graptolite depth zonation model was adopted herein to infer the water depth of major graptolite assemblages from the black shales. The changes in the water depth indicate two major stages. The first stage is named the transgressive distribution stage which ranged from the Persculptograptus persculptus Biozone(LM1, upper Hirnantian) to the Coronograptus cyphus Biozone(LM5, upper Rhuddanian), an interval mostly controlled by global sea-level rise. The second stage, ranging from the Demirastrites triangulatus Biozone(LM6, lower Aeronian) to the Spirograptus guerichi Biozone(LM9, lower Telychian), is named the regressive shrinking stage, during which the black shales were gradually replaced by mixed-facies or carbonate sediments from the south to the north, representing the effects of the persistent uplifting of the Central Guizhou Oldland.展开更多
To further understand shale reservoir characteristics of Wufeng Formation and Longmaxi Formation in the Wuxi area,northeast Chongqing,based on drilling data of Well WX2,and taking the graptolite biostratigraphy as the...To further understand shale reservoir characteristics of Wufeng Formation and Longmaxi Formation in the Wuxi area,northeast Chongqing,based on drilling data of Well WX2,and taking the graptolite biostratigraphy as the standard marker of stratigraphic division and comparison,the geochemistry,petrology,reservoir space and properties of organic-rich black shale were well investigated,and its gasbearing capacity and controlling factors were also analyzed.The result shows that in the Wufeng Formation and Longmaxi Formation of Well WX2,the organic-rich shale is 89.8 m thick and is characterized by good kerogen type,high organic abundance,moderate maturity and favorable hydrocarbongeneration condition,and the graptolite sequence is developed completely and continuously;the organic abundance is influenced by depositional rate,and the slow depositional rate is favorable for accumulation of organic matter in the black graptolite shale;from top to bottom,content of siliceous minerals increases and content of clay minerals decrease,therefore the brittleness increases;the organicrich siliceous shale and clay siliceous shale are favorable lithofacies for development of shale reservoirs;the nanopore is dominated by the parallel-plate pore with four open sides and has good connectivity;the pore size distribution curve has the multimodal characteristic,and the pore diameter mainly is in the range of 0.42e0.62 nm and the range of 3e5 nm;organic pores and interlayer pores of clay minerals make the greatest contribution to the total pore volume,while pores of brittle minerals have the least contribution;from top to bottom,organic pores gradually increase while interlayer pores of clay minerals gradually decrease;the on-site core gas content exceeds 8 m3/t,and the gas-bearing capacity is jointly controlled by hydrocarbon generation,reservoir and preservation conditions;and the WF2-LM6 biozone of the Katian to the early Aeronian is the high-quality shale reservoir,where the LM1 biozone of the Hirnantian was the best“sweet spot”which is the target of horizontal well drilling.展开更多
Stratigraphic hiatuses of variable time intervals within the Rhuddanian to early Aeronian (Llandovery, Silurian) are identified in the area bordering East Chongqing, West Hubei and Northwest Hunan in central China. ...Stratigraphic hiatuses of variable time intervals within the Rhuddanian to early Aeronian (Llandovery, Silurian) are identified in the area bordering East Chongqing, West Hubei and Northwest Hunan in central China. Their distribution suggested the existence of a local uplift, traditionally named the Yichang Uplift. The diachronous nature of the basal black shale of the Lungmachi Formation crossing different belts of this Uplift signifies the various developing stages during the uplifting process. The present paper defines the temporal and spatial distribution pattern of the Yichang Uplift, which might be one of the important controlling factors for the preservation and distribution of the shale gas in this region, as it has been demonstrated that the shale gas exploration is generally less promising in the areas where more of the basal part of the Lungmachi Formation is missing. Therefore, better understanding of the circumjacent distribution pattern developed throughout the uplifting process may provide the important guidance for the shale gas exploration. The present work is a sister study to the published paper, "Stage-progressive distribution pattern of the Lungrnachian black graplolitic shales from Guizhou to Chongqing, Central China". These two studies thus provide a complete Ordovician-Silurian black shale distribution pattern in the Middle and Upper Yangtze, a region with the major shale gas fields in China.展开更多
基金supported by Chinese Academy of Sciences (Grant No. XDB10010100)National Natural Science Foundation of China (Grant Nos. U1562213 and 41272042)
文摘The Lungmachi Formation is widely distributed in Guizhou, Chongqing and the adjacent area. It is important for the study of Silurian biostratigraphy and shale-gas investigation. Based on those biostratigraphically well-studied sections from Guiyang to Huayingshan, we reveal the stage-progressive distribution pattern of the Lungmachi black shales. The distribution of the Lungmachi black shales in the studying area can be subdivided into four geographic belts from the south to the north,reflecting the joint effect of regional and global environmental changes. The graptolite depth zonation model was adopted herein to infer the water depth of major graptolite assemblages from the black shales. The changes in the water depth indicate two major stages. The first stage is named the transgressive distribution stage which ranged from the Persculptograptus persculptus Biozone(LM1, upper Hirnantian) to the Coronograptus cyphus Biozone(LM5, upper Rhuddanian), an interval mostly controlled by global sea-level rise. The second stage, ranging from the Demirastrites triangulatus Biozone(LM6, lower Aeronian) to the Spirograptus guerichi Biozone(LM9, lower Telychian), is named the regressive shrinking stage, during which the black shales were gradually replaced by mixed-facies or carbonate sediments from the south to the north, representing the effects of the persistent uplifting of the Central Guizhou Oldland.
基金supported by the National Science and Technology Major Project of China(No.2017ZX05035)the National Basic Research Program of China(973 Program)(No.2013CB228000).
文摘To further understand shale reservoir characteristics of Wufeng Formation and Longmaxi Formation in the Wuxi area,northeast Chongqing,based on drilling data of Well WX2,and taking the graptolite biostratigraphy as the standard marker of stratigraphic division and comparison,the geochemistry,petrology,reservoir space and properties of organic-rich black shale were well investigated,and its gasbearing capacity and controlling factors were also analyzed.The result shows that in the Wufeng Formation and Longmaxi Formation of Well WX2,the organic-rich shale is 89.8 m thick and is characterized by good kerogen type,high organic abundance,moderate maturity and favorable hydrocarbongeneration condition,and the graptolite sequence is developed completely and continuously;the organic abundance is influenced by depositional rate,and the slow depositional rate is favorable for accumulation of organic matter in the black graptolite shale;from top to bottom,content of siliceous minerals increases and content of clay minerals decrease,therefore the brittleness increases;the organicrich siliceous shale and clay siliceous shale are favorable lithofacies for development of shale reservoirs;the nanopore is dominated by the parallel-plate pore with four open sides and has good connectivity;the pore size distribution curve has the multimodal characteristic,and the pore diameter mainly is in the range of 0.42e0.62 nm and the range of 3e5 nm;organic pores and interlayer pores of clay minerals make the greatest contribution to the total pore volume,while pores of brittle minerals have the least contribution;from top to bottom,organic pores gradually increase while interlayer pores of clay minerals gradually decrease;the on-site core gas content exceeds 8 m3/t,and the gas-bearing capacity is jointly controlled by hydrocarbon generation,reservoir and preservation conditions;and the WF2-LM6 biozone of the Katian to the early Aeronian is the high-quality shale reservoir,where the LM1 biozone of the Hirnantian was the best“sweet spot”which is the target of horizontal well drilling.
基金supported by the Strategic Priority Research Program of Chinese Academy of Sciences (Grant No. XDB26000000)the National Natural Science Foundation of China (Grant Nos. U1562213 and 41502025)the National Science and Technology Major Project of China (Grant No. 2017ZX05035002-001)
文摘Stratigraphic hiatuses of variable time intervals within the Rhuddanian to early Aeronian (Llandovery, Silurian) are identified in the area bordering East Chongqing, West Hubei and Northwest Hunan in central China. Their distribution suggested the existence of a local uplift, traditionally named the Yichang Uplift. The diachronous nature of the basal black shale of the Lungmachi Formation crossing different belts of this Uplift signifies the various developing stages during the uplifting process. The present paper defines the temporal and spatial distribution pattern of the Yichang Uplift, which might be one of the important controlling factors for the preservation and distribution of the shale gas in this region, as it has been demonstrated that the shale gas exploration is generally less promising in the areas where more of the basal part of the Lungmachi Formation is missing. Therefore, better understanding of the circumjacent distribution pattern developed throughout the uplifting process may provide the important guidance for the shale gas exploration. The present work is a sister study to the published paper, "Stage-progressive distribution pattern of the Lungrnachian black graplolitic shales from Guizhou to Chongqing, Central China". These two studies thus provide a complete Ordovician-Silurian black shale distribution pattern in the Middle and Upper Yangtze, a region with the major shale gas fields in China.