Understanding the spatiotemporal patterns of the forage-livestock balance is imperative for regionally arranging animal husbandry production while ensuring sustainable grassland-ecosystem service use.The Xilin Gol ste...Understanding the spatiotemporal patterns of the forage-livestock balance is imperative for regionally arranging animal husbandry production while ensuring sustainable grassland-ecosystem service use.The Xilin Gol steppe is an important native grassland resource in Inner Mongolia Autonomous Region,China.This study aimed to elucidate the dynamics of the forage-livestock balance in the Xilin Gol steppe during the period 2000–2015.We evaluated the forage production and corresponding livestock carrying capacity(LCC)in the growing seasons of 2000–2015 using remote sensing data and field surveys.The spatiotemporal patterns of the forage-livestock balance were then assessed at regional,city(including city,county and banner),and village scales using statistical and household survey data.The results showed that both forage production and LCC decreased in the Xilin Gol steppe from east to west.During the period 2000–2015,the regional average forage production and corresponding LCC fluctuated without following a distinct trend,but were consistent with the variations in precipitation.The forage-livestock balance varied with time,space,and scale.At the regional scale,steppes were overgrazed in the early 2000s,but a forage-livestock balance or even grazing potential was achieved in other years.At the city scale,approximately half of the region exhibited a"forage-livestock balance"since 2000.However,about half of the region still experienced overgrazing,which mainly located in the southwest sandy zones.Such changes may have been affected by the variations in grassland quality,forage production,compensation payment,and so on.We suggest a location-specific management scheme for grazing constraints,ecological compensation payment,and industry development to aid in harmonizing animal husbandry and environmental restoration,while promoting sustainable development goals by 2030.展开更多
The data of this paper mainly include statistics,field survey data and MODIS remote sensing image data. This paper estimates the aboveground biomass of grassland and theoretical livestock carrying capacity of natural ...The data of this paper mainly include statistics,field survey data and MODIS remote sensing image data. This paper estimates the aboveground biomass of grassland and theoretical livestock carrying capacity of natural grassland in Hangjin Banner and draws a grass- livestock balance table in accordance with the actual and theoretical livestock carrying capacity of natural grassland. Studies have shown that the grass and livestock balance is good in Hangjin Banner,and the overloading rate is 1. 5%; there was no overloading in 2010 and 2011.展开更多
Some principles and methods for the dynamic monitoring of forage-livestock bal-ance in the grazing system on the temperate grassland of China were discussed in thispaper. To prepare a dynamic monitoring system or the ...Some principles and methods for the dynamic monitoring of forage-livestock bal-ance in the grazing system on the temperate grassland of China were discussed in thispaper. To prepare a dynamic monitoring system or the forage livestock balance of grazingrangeland system, the following theoretical bases will be observed in this work.展开更多
The dynamics of most rangelands in Kenya remain to be poorly understood. This paper provides baseline information on the response of a semiarid rangeland under different livestock grazing regimes on land inhabited by ...The dynamics of most rangelands in Kenya remain to be poorly understood. This paper provides baseline information on the response of a semiarid rangeland under different livestock grazing regimes on land inhabited by the Massai people in the east side of Amboseli National Park in Kenya. The data were collected from grasslands designated into four types: (1) grassland from previous Massai settlements that had been abandoned for over twenty years; (2) grassland excluded from livestock grazing for eight years; (3) a dry season grazing area; and (4) a continuous grazing area where grazing occurred throughout all seasons. Collected data included grass species composition, grass height, inter-tuft distance, standing grass biomass and soil characteristics. The results indicated that continuous grazing area in semiarid rangelands exhibited loss of vegetation with negative, long-term effects on grass functional qualities and forage production, whereas grassland that used traditional Maasai grazing methods showed efficiency and desirable effects on the rangelands. The results also showed that abandoned homestead sites, though degraded, were important nutrient reservoirs.展开更多
Although many sensitivity analyses using the soil and water assessment tool(SWAT) in a complex watershed have been conducted, little attention has been paid to the application potential of the model in unique plots. I...Although many sensitivity analyses using the soil and water assessment tool(SWAT) in a complex watershed have been conducted, little attention has been paid to the application potential of the model in unique plots. In addition, sensitivity analysis of percolation and evapotranspiration with SWAT has seldom been undertaken. In this study, SWAT99.2 was calibrated to simulate water balance components for unique plots in Southern China from 2000 to 2001, which included surface runoff, percolation, and evapotranspiration. Twenty-one parameters classified into four categories, including meteorological conditions, topographical characteristics, soil properties, and vegetation attributes, were used for sensitivity analysis through one-at-a-time(OAT) sampling to identify the factor that contributed most to the variance in water balance components. The results were shown to be different for different plots, with parameter sensitivity indices and ranks varying for different water balance components. Water balance components in the broad-leaved forest and natural grass plots were most sensitive to meteorological conditions, less sensitive to vegetation attributes and soil properties, and least sensitive to topographical characteristics. Compared to those in the natural grass plot, water balance components in the broad-leaved forest plot demonstrated higher sensitivity to the maximum stomatal conductance(GSI) and maximum leaf area index(BLAI).展开更多
基金the National Natural Science Foundation of China(41971130)。
文摘Understanding the spatiotemporal patterns of the forage-livestock balance is imperative for regionally arranging animal husbandry production while ensuring sustainable grassland-ecosystem service use.The Xilin Gol steppe is an important native grassland resource in Inner Mongolia Autonomous Region,China.This study aimed to elucidate the dynamics of the forage-livestock balance in the Xilin Gol steppe during the period 2000–2015.We evaluated the forage production and corresponding livestock carrying capacity(LCC)in the growing seasons of 2000–2015 using remote sensing data and field surveys.The spatiotemporal patterns of the forage-livestock balance were then assessed at regional,city(including city,county and banner),and village scales using statistical and household survey data.The results showed that both forage production and LCC decreased in the Xilin Gol steppe from east to west.During the period 2000–2015,the regional average forage production and corresponding LCC fluctuated without following a distinct trend,but were consistent with the variations in precipitation.The forage-livestock balance varied with time,space,and scale.At the regional scale,steppes were overgrazed in the early 2000s,but a forage-livestock balance or even grazing potential was achieved in other years.At the city scale,approximately half of the region exhibited a"forage-livestock balance"since 2000.However,about half of the region still experienced overgrazing,which mainly located in the southwest sandy zones.Such changes may have been affected by the variations in grassland quality,forage production,compensation payment,and so on.We suggest a location-specific management scheme for grazing constraints,ecological compensation payment,and industry development to aid in harmonizing animal husbandry and environmental restoration,while promoting sustainable development goals by 2030.
基金Supported by Land Ecological Survey and Assessment Project in Western Energy Development Zone and Newly Reclaimed Area(1211410781016)Industrial Innovation(Entrepreneurship)Talent Team in Inner Mongolia
文摘The data of this paper mainly include statistics,field survey data and MODIS remote sensing image data. This paper estimates the aboveground biomass of grassland and theoretical livestock carrying capacity of natural grassland in Hangjin Banner and draws a grass- livestock balance table in accordance with the actual and theoretical livestock carrying capacity of natural grassland. Studies have shown that the grass and livestock balance is good in Hangjin Banner,and the overloading rate is 1. 5%; there was no overloading in 2010 and 2011.
文摘Some principles and methods for the dynamic monitoring of forage-livestock bal-ance in the grazing system on the temperate grassland of China were discussed in thispaper. To prepare a dynamic monitoring system or the forage livestock balance of grazingrangeland system, the following theoretical bases will be observed in this work.
基金funded by the United States Fish and Wildlife Service and Cleveland MetroPark Zoo
文摘The dynamics of most rangelands in Kenya remain to be poorly understood. This paper provides baseline information on the response of a semiarid rangeland under different livestock grazing regimes on land inhabited by the Massai people in the east side of Amboseli National Park in Kenya. The data were collected from grasslands designated into four types: (1) grassland from previous Massai settlements that had been abandoned for over twenty years; (2) grassland excluded from livestock grazing for eight years; (3) a dry season grazing area; and (4) a continuous grazing area where grazing occurred throughout all seasons. Collected data included grass species composition, grass height, inter-tuft distance, standing grass biomass and soil characteristics. The results indicated that continuous grazing area in semiarid rangelands exhibited loss of vegetation with negative, long-term effects on grass functional qualities and forage production, whereas grassland that used traditional Maasai grazing methods showed efficiency and desirable effects on the rangelands. The results also showed that abandoned homestead sites, though degraded, were important nutrient reservoirs.
基金supported by the National Natural Science Foundation of China(Grants No.51569007 and 41301289)the Natural Science Foundation of Guangxi Province,China(Grant No.2015GXNSFCA139004)+1 种基金the Fund of the IRCK by UNESCO(Grant No.KDL201601)the Project of High Level Innovation Team and Outstanding Scholar in Guangxi Colleges and Universities(Grant No.002401013001)
文摘Although many sensitivity analyses using the soil and water assessment tool(SWAT) in a complex watershed have been conducted, little attention has been paid to the application potential of the model in unique plots. In addition, sensitivity analysis of percolation and evapotranspiration with SWAT has seldom been undertaken. In this study, SWAT99.2 was calibrated to simulate water balance components for unique plots in Southern China from 2000 to 2001, which included surface runoff, percolation, and evapotranspiration. Twenty-one parameters classified into four categories, including meteorological conditions, topographical characteristics, soil properties, and vegetation attributes, were used for sensitivity analysis through one-at-a-time(OAT) sampling to identify the factor that contributed most to the variance in water balance components. The results were shown to be different for different plots, with parameter sensitivity indices and ranks varying for different water balance components. Water balance components in the broad-leaved forest and natural grass plots were most sensitive to meteorological conditions, less sensitive to vegetation attributes and soil properties, and least sensitive to topographical characteristics. Compared to those in the natural grass plot, water balance components in the broad-leaved forest plot demonstrated higher sensitivity to the maximum stomatal conductance(GSI) and maximum leaf area index(BLAI).