The West Development Policy being implemented in China causes significant land use and land cover (LULC) changes in West China, of which the two most important types of LULC change are replacing farmland and re-greeni...The West Development Policy being implemented in China causes significant land use and land cover (LULC) changes in West China, of which the two most important types of LULC change are replacing farmland and re-greening the desertification land with forest or grass. This paper modifies the prevailing regional climate model (RCM) by updating its lower boundary conditions with the up-to-date satellite database of the Global Land Cover Characteristics Database (GLCCD) created by the United States Geological Survey and the University of Nebraska-Lincoln. The modified RCM is used to simulate the possible regional climate changes due to the LULC variations. The preliminary results can be summarized as that the two main types of LULC variation, replacing farmland and greening the desertification lands with forest or grass in west China, will affect the regional climate mostly in northwest and north China, where the surface temperature will decrease and the precipitation will increase. The regional climate adjustments in South, Southwest China and on the Tibet Plateau are uncertain.展开更多
The construction of expressway and high-speed rail is at the sacrifice of the soil ecological environment. It brings about much damaged land and bare slope. It is necessary to restore vegetation and rebuild landscape....The construction of expressway and high-speed rail is at the sacrifice of the soil ecological environment. It brings about much damaged land and bare slope. It is necessary to restore vegetation and rebuild landscape. In the design of target plant community and configuration plants,it is required to select as far as possible plants that can blossom and bear fruit or pods. Then seeds of these plants can be harvested,processed and sold,and applied for other projects,so as to develop into a complete forest and grass seed industry chain. This not only reasonably utilizes land resources,but also provides a new approach to the problem of insufficient fine forest seed sources in China. This paper discussed the use of land resources in road side slope and forest and grass seed selection and breeding technology,and elaborated the industrialized development paths for forest and grass seed industries in road side slope. Finally,it arrived at following recommendations.( i) The construction of forest and grass industry economic belt using land resources in road side slope can realize maximum land value. Building a road can help people there get rich,and the type of land and water cultivates its type of forest and grass.( ii) It can make up for the losses incurred from construction of expressway and high-speed rail or destroying forest land,and it can increase farmers' income.( iii) It can increase the supply of domestic seeds,reduce seed import,save foreign exchange,and partly solve the problem of insufficient supply of forest and grass seeds.( iv) It is able to form a complete forest and grass seed industry economic cycle chain,increase employment,and provide new approaches for enriching and benefiting farmers.展开更多
Water is the most critical factor for controlling die vegetation pattern in arid and semiarid regions.Using a dye-tracing experiment,we analyzed the infiltration pattern beneath shrub canopy and interspace grass patch...Water is the most critical factor for controlling die vegetation pattern in arid and semiarid regions.Using a dye-tracing experiment,we analyzed the infiltration pattern beneath shrub canopy and interspace grass patches in typical steppe ecosystems.The dye coverage,uniform infiltration depth,maximum infiltration depth,total stained area and heterogeneous infiltration stained area were measured by two indices,the maximum infiltration depth index(MIDI)and heterogeneous infiltration index(HII),which were calculated by processing dye-stained photos.The MIDI and HII of soil under shrubs were 1.41±0.14 and 0.29±0.068,respectively,and larger than those of grass soil,1.26±0.14 and0.20±0.076.Using the MIDI,HII,field soil moisture and rainfall data,the infiltration depth and heterogeneous infiltration amount for 26 nature rainfall events were calculated.The results imply that water can infiltrate to a deeper layer beneath shrub canopy than beneath grass patches and that more water infiltration occurs beneath shrub canopy than beneath grass patches.These results are of prime importance for arid and semiarid ecosystems with a limited water supply due to high evaporation and low precipitation.展开更多
The seasonal dynamics of soil respiration in steppe (S. bungeana), desert shrub (A. ordosica), and shrubperennial (A. ordosica +C. komarovii) communities were investigated during the growth season (May to Octo...The seasonal dynamics of soil respiration in steppe (S. bungeana), desert shrub (A. ordosica), and shrubperennial (A. ordosica +C. komarovii) communities were investigated during the growth season (May to October) in 2006; their environmental driving factors were also analyzed. In the three communities, soil respiration showed similar characteristics in their growth seasons, with peak respiration values in July and August owing to suitable temperature and soil moisture conditions during this period. Meanwhile, changes in soil respiration were greatly influenced by temperatures and surface soil moistures. Soil water content at a depth of 0 to 10 cm was identified as the key environmental factor affecting the variation in soil respiration in the steppe. In contrast, in desert shrub and shrub-perennial communities, the dynamics of soil respiration was significantly influenced by air temperature. Similarly, the various responses of soil respiration to environmental factors may be attributed to the different soil textures and distribution patterns of plant roots. In desert ecosystems, precipitation results in soil respiration pulses. Soil carbon dioxide (CO2) effluxes greatly increased after rainfall rewetting in all of the ecosystems under study. However, the precipitation pulse effect differed across the ecosystem. We propose that this may be a result of a reverse effect from the soil texture.展开更多
With China's economic development and population growth,China's ecological environment continues to deteriorate.The comprehensive ecosystem restoration of the Shichuan River aims to build an ecosystem containi...With China's economic development and population growth,China's ecological environment continues to deteriorate.The comprehensive ecosystem restoration of the Shichuan River aims to build an ecosystem containing"mountains,rivers,forests,farmland,lakes and grass"by determining scientific and reasonable thickness of foreign soil,pollution restoration,ecological reconstruction,safeguard measures,etc.It brings new vitality to local ecological environment remodeling and economic development.展开更多
Based on the scientific and technological achievements in the past decade in the Loess Hilly-gully Region and the successful demonstration experience in Yan'an Yangou watershed, we summarize the characteristics of...Based on the scientific and technological achievements in the past decade in the Loess Hilly-gully Region and the successful demonstration experience in Yan'an Yangou watershed, we summarize the characteristics of eco-environment restoration pattern based on "building terrace and returning slope farmland to forests and grass". According to the data on land use, slope farmland and the agricultural population in 1999, we calculate the area of new terrace that needs to be built, the area of garden plot that needs to be extended, vegetation restoration area and investment demand in counties (cities, districts). Establishing and using some indicators, such as basic farmland extension indicator, garden plot extension indicator, vegetation restoration index and investment demand density, we conduct type classification and analysis of regional differentiation characteristics in 55 counties (cities, districts). The results show that in the Loess Hilly-gully Region, 691 600 hm2 of new terrace needs to be built, 792 000 hm2 of economic forests and orchards need to be extended, 5 410 200 hm2 of vegetation needs to be restored, and the total investment demand is 15.82 billion yuan; in terms of geographical distribution, obviously there are two key areas for eco-environment restoration (one is located in the border area between northern Shaanxi and northwestern Shanxi, and the other is located in the eastern Gansu and southern Ningxia area); the classified regional guidance policies should be formulated as soon as possible, and the limited funds should be concentrated in the key areas.展开更多
基金This study was supported bythe National Key Basic Research Development Programgranted by the Ministry of Science and Technology ofChina (MSTC) with project number G1999043500. Itwas also partly supported by the Innovation Program ofthe Chinese
文摘The West Development Policy being implemented in China causes significant land use and land cover (LULC) changes in West China, of which the two most important types of LULC change are replacing farmland and re-greening the desertification land with forest or grass. This paper modifies the prevailing regional climate model (RCM) by updating its lower boundary conditions with the up-to-date satellite database of the Global Land Cover Characteristics Database (GLCCD) created by the United States Geological Survey and the University of Nebraska-Lincoln. The modified RCM is used to simulate the possible regional climate changes due to the LULC variations. The preliminary results can be summarized as that the two main types of LULC variation, replacing farmland and greening the desertification lands with forest or grass in west China, will affect the regional climate mostly in northwest and north China, where the surface temperature will decrease and the precipitation will increase. The regional climate adjustments in South, Southwest China and on the Tibet Plateau are uncertain.
基金Supported by National Spark Plan Project(2010GA781004)Science and Technology Planning Project of Shenzhen(GCZX2015051514435234,CXZZ20150527171538718,and CXZZ20140422142833835)
文摘The construction of expressway and high-speed rail is at the sacrifice of the soil ecological environment. It brings about much damaged land and bare slope. It is necessary to restore vegetation and rebuild landscape. In the design of target plant community and configuration plants,it is required to select as far as possible plants that can blossom and bear fruit or pods. Then seeds of these plants can be harvested,processed and sold,and applied for other projects,so as to develop into a complete forest and grass seed industry chain. This not only reasonably utilizes land resources,but also provides a new approach to the problem of insufficient fine forest seed sources in China. This paper discussed the use of land resources in road side slope and forest and grass seed selection and breeding technology,and elaborated the industrialized development paths for forest and grass seed industries in road side slope. Finally,it arrived at following recommendations.( i) The construction of forest and grass industry economic belt using land resources in road side slope can realize maximum land value. Building a road can help people there get rich,and the type of land and water cultivates its type of forest and grass.( ii) It can make up for the losses incurred from construction of expressway and high-speed rail or destroying forest land,and it can increase farmers' income.( iii) It can increase the supply of domestic seeds,reduce seed import,save foreign exchange,and partly solve the problem of insufficient supply of forest and grass seeds.( iv) It is able to form a complete forest and grass seed industry economic cycle chain,increase employment,and provide new approaches for enriching and benefiting farmers.
基金National Natural Science Foundation of China (41025001, 41130640 )We would like to thank the anonymous reviewers for their valuable and constructive comments. The authors also wish to thank the Shuai Guan-yuan and Sun Xiu-min for assistance in the field work.
文摘Water is the most critical factor for controlling die vegetation pattern in arid and semiarid regions.Using a dye-tracing experiment,we analyzed the infiltration pattern beneath shrub canopy and interspace grass patches in typical steppe ecosystems.The dye coverage,uniform infiltration depth,maximum infiltration depth,total stained area and heterogeneous infiltration stained area were measured by two indices,the maximum infiltration depth index(MIDI)and heterogeneous infiltration index(HII),which were calculated by processing dye-stained photos.The MIDI and HII of soil under shrubs were 1.41±0.14 and 0.29±0.068,respectively,and larger than those of grass soil,1.26±0.14 and0.20±0.076.Using the MIDI,HII,field soil moisture and rainfall data,the infiltration depth and heterogeneous infiltration amount for 26 nature rainfall events were calculated.The results imply that water can infiltrate to a deeper layer beneath shrub canopy than beneath grass patches and that more water infiltration occurs beneath shrub canopy than beneath grass patches.These results are of prime importance for arid and semiarid ecosystems with a limited water supply due to high evaporation and low precipitation.
基金supported by the National Natural Science Foundation of China(Grant Nos. 40730105, 40501072, and 40673067)the Ministry of Science and Technology of China (Grant Nos.2007BAC03A11 and 2002CB412503)+1 种基金The Knowledge Innovation Program of the Institute of Geographical SciencesNatural Resources Research of the Chinese Academy of Sciences (The effect of human activities on re-gional environmental quality, health risk, and environmen-tal remediation)
文摘The seasonal dynamics of soil respiration in steppe (S. bungeana), desert shrub (A. ordosica), and shrubperennial (A. ordosica +C. komarovii) communities were investigated during the growth season (May to October) in 2006; their environmental driving factors were also analyzed. In the three communities, soil respiration showed similar characteristics in their growth seasons, with peak respiration values in July and August owing to suitable temperature and soil moisture conditions during this period. Meanwhile, changes in soil respiration were greatly influenced by temperatures and surface soil moistures. Soil water content at a depth of 0 to 10 cm was identified as the key environmental factor affecting the variation in soil respiration in the steppe. In contrast, in desert shrub and shrub-perennial communities, the dynamics of soil respiration was significantly influenced by air temperature. Similarly, the various responses of soil respiration to environmental factors may be attributed to the different soil textures and distribution patterns of plant roots. In desert ecosystems, precipitation results in soil respiration pulses. Soil carbon dioxide (CO2) effluxes greatly increased after rainfall rewetting in all of the ecosystems under study. However, the precipitation pulse effect differed across the ecosystem. We propose that this may be a result of a reverse effect from the soil texture.
文摘With China's economic development and population growth,China's ecological environment continues to deteriorate.The comprehensive ecosystem restoration of the Shichuan River aims to build an ecosystem containing"mountains,rivers,forests,farmland,lakes and grass"by determining scientific and reasonable thickness of foreign soil,pollution restoration,ecological reconstruction,safeguard measures,etc.It brings new vitality to local ecological environment remodeling and economic development.
基金Supported by National Natural Science Foundation Project (41171449)Key Project of Chinese Academy of Sciences (KZZD-EW-06-01)
文摘Based on the scientific and technological achievements in the past decade in the Loess Hilly-gully Region and the successful demonstration experience in Yan'an Yangou watershed, we summarize the characteristics of eco-environment restoration pattern based on "building terrace and returning slope farmland to forests and grass". According to the data on land use, slope farmland and the agricultural population in 1999, we calculate the area of new terrace that needs to be built, the area of garden plot that needs to be extended, vegetation restoration area and investment demand in counties (cities, districts). Establishing and using some indicators, such as basic farmland extension indicator, garden plot extension indicator, vegetation restoration index and investment demand density, we conduct type classification and analysis of regional differentiation characteristics in 55 counties (cities, districts). The results show that in the Loess Hilly-gully Region, 691 600 hm2 of new terrace needs to be built, 792 000 hm2 of economic forests and orchards need to be extended, 5 410 200 hm2 of vegetation needs to be restored, and the total investment demand is 15.82 billion yuan; in terms of geographical distribution, obviously there are two key areas for eco-environment restoration (one is located in the border area between northern Shaanxi and northwestern Shanxi, and the other is located in the eastern Gansu and southern Ningxia area); the classified regional guidance policies should be formulated as soon as possible, and the limited funds should be concentrated in the key areas.