By scouring experiments, the changeable process and characteristics of sediment yield in the hillslope-gully side erosion system with different coverage degrees and spatial locations of grass were studied. Five grass ...By scouring experiments, the changeable process and characteristics of sediment yield in the hillslope-gully side erosion system with different coverage degrees and spatial locations of grass were studied. Five grass coverage degrees of 0, 30%, 50%, 70%, 90%, three spatial locations of grass (upslope, mid-slope, low-slope) and two water inflow rates of 3.2 L/min, 5.2 L/min were applied to a 0.5 by 7 m soil bed in scouring experiments. Results showed that the sediment yield decreased with the increase of grass coverage degree at 3.2 L/min water inflow rate in scouring experiments and the sediment yield with different grass locations on the sloping surface was in the order of upper 〉 middle 〉 lower. At 5.2 L/min water inflow rate, the differences of sediment yield among various grass coverage degrees were increased, whereas the changeable tendency of sediment yield with different grass locations on the whole sloping surface was not very obvious. The proportion of sediment yield from the gully side increased in an exponential relationship with the increase of grass coverage degree When the grass was located on the lower position of hillslope, the influence for accelerating gully erosion is the greatest.展开更多
Through analyzing statistically metrological observation data from 1971 to 2010 and pasture data from 1983 to 2012 at 6 animal husbandry meteorological testing stations of Inner Mongolia grassland, the conclusions wer...Through analyzing statistically metrological observation data from 1971 to 2010 and pasture data from 1983 to 2012 at 6 animal husbandry meteorological testing stations of Inner Mongolia grassland, the conclusions were drawn. Those were that annual average temperature rose in a straight line in Inner Mongolia grassland, and the increase rates of annual average temperature in meadow steppe and typical steppe were 0.40 and 0.34 ℃/10 a respectively. Annual rainfall had 10-year cyclical characteristics, and precipitation in the 1990s was the most but reduced significantly after 2000. Climate experienced the cold wet -cold dry -warm wet -warm dry periods. Warm and dry climate made the average heights of pasture in meadow steppe and typical steppe of Inner Mongolia cut down 2.4 and 9.3 cm in nearly 12 years than that in the 1990s; the average coverage of herbage decreased by 11% and 13%; the average hay yields reduced by 1 019.8 and 671.4 kg/hm^2.展开更多
GIMMS (Global Inventory Modeling and Mapping Studies) NDVI (Normalised Difference Vegetation Index) from 1982 to 2006 and MODIS (Moderate Resolution Imaging Spectroradiometer) NDVI from 2001 to 2010 were blended...GIMMS (Global Inventory Modeling and Mapping Studies) NDVI (Normalised Difference Vegetation Index) from 1982 to 2006 and MODIS (Moderate Resolution Imaging Spectroradiometer) NDVI from 2001 to 2010 were blended to extract the, grass coverage and analyze its spatial pattern. The response of grass coverage to climatic variations at annual and monthly time scales was analyzed. Grass coverage distribution had increased from northwest to southeast across China. During 1982-2010, the mean nationwide grass coverage was 34% but exhibited apparent spatial heterogeneity, being the highest (61.4%) in slope grasslands and the lowest (17.1%) in desert grasslands. There was a slight increase of the grass coverage with a rate of 0.17% per year. Increase in slope grasslands coverage was as high as 0.27% per year, while in the plain grasslands and meadows the grass coverage in- crease was the lowest (being 0.11% per year and 0.1% per year, respectively). Across China, the grass coverage with extremely significant increase (P〈0.01) and significant increase (P〈0.05) accounted for 46.03% and 11% of the total grassland area, respectively, while those with extremely significant and significant decrease accounted for only 4.1% and 3.24%, respectively. At the annual time scale, there are no significant correlations between grass coverage and annual mean temperature and precipitation. However, the grass coverage was somewhat affected by temperature in alpine and sub-alpine grassland, alpine and sub-alpine meadow, slope grassland and meadow, while grass coverage in desert grassland and plain grassland was more affected by precipitation. At the monthly time-scale, there are significant correlations between grass coverage with both temperature and precipitation, indicating that the grass coverage is more affected by seasonal fluctuations of hydrothermal conditions. Additionally, there is one-month time lag-effect between grass coverage and climate factors for each grassland types.展开更多
基金National Basic Research Program of China,No.2007CB407201National Key Technology R&D Program,No.2006BAB06B01-06Science and Technique Development Foundation of YRIHR,No.200603
文摘By scouring experiments, the changeable process and characteristics of sediment yield in the hillslope-gully side erosion system with different coverage degrees and spatial locations of grass were studied. Five grass coverage degrees of 0, 30%, 50%, 70%, 90%, three spatial locations of grass (upslope, mid-slope, low-slope) and two water inflow rates of 3.2 L/min, 5.2 L/min were applied to a 0.5 by 7 m soil bed in scouring experiments. Results showed that the sediment yield decreased with the increase of grass coverage degree at 3.2 L/min water inflow rate in scouring experiments and the sediment yield with different grass locations on the sloping surface was in the order of upper 〉 middle 〉 lower. At 5.2 L/min water inflow rate, the differences of sediment yield among various grass coverage degrees were increased, whereas the changeable tendency of sediment yield with different grass locations on the whole sloping surface was not very obvious. The proportion of sediment yield from the gully side increased in an exponential relationship with the increase of grass coverage degree When the grass was located on the lower position of hillslope, the influence for accelerating gully erosion is the greatest.
基金Supported by Science Technology Innovation Item of Inner Mongolia Meteorological Bureau,China(nmgqxkjcx201115)
文摘Through analyzing statistically metrological observation data from 1971 to 2010 and pasture data from 1983 to 2012 at 6 animal husbandry meteorological testing stations of Inner Mongolia grassland, the conclusions were drawn. Those were that annual average temperature rose in a straight line in Inner Mongolia grassland, and the increase rates of annual average temperature in meadow steppe and typical steppe were 0.40 and 0.34 ℃/10 a respectively. Annual rainfall had 10-year cyclical characteristics, and precipitation in the 1990s was the most but reduced significantly after 2000. Climate experienced the cold wet -cold dry -warm wet -warm dry periods. Warm and dry climate made the average heights of pasture in meadow steppe and typical steppe of Inner Mongolia cut down 2.4 and 9.3 cm in nearly 12 years than that in the 1990s; the average coverage of herbage decreased by 11% and 13%; the average hay yields reduced by 1 019.8 and 671.4 kg/hm^2.
基金The National Natural Science Foundation of China, No.41271361 National Basic Research Program of China, No.2010CB950702+2 种基金 The APN Projects, No.ARCP2013-16NMY-Li The Public Sector Linkages Program supported by AusAID, No.64828 China's High-tech Special Projects, No.2007AA 10Z231
文摘GIMMS (Global Inventory Modeling and Mapping Studies) NDVI (Normalised Difference Vegetation Index) from 1982 to 2006 and MODIS (Moderate Resolution Imaging Spectroradiometer) NDVI from 2001 to 2010 were blended to extract the, grass coverage and analyze its spatial pattern. The response of grass coverage to climatic variations at annual and monthly time scales was analyzed. Grass coverage distribution had increased from northwest to southeast across China. During 1982-2010, the mean nationwide grass coverage was 34% but exhibited apparent spatial heterogeneity, being the highest (61.4%) in slope grasslands and the lowest (17.1%) in desert grasslands. There was a slight increase of the grass coverage with a rate of 0.17% per year. Increase in slope grasslands coverage was as high as 0.27% per year, while in the plain grasslands and meadows the grass coverage in- crease was the lowest (being 0.11% per year and 0.1% per year, respectively). Across China, the grass coverage with extremely significant increase (P〈0.01) and significant increase (P〈0.05) accounted for 46.03% and 11% of the total grassland area, respectively, while those with extremely significant and significant decrease accounted for only 4.1% and 3.24%, respectively. At the annual time scale, there are no significant correlations between grass coverage and annual mean temperature and precipitation. However, the grass coverage was somewhat affected by temperature in alpine and sub-alpine grassland, alpine and sub-alpine meadow, slope grassland and meadow, while grass coverage in desert grassland and plain grassland was more affected by precipitation. At the monthly time-scale, there are significant correlations between grass coverage with both temperature and precipitation, indicating that the grass coverage is more affected by seasonal fluctuations of hydrothermal conditions. Additionally, there is one-month time lag-effect between grass coverage and climate factors for each grassland types.