[Objective] In this study,the secretion of organic acids from plant roots under soil nutrient and water stress and the effects of organic acids on ecological adaptability of plants were investigated,which provided the...[Objective] In this study,the secretion of organic acids from plant roots under soil nutrient and water stress and the effects of organic acids on ecological adaptability of plants were investigated,which provided theoretical basis for improving the adaptability of plants to a variety of stress conditions.The results showed that,under nutrient and water stress,the content of organic acids secreted from plant roots increased significantly as a common active adaptive response.Organic acids could improve the activities of a variety of antioxidant enzymes,contents of osmotic regulatory substances,contents of chlorophyll and photosynthesis levels,promote nutrient absorption and transportation in plants,and ultimately contribute to plant growth and biomass accumulation,reduce the toxicity of stress conditions to plants and improve the stress resistance and adaptability of plants.展开更多
[Objective] This study aimed to investigate the effects of nutrient and water stress on the secretion of organic acids from roots of two-year-old Larix olgensis. [Method] Different nutrient and water stress conditions...[Objective] This study aimed to investigate the effects of nutrient and water stress on the secretion of organic acids from roots of two-year-old Larix olgensis. [Method] Different nutrient and water stress conditions were designed to investi- gate the types and quantities of organic acids secreted from roots of two-year-old L. olgensis. [Result] Under nutrient and water stress, the types of organic acids secreted from roots of two-year-old L. olgensis increased, which varied with different stress levels. In addition, nutrient and water stress also increased the secretory vol- ume of organic acids from roots of two-year-old L. olgensis. The increment in total amount of organic acids reached the maximum under Level 1 (high stress). Among different types of organic acids, the increment in secretory volume of citric acid reached the maximum, followed by malic acid, while oxalic acid presented relatively small increment. Furthermore, the increment in secretory volume of these three organic acids all reached the maximum under Level 1. [Conclusion] The proportion of the secretory volume of each organic acid accounting for the total amount of organic acids varied slightly, but the overall order was unchanged.展开更多
Methods for determining nine low molecular weight organic acids in root exudates were developed by using reversed phase high performance liquid chromatography with UV (ultraviolet) detection at 214 nm. The mobile ph...Methods for determining nine low molecular weight organic acids in root exudates were developed by using reversed phase high performance liquid chromatography with UV (ultraviolet) detection at 214 nm. The mobile phase was 18 mmol L -1 kH 2PO 4 adjusted to pH 2.25 with phosphoric acid and the flow rate was 0.3 mL min -1 . The analytical column was a reversed phase silica based C 18 column (Shim pack CLC ODS). The root exudates were collected through submerging the whole root system into aerated deionized water for 2 hours. The filtered exudate solutions were concentrated to dryness by rotary evaporation at 40 °C, dissolved in 10 mL mobile phase. The chromatographic conditions of organic acid determination were analyzed. The results showed that there was a high selectivity and sensitivity in the organic acid determination by reversed phase high performance liquid chromatography. Coefficients of variation for organic acid determination were lower than 10% except lactic acid. The recoveries were consistently between 80.1% to 108.3%. Detection limits were approximately 0.05 to 4.5 mg L -1 for organic acids except succinic acid with the detection limit of 7.0 mg L -1 . Phosphorus deficiency may contribute to the release of organic acids in soybean root exudates especially malic, lactic and citric acids.展开更多
Effects of column temperature and flow rate on separation of organic acids were studied by determining nine low-molecular-weight organic acids on reversed- phase C18 column, using high performance liquid chromatograph...Effects of column temperature and flow rate on separation of organic acids were studied by determining nine low-molecular-weight organic acids on reversed- phase C18 column, using high performance liquid chromatography (HPLC) with a wavelength of UV (ultraviolet) 214 urn and a mobile phase of 18 mmol L-1 KH2PO4 buffer solution (pH 2.1). The thermal stability of organic acids was determined by comparing the recoveries of organic acids in different temperature treatments. The relationships between column temperature, flow rate or solvent pH and retention time were analyzed. At low solvent pH, separation efficiency of organic acids was increased by raising the flow rate of the solvent because of lowering the retention time of organic acids. High column temperature was unfavorable for the separation of organic acids. The separating effect can be enhanced through reducing column temperature in organic acid determination due to increasing retention time. High thermal stability of organic acids with low concentrations was observed at temperature of 40 ℃-45℃. Sensitivity and separation effect of organic acid determination by HPLC were clearly improved by a combination of raising flow rate and lowering column temperature at low solvent pH.展开更多
Rubber[Hevea brasiliensis(Willd.ex A.Juss.)Müll.Arg.]plantations are the largest cultivated forest type in tropical China.Returning organic materials to the soil will help to maintain the quality and growth of ru...Rubber[Hevea brasiliensis(Willd.ex A.Juss.)Müll.Arg.]plantations are the largest cultivated forest type in tropical China.Returning organic materials to the soil will help to maintain the quality and growth of rubber trees.Although many studies have demonstrated that organic waste materials can be used to improve soil fertility and structure to promote root growth,few studies have studied the eff ects of organic amendments on soil fertility and root growth in rubber tree plantations.Here,bagasse,coconut husk or biochar were applied with a chemical fertilizer to test their eff ects on soil properties after 6 months and compared with the eff ects of only the chemical fertilizer.Results showed that the soil organic matter content,total nitrogen,available phosphorus and available potassium after the chemical fertilizer(F)treatment were all signifi cantly lower than after the chemical fertilizer+bagasse(Fba),chemical fertilizer+coconut husk(Fco)or chemical fertilizer+biochar(Fbi)(p<0.05).Soil pH in all organic amendments was higher than in the F treatment,but was only signifi cantly higher in the Fbi treatment.In contrast,soil bulk density in the F treatment was signifi cantly higher than in treatments with the organic amendments(p<0.05).When compared with the F treatment,soil root dry mass increased signifi-cantly by 190%,176%and 33%in Fba,Fco and Fbi treatments,respectively(p<0.05).Similar results were found for root activity,number of root tips,root length,root surface area and root volume.Conclusively,the application of bagasse,coconut husk and biochar increased soil fertility and promoted root growth of rubber trees in the short term.However,bagasse and coconut husk were more eff ective than biochar in improving root growth of rubber trees.展开更多
A solution culture experiment was conducted to investigate the effects of collection time and interferingions on separation and determination of low-molecular-weight organic acids in root exudates of soybeanusing the ...A solution culture experiment was conducted to investigate the effects of collection time and interferingions on separation and determination of low-molecular-weight organic acids in root exudates of soybeanusing the method for directly collecting root exudates. The suitable collection time of root exudates andthe interfering ions affecting organic acid determination were determined. The method for removing theinterfering ions was established and analyzed. The release amount of root exudates increased with theincrease of collection time from 0 to 120 min but decreased with increasing of collection time from 120 to 240min. The maximum exuding amounts of organic acids were observed in root exudates at the collection time of120 min. There was a significant difference of organic acid components between the treatments of collectiontime of 120 min and 240 min. Citric acid was found only in the treatment of 120 min collection time. NO3-was the main interfering ion in organic acid determination and had the same retention time as oxalic acid.Anion exchangs resin (SAX) properly treated by HPLC (high performance liquid chromatography) solventcould remove NO3- anion in sample solution of root exudates, thus enhancing the recoveries of organic acidsin root exudates. There was no significant effect of the chemicals added into sample solution such as H3PO4,SAX and KNO3 on the retention time of organic acids.展开更多
The effects of maize root exudates and low-molecular-weight-organic anions (LMWOAs) on the desorption of phenanthrene from eight artificially contaminated soils were evaluated. A significant negative correlation was...The effects of maize root exudates and low-molecular-weight-organic anions (LMWOAs) on the desorption of phenanthrene from eight artificially contaminated soils were evaluated. A significant negative correlation was observed between the amounts of phenanthrene desorbed and the soil organic carbon (SOC) contents (P 〈 0.01), and the influences of soil pH and clay content on phenanthrene desorption were insignificant (P 〉 0.1). Neither maize root exudates nor oxalate and citrate anions influenced desorption of phenanthrene with the addition of NaN3. A faster phenanthrene desorption occurred without the addition of NaN3 in the presence of maize root exudates than oxalate or citrate due to the enhanced degradation by root exudates. Without the addition of NAN3, oxalate or citrate at different concentrations could inhibit phenanthrene desorption to different extents and the inhibiting effect by citrate was more significant than by oxalate. This study leads to the conclusion that maize root exudates can not enhance the desorption under abiotic condition with the addition of NaN3 and can promote the desorption of phenanthrene in soils without the addition of NaN3.展开更多
Soil suppressiveness to Fusarium root rot of soybean had been observed in a black soil field after a long-term fertilization with nitrogen(N)and phosphorus(P)fertilizer combined with pig manure as organic amendment(NP...Soil suppressiveness to Fusarium root rot of soybean had been observed in a black soil field after a long-term fertilization with nitrogen(N)and phosphorus(P)fertilizer combined with pig manure as organic amendment(NPM),rather than that with only nitrogen and phosphorus fertilizer(NP)or no fertilizer(NF).To determine the microbial role on this suppressiveness,fungal and bacterial community characteristics in NPM,NP and NF treatments were investigated by q PCR and DGGE.Compared with the similar bacterial community characteristics among 3 treatments,fungal community,especially Fusarium population size and community composition in NPM treatment were different with those of NP and NF groups.Based on the isolation and pathogenicity test,pathogenic F.oxysporum,F.graminearum,F.verticillioide and F.lateritium absolutely dominated Fusarium community in NF and NP groups.Nonpathogenic F.avenaceum,F.equiseti,F.culmorum,F.redolens,F.solani and F.tricinctum dominated Fusarium community in NPM group.Isolation rate of pathogenic Fusarium in NPM reduced from 100%to 38%in NF.These results suggested that the dominance of soil non-pathogenic Fusarium population induced by organic amendment might play an important role on suppressing Fusarium root rot in the tested field.展开更多
The object of the study was fungous diseases occurring on roots, leave sheaths and stem base of winter wheat in the two opposing cropping systems (organic and conventional). The observations were made in vegetation pe...The object of the study was fungous diseases occurring on roots, leave sheaths and stem base of winter wheat in the two opposing cropping systems (organic and conventional). The observations were made in vegetation periods (2007-2009) in the fields of winter wheat in northern Poland. Every year on each plot of compared farming systems root rot occurred (Fusarium spp., Gaeumannomyces graminis and other fungi). For the period of 3 years the degree of disease injury on the roots of winter wheat grown in the conventional system in the vegetation period increased, while in the organic one remained on pretty the same level. On average a lot more affected roots, especially in the flowering stage, occurred on the winter wheat grown in the conventional system. Fusarium foot rot (Fusarium spp.) developed on the wheat during the entire vegetation period. It was the most dangerous root and foot rot disease (the highest indexes of injury). The mean degree of disease injury on leave sheath was on pretty the same level in the two farming systems, although in investigated vegetation periods differed a lot, whereas at the bases of stems the pathogen was on the higher level on the wheat in the conventional system. Also eyespot (Tapesia yallude) developed in the entire vegetation period of the winter wheat, but its intensity was much lower than in case of fusarium foot rot. Leave sheaths of the wheat grown in the conventional system were slightly stronger affected than those grown in the organic system. In the flowering stage the intensity of the disease in both farming systems became equal, while in the wax maturity it was considerably higher in the conventional system. Sharp eyespot (Rhizoctonia spp.) appeared relatively late and occurred only in two years of investigation. The intensiveness of the disease was definitely higher on the organic plots. Among the affected roots, taken in the stem elongation stage, from the organic system 28 cultures of fungi were isolated, and from the conventional one 24 colonies. Cereals pathogenic fungi amounted 35.8% of isolates obtained from the organic system and as many as 66.7% from the conventional system. Among the affected roots, taken in the flowering stage, from the organic system 68 cultures of fungi were isolated in all, and from the conventional one 25 colonies. Cereals pathogenic fungi amounted 38.2% of isolates obtained from the organic system and 56.0% from the conventional system. Among the affected stem bases, taken in the wax maturity stage, from the organic system 56 cultures of fungi were isolated in all, and from the conventional one 52 colonies. Cereals pathogenic fungi amounted 48.4% of isolates obtained from the organic system and 53.6% from the conventional system. In the case of all root and foot rot diseases of wheat grown in the organic system, an advantageous influence of greater biodiversity and number of various fungi species living in root proximity was noticed as opposed to the conventional system.展开更多
Carbon(C),nitrogen(N),and phosphorus(P)are of fundamental importance for growth and nutrient dynamics within plant organs and deserve more attention at regional to global scales.However,our knowledge of how these nutr...Carbon(C),nitrogen(N),and phosphorus(P)are of fundamental importance for growth and nutrient dynamics within plant organs and deserve more attention at regional to global scales.However,our knowledge of how these nutrients vary with tree size,organ age,or root order at the individual level remains limited.We determined C,N,and P contents and their stoichiometric ratios(i.e.,nutrient traits)in needles,branches,and fine roots at different organ ages(0-3-year-old needles and branches)and root orders(1st-4th order roots)from 64 Pinus koraiensis of varying size(Diameter at breast height ranged from 0.3 to 100 cm)in northeast China.Soil factors were also measured.The results show that nutrient traits were regulated by tree size,organ age,or root order rather than soil factors.At a whole-plant level,nutrient traits decreased in needles and fine roots but increased in branches with tree size.At the organ level,age or root order had a negative effect on C,N,and P and a positive effect on stoichiometric ratios.Our results demonstrate that nutrient variations are closely related to organ-specific functions and ecophysiological processes at an individual level.It is suggested that the nutrient acquisition strategy by younger trees and organ fractions with higher nutrient content is for survival.Conversely,nutrient storage strategy in older trees and organ fractions are mainly for steady growth.Our results clarified the nutrient utilization strategies during tree and organ ontogeny and suggest that tree size and organ age or root order should be simultaneously considered to understand the complexities of nutrient variations.展开更多
Phosphorus(P)is essential for living plants,and P deficiency is one of the key factors limiting the yield in rapeseed production worldwide.As the most important organ for plants,root morphology traits(RMTs)play a key ...Phosphorus(P)is essential for living plants,and P deficiency is one of the key factors limiting the yield in rapeseed production worldwide.As the most important organ for plants,root morphology traits(RMTs)play a key role in P absorption.To investigate the genetic variability of RMT under low P availability,we dissected the genetic structure of RMTs by genome-wide association studies(GWAS),linkage mapping and candidate gene association studies(CGAS).A total of 52 suggestive loci were associated with RMTs under P stress conditions in 405 oilseed rape accessions.The purple acid phosphatase gene BnPAP17 was found to control the lateral root number(LRN)and root dry weight(RDW)under low P stress.The expression of BnPAP17 was increased in shoot tissue in P-efficient cultivars compared to root tissue and P-inefficient cultivars in response to low P stress.Moreover,the haplotype of BnPAP17^(Hap3)was detected for the selective breeding of P efficiency in oilseed rape.Over-expression of the BnPAP17^(Hap3)could promote the shoot and root growth with enhanced tolerance to low P stress and organic phosphorus(Po)utilization in oilseed rape.Collectively,these findings increase our understanding of the mechanisms underlying BnPAP17-mediated low P stress tolerance in oilseed rape.展开更多
Picea crassifolia Kom, a perennial arbor spe- cies is recognized as one of the most adaptable plants found to date in Qilian Mountains. To explore the cutting reproduction technology of P. crassifolia and reveal its r...Picea crassifolia Kom, a perennial arbor spe- cies is recognized as one of the most adaptable plants found to date in Qilian Mountains. To explore the cutting reproduction technology of P. crassifolia and reveal its rooting mechanism, cuttings of P. crassifolia with different cutting types (softwood, hardwood and root), positions (top, upper, middle and bottom) and ages (7, 10, 15, 20, 25 year-old) were cultivated in a field experiment. One- year old softwood and hardwood cuttings were collected from 7-, 10-, 15-, 20-, and 25 year-old healthy ortets to analyze the changes from endogenous hormones and organic nutrients. Results indicate that the softwood cut- tings (0.5-1.0 cm in diameter) from upper branches of 15 year-old ortets shows better growth performance by improving rooting indexes, including a significant increasein rooting rate and a decrease in basal rot rate. Concomi- tantly, increasing rooting quantity and root length also increased. It is noteworthy that the high rooting rate of P. crassifolia cuttings due to its ability to accumulate high concentrations of indole-3-acetic acid (IAA) and total carbon (TC) rather than abscisic acid (ABA) and total nitrogen (TN). The rooting rate was mainly regulated by the IAA/ABA and TC/TN ratio. In summary, our results suggest that the softwood cuttings (0.5-1.0 cm in diameter) from upper branches of 15 year-old P. crassifolia can be considered as an effective strategy to improve cutting rooting rate, and the IAA/ABA and TC/TN ratio was one of the main factors limiting the cutting rooting rate of P. crassifolia.展开更多
Endogenous hormones play an important role in the growth and development of roots. The objective of this research was to study the effect of four types of N fertilizers on the root growth of strawberry (Fragaria anana...Endogenous hormones play an important role in the growth and development of roots. The objective of this research was to study the effect of four types of N fertilizers on the root growth of strawberry (Fragaria ananassa Duchesne) and the endogenous enzymes of indole-3-acetic acid (IAA), abscisic acid (ABA), and isopentenyl adenosine (iPA) in its roots and leaves using enzyme-linked immunosorbent assay. Application of all types of N fertilizers significantly depressed (P ≤ 0.05) root growth at 20 d after transplanting. Application of organic-inorganic fertilizer (OIF) as basal fertilizer had a significant negative effect (P ≤ 0.05) on root growth. The application of OIF and urea lowered the lateral root frequency in strawberry plants at 60 d (P ≤ 0.05) compared with the application of two organic fertilizers (OFA and OFB) and the control (CK). With the fertilizer treatments, there were the same concentrations of IAA and ABA in both roots and leaves at the initial growth stage (20 d), lower levels of IAA and ABA at the later stage (60 d), and higher iPA levels at all seedling stages as compared to those of CK. Thus, changes in the concentrations of endogenous phytohormones in strawberry plants could be responsible for the morphological changes of roots due to fertilization.展开更多
The effect of zinc(Zn) deficiency and excessive bicarbonate on the allocation and exudation of organic acids in plant organs(root, stem, and leaf) and root exudates of two Moraceae plants(Broussonetia papyrifera and M...The effect of zinc(Zn) deficiency and excessive bicarbonate on the allocation and exudation of organic acids in plant organs(root, stem, and leaf) and root exudates of two Moraceae plants(Broussonetia papyrifera and Morus alba) were investigated. Two Moraceae plants were hydroponically grown and cultured in nutrient solution in four different treatments with 0.02 mM Zn or no Zn,combined with no or 10 mM bicarbonate. The variations of organic acids in different plant organs were similar to those of root exudates in the four treatments except B. papyrifera, which was in a treatment that was a combination of 0.02 mM Zn and no bicarbonate. The response characteristics in the production, translocation, and allocation of organic acids in the plant organs and root exudates varied with species and treatments. Organic acids in plant organs and root exudates increased under Zn-deficient conditions,excessive bicarbonate, or both. An increase of organic acids in the leaves resulted in an increase of root-exuded organic acids. B. papyrifera translocated more oxalate and citrate from the roots to the rhizosphere than M. alba under the dual influence of 10 mM bicarbonate and Zn deficiency. Organic acids of leaves may be derived from dark respiration and photorespiration. By comparison, organic acids in stems, roots, and root exudates may be derived from dark respiration and organic acid translocation from the leaves. These results provide evidence for the selective adaptation of plants to environments with low Zn levels or high bicarbonate levels such as a karst ecosystem.展开更多
Technological and economic opportunities,alongside the apparent ecological benefits,point to biodesign as a new industrial paradigm for the fabrication of products in the twenty-first century.The presented work studie...Technological and economic opportunities,alongside the apparent ecological benefits,point to biodesign as a new industrial paradigm for the fabrication of products in the twenty-first century.The presented work studies plant roots as a biodesign material in the fabrication of self-supported 3D structures,where the biologically and digitally designed materials provide each other with structural stability.Taking a material-driven design approach,we present our systematic tinkering activities with plant roots to better understand and anticipate their responsive behaviour.These helped us to identify the key design parameters and advance the unique potential of plant roots to bind discrete porous structures.We illustrate this binding potential of plant roots with a hybrid 3D object,for which plant roots connect 600 computationally designed,optimized,and fabricated bioplastic beads into a low stool.展开更多
The comparative studies on properties of growth and cultivated conditions of seven transformed ginkgo hairy root clones were reported. Different clones display various phenotypes characterized by growth rate.The resu...The comparative studies on properties of growth and cultivated conditions of seven transformed ginkgo hairy root clones were reported. Different clones display various phenotypes characterized by growth rate.The results show that the suitable inoculum is benefical to the growth of ginkgo hairy root.NH + 4/NO - 3, pH ,sucrose, and inositol have important effects on the growth of ginkgo hairy root.展开更多
A novel form of hydroponic culture was employed to explore the physiological function of roots of a tea plant (Camellia sinensis). The pH of the nutrient solution with an actively growing tea plant decreased during cu...A novel form of hydroponic culture was employed to explore the physiological function of roots of a tea plant (Camellia sinensis). The pH of the nutrient solution with an actively growing tea plant decreased during cultivation. Furthermore, no oxalic acid, tartaric acid, malic acid or citric acid, all possible factors in acidification, was detected in the nutrient solution of a growing plant. A proton pump inhibitor suppressed the acidification of the solution. Soil acidification might have been accelerated with a proton released from ammoniacal nitrogen preferentially for the growth, suggesting the specific mechanism of tea plant as a functional food.展开更多
The allelopathic potential of aqueous and organic solvent extacts from Corrigiola telephiifolia Pour which is an aromatic and medicinal plant in mediterranean regions, was investigated under laboratory conditions on t...The allelopathic potential of aqueous and organic solvent extacts from Corrigiola telephiifolia Pour which is an aromatic and medicinal plant in mediterranean regions, was investigated under laboratory conditions on two plant species: Raphanus sativus and Triticum aestivum. The aqueous extract of Corrigiola telephiifolia roots had an important inhibitory effect on the seed germination of the two tested plant species. The dichloromethane and the methanol extracts significantly reduced the growth of radish roots up to 84.44% and 68.85% respectively. The butanol, the dichloromethane and the ethyl acetate extracts had a high inhibitory effect on seed germination and roots growth of wheat. The presence of saponins in butanol extracts and tanins in dichlorometane and ethyl acetate extracts may be responsible of these allelopathic activities. These results suggest that Corrigiola telephiifolia Pour have allelopathic effects and contains potent allelochemicals which should be used for weeds management.展开更多
基金Supported by National Natural Science Foundation of China(31370613)Major State Basic Research Development Program of China(973 Program)(2011CB403202)Fundamental Research Funds for the Central Universities(DL12CA01)~~
文摘[Objective] In this study,the secretion of organic acids from plant roots under soil nutrient and water stress and the effects of organic acids on ecological adaptability of plants were investigated,which provided theoretical basis for improving the adaptability of plants to a variety of stress conditions.The results showed that,under nutrient and water stress,the content of organic acids secreted from plant roots increased significantly as a common active adaptive response.Organic acids could improve the activities of a variety of antioxidant enzymes,contents of osmotic regulatory substances,contents of chlorophyll and photosynthesis levels,promote nutrient absorption and transportation in plants,and ultimately contribute to plant growth and biomass accumulation,reduce the toxicity of stress conditions to plants and improve the stress resistance and adaptability of plants.
基金Supported by National Natural Science Foundation of China(31370613)Major State Basic Research Development Program of China(973 Program)(2011CB403202)+1 种基金Project of General Administration of Quality Supervision,Inspection and Quarantine of China(2009IK177)Fundamental Research Fund for the Central Universities(DL12CA01)~~
文摘[Objective] This study aimed to investigate the effects of nutrient and water stress on the secretion of organic acids from roots of two-year-old Larix olgensis. [Method] Different nutrient and water stress conditions were designed to investi- gate the types and quantities of organic acids secreted from roots of two-year-old L. olgensis. [Result] Under nutrient and water stress, the types of organic acids secreted from roots of two-year-old L. olgensis increased, which varied with different stress levels. In addition, nutrient and water stress also increased the secretory vol- ume of organic acids from roots of two-year-old L. olgensis. The increment in total amount of organic acids reached the maximum under Level 1 (high stress). Among different types of organic acids, the increment in secretory volume of citric acid reached the maximum, followed by malic acid, while oxalic acid presented relatively small increment. Furthermore, the increment in secretory volume of these three organic acids all reached the maximum under Level 1. [Conclusion] The proportion of the secretory volume of each organic acid accounting for the total amount of organic acids varied slightly, but the overall order was unchanged.
文摘Methods for determining nine low molecular weight organic acids in root exudates were developed by using reversed phase high performance liquid chromatography with UV (ultraviolet) detection at 214 nm. The mobile phase was 18 mmol L -1 kH 2PO 4 adjusted to pH 2.25 with phosphoric acid and the flow rate was 0.3 mL min -1 . The analytical column was a reversed phase silica based C 18 column (Shim pack CLC ODS). The root exudates were collected through submerging the whole root system into aerated deionized water for 2 hours. The filtered exudate solutions were concentrated to dryness by rotary evaporation at 40 °C, dissolved in 10 mL mobile phase. The chromatographic conditions of organic acid determination were analyzed. The results showed that there was a high selectivity and sensitivity in the organic acid determination by reversed phase high performance liquid chromatography. Coefficients of variation for organic acid determination were lower than 10% except lactic acid. The recoveries were consistently between 80.1% to 108.3%. Detection limits were approximately 0.05 to 4.5 mg L -1 for organic acids except succinic acid with the detection limit of 7.0 mg L -1 . Phosphorus deficiency may contribute to the release of organic acids in soybean root exudates especially malic, lactic and citric acids.
文摘Effects of column temperature and flow rate on separation of organic acids were studied by determining nine low-molecular-weight organic acids on reversed- phase C18 column, using high performance liquid chromatography (HPLC) with a wavelength of UV (ultraviolet) 214 urn and a mobile phase of 18 mmol L-1 KH2PO4 buffer solution (pH 2.1). The thermal stability of organic acids was determined by comparing the recoveries of organic acids in different temperature treatments. The relationships between column temperature, flow rate or solvent pH and retention time were analyzed. At low solvent pH, separation efficiency of organic acids was increased by raising the flow rate of the solvent because of lowering the retention time of organic acids. High column temperature was unfavorable for the separation of organic acids. The separating effect can be enhanced through reducing column temperature in organic acid determination due to increasing retention time. High thermal stability of organic acids with low concentrations was observed at temperature of 40 ℃-45℃. Sensitivity and separation effect of organic acid determination by HPLC were clearly improved by a combination of raising flow rate and lowering column temperature at low solvent pH.
文摘Rubber[Hevea brasiliensis(Willd.ex A.Juss.)Müll.Arg.]plantations are the largest cultivated forest type in tropical China.Returning organic materials to the soil will help to maintain the quality and growth of rubber trees.Although many studies have demonstrated that organic waste materials can be used to improve soil fertility and structure to promote root growth,few studies have studied the eff ects of organic amendments on soil fertility and root growth in rubber tree plantations.Here,bagasse,coconut husk or biochar were applied with a chemical fertilizer to test their eff ects on soil properties after 6 months and compared with the eff ects of only the chemical fertilizer.Results showed that the soil organic matter content,total nitrogen,available phosphorus and available potassium after the chemical fertilizer(F)treatment were all signifi cantly lower than after the chemical fertilizer+bagasse(Fba),chemical fertilizer+coconut husk(Fco)or chemical fertilizer+biochar(Fbi)(p<0.05).Soil pH in all organic amendments was higher than in the F treatment,but was only signifi cantly higher in the Fbi treatment.In contrast,soil bulk density in the F treatment was signifi cantly higher than in treatments with the organic amendments(p<0.05).When compared with the F treatment,soil root dry mass increased signifi-cantly by 190%,176%and 33%in Fba,Fco and Fbi treatments,respectively(p<0.05).Similar results were found for root activity,number of root tips,root length,root surface area and root volume.Conclusively,the application of bagasse,coconut husk and biochar increased soil fertility and promoted root growth of rubber trees in the short term.However,bagasse and coconut husk were more eff ective than biochar in improving root growth of rubber trees.
文摘A solution culture experiment was conducted to investigate the effects of collection time and interferingions on separation and determination of low-molecular-weight organic acids in root exudates of soybeanusing the method for directly collecting root exudates. The suitable collection time of root exudates andthe interfering ions affecting organic acid determination were determined. The method for removing theinterfering ions was established and analyzed. The release amount of root exudates increased with theincrease of collection time from 0 to 120 min but decreased with increasing of collection time from 120 to 240min. The maximum exuding amounts of organic acids were observed in root exudates at the collection time of120 min. There was a significant difference of organic acid components between the treatments of collectiontime of 120 min and 240 min. Citric acid was found only in the treatment of 120 min collection time. NO3-was the main interfering ion in organic acid determination and had the same retention time as oxalic acid.Anion exchangs resin (SAX) properly treated by HPLC (high performance liquid chromatography) solventcould remove NO3- anion in sample solution of root exudates, thus enhancing the recoveries of organic acidsin root exudates. There was no significant effect of the chemicals added into sample solution such as H3PO4,SAX and KNO3 on the retention time of organic acids.
基金supported by the Knowledge Innovation Program of the Chinese Academy of Sciences (No. kzcx1- yw-06-03)the National Natural Science Foundation of China (No. 40730740, 20621703)
文摘The effects of maize root exudates and low-molecular-weight-organic anions (LMWOAs) on the desorption of phenanthrene from eight artificially contaminated soils were evaluated. A significant negative correlation was observed between the amounts of phenanthrene desorbed and the soil organic carbon (SOC) contents (P 〈 0.01), and the influences of soil pH and clay content on phenanthrene desorption were insignificant (P 〉 0.1). Neither maize root exudates nor oxalate and citrate anions influenced desorption of phenanthrene with the addition of NaN3. A faster phenanthrene desorption occurred without the addition of NaN3 in the presence of maize root exudates than oxalate or citrate due to the enhanced degradation by root exudates. Without the addition of NAN3, oxalate or citrate at different concentrations could inhibit phenanthrene desorption to different extents and the inhibiting effect by citrate was more significant than by oxalate. This study leads to the conclusion that maize root exudates can not enhance the desorption under abiotic condition with the addition of NaN3 and can promote the desorption of phenanthrene in soils without the addition of NaN3.
基金financially supported by the National Natural Science Foundation of China(41571253,41503068,31770543)Priority Academic Program Development of Jiangsu Higher Education Institutions(PAPD-2018-87)Initial Scientific Research Fund of Senior Talents in Jiangsu University(15JDG016,15JDG018)。
文摘Soil suppressiveness to Fusarium root rot of soybean had been observed in a black soil field after a long-term fertilization with nitrogen(N)and phosphorus(P)fertilizer combined with pig manure as organic amendment(NPM),rather than that with only nitrogen and phosphorus fertilizer(NP)or no fertilizer(NF).To determine the microbial role on this suppressiveness,fungal and bacterial community characteristics in NPM,NP and NF treatments were investigated by q PCR and DGGE.Compared with the similar bacterial community characteristics among 3 treatments,fungal community,especially Fusarium population size and community composition in NPM treatment were different with those of NP and NF groups.Based on the isolation and pathogenicity test,pathogenic F.oxysporum,F.graminearum,F.verticillioide and F.lateritium absolutely dominated Fusarium community in NF and NP groups.Nonpathogenic F.avenaceum,F.equiseti,F.culmorum,F.redolens,F.solani and F.tricinctum dominated Fusarium community in NPM group.Isolation rate of pathogenic Fusarium in NPM reduced from 100%to 38%in NF.These results suggested that the dominance of soil non-pathogenic Fusarium population induced by organic amendment might play an important role on suppressing Fusarium root rot in the tested field.
文摘The object of the study was fungous diseases occurring on roots, leave sheaths and stem base of winter wheat in the two opposing cropping systems (organic and conventional). The observations were made in vegetation periods (2007-2009) in the fields of winter wheat in northern Poland. Every year on each plot of compared farming systems root rot occurred (Fusarium spp., Gaeumannomyces graminis and other fungi). For the period of 3 years the degree of disease injury on the roots of winter wheat grown in the conventional system in the vegetation period increased, while in the organic one remained on pretty the same level. On average a lot more affected roots, especially in the flowering stage, occurred on the winter wheat grown in the conventional system. Fusarium foot rot (Fusarium spp.) developed on the wheat during the entire vegetation period. It was the most dangerous root and foot rot disease (the highest indexes of injury). The mean degree of disease injury on leave sheath was on pretty the same level in the two farming systems, although in investigated vegetation periods differed a lot, whereas at the bases of stems the pathogen was on the higher level on the wheat in the conventional system. Also eyespot (Tapesia yallude) developed in the entire vegetation period of the winter wheat, but its intensity was much lower than in case of fusarium foot rot. Leave sheaths of the wheat grown in the conventional system were slightly stronger affected than those grown in the organic system. In the flowering stage the intensity of the disease in both farming systems became equal, while in the wax maturity it was considerably higher in the conventional system. Sharp eyespot (Rhizoctonia spp.) appeared relatively late and occurred only in two years of investigation. The intensiveness of the disease was definitely higher on the organic plots. Among the affected roots, taken in the stem elongation stage, from the organic system 28 cultures of fungi were isolated, and from the conventional one 24 colonies. Cereals pathogenic fungi amounted 35.8% of isolates obtained from the organic system and as many as 66.7% from the conventional system. Among the affected roots, taken in the flowering stage, from the organic system 68 cultures of fungi were isolated in all, and from the conventional one 25 colonies. Cereals pathogenic fungi amounted 38.2% of isolates obtained from the organic system and 56.0% from the conventional system. Among the affected stem bases, taken in the wax maturity stage, from the organic system 56 cultures of fungi were isolated in all, and from the conventional one 52 colonies. Cereals pathogenic fungi amounted 48.4% of isolates obtained from the organic system and 53.6% from the conventional system. In the case of all root and foot rot diseases of wheat grown in the organic system, an advantageous influence of greater biodiversity and number of various fungi species living in root proximity was noticed as opposed to the conventional system.
基金supported by the National Key R&D Program of China (2022YFD2201100)Natural Science Foundation of Heilongjiang Province of China (TD2023C006)the Fundamental Research Funds for the Central Universities (2572022DS13).
文摘Carbon(C),nitrogen(N),and phosphorus(P)are of fundamental importance for growth and nutrient dynamics within plant organs and deserve more attention at regional to global scales.However,our knowledge of how these nutrients vary with tree size,organ age,or root order at the individual level remains limited.We determined C,N,and P contents and their stoichiometric ratios(i.e.,nutrient traits)in needles,branches,and fine roots at different organ ages(0-3-year-old needles and branches)and root orders(1st-4th order roots)from 64 Pinus koraiensis of varying size(Diameter at breast height ranged from 0.3 to 100 cm)in northeast China.Soil factors were also measured.The results show that nutrient traits were regulated by tree size,organ age,or root order rather than soil factors.At a whole-plant level,nutrient traits decreased in needles and fine roots but increased in branches with tree size.At the organ level,age or root order had a negative effect on C,N,and P and a positive effect on stoichiometric ratios.Our results demonstrate that nutrient variations are closely related to organ-specific functions and ecophysiological processes at an individual level.It is suggested that the nutrient acquisition strategy by younger trees and organ fractions with higher nutrient content is for survival.Conversely,nutrient storage strategy in older trees and organ fractions are mainly for steady growth.Our results clarified the nutrient utilization strategies during tree and organ ontogeny and suggest that tree size and organ age or root order should be simultaneously considered to understand the complexities of nutrient variations.
基金financially supported by the National Natural Science Foundation of China(32201868 and 32001575)。
文摘Phosphorus(P)is essential for living plants,and P deficiency is one of the key factors limiting the yield in rapeseed production worldwide.As the most important organ for plants,root morphology traits(RMTs)play a key role in P absorption.To investigate the genetic variability of RMT under low P availability,we dissected the genetic structure of RMTs by genome-wide association studies(GWAS),linkage mapping and candidate gene association studies(CGAS).A total of 52 suggestive loci were associated with RMTs under P stress conditions in 405 oilseed rape accessions.The purple acid phosphatase gene BnPAP17 was found to control the lateral root number(LRN)and root dry weight(RDW)under low P stress.The expression of BnPAP17 was increased in shoot tissue in P-efficient cultivars compared to root tissue and P-inefficient cultivars in response to low P stress.Moreover,the haplotype of BnPAP17^(Hap3)was detected for the selective breeding of P efficiency in oilseed rape.Over-expression of the BnPAP17^(Hap3)could promote the shoot and root growth with enhanced tolerance to low P stress and organic phosphorus(Po)utilization in oilseed rape.Collectively,these findings increase our understanding of the mechanisms underlying BnPAP17-mediated low P stress tolerance in oilseed rape.
基金supported by the National Natural Science Foundation of China(Grant No.31360086)the grant from the major state basic research development program of china(973 program,No.2013CB429903)
文摘Picea crassifolia Kom, a perennial arbor spe- cies is recognized as one of the most adaptable plants found to date in Qilian Mountains. To explore the cutting reproduction technology of P. crassifolia and reveal its rooting mechanism, cuttings of P. crassifolia with different cutting types (softwood, hardwood and root), positions (top, upper, middle and bottom) and ages (7, 10, 15, 20, 25 year-old) were cultivated in a field experiment. One- year old softwood and hardwood cuttings were collected from 7-, 10-, 15-, 20-, and 25 year-old healthy ortets to analyze the changes from endogenous hormones and organic nutrients. Results indicate that the softwood cut- tings (0.5-1.0 cm in diameter) from upper branches of 15 year-old ortets shows better growth performance by improving rooting indexes, including a significant increasein rooting rate and a decrease in basal rot rate. Concomi- tantly, increasing rooting quantity and root length also increased. It is noteworthy that the high rooting rate of P. crassifolia cuttings due to its ability to accumulate high concentrations of indole-3-acetic acid (IAA) and total carbon (TC) rather than abscisic acid (ABA) and total nitrogen (TN). The rooting rate was mainly regulated by the IAA/ABA and TC/TN ratio. In summary, our results suggest that the softwood cuttings (0.5-1.0 cm in diameter) from upper branches of 15 year-old P. crassifolia can be considered as an effective strategy to improve cutting rooting rate, and the IAA/ABA and TC/TN ratio was one of the main factors limiting the cutting rooting rate of P. crassifolia.
基金supported by the National High Technology Research and Development Program (863 Program) of China(No.2004AA246080)the Program for the Development of High-Tech Industries from the Education Department ofJiangsu Province, China.
文摘Endogenous hormones play an important role in the growth and development of roots. The objective of this research was to study the effect of four types of N fertilizers on the root growth of strawberry (Fragaria ananassa Duchesne) and the endogenous enzymes of indole-3-acetic acid (IAA), abscisic acid (ABA), and isopentenyl adenosine (iPA) in its roots and leaves using enzyme-linked immunosorbent assay. Application of all types of N fertilizers significantly depressed (P ≤ 0.05) root growth at 20 d after transplanting. Application of organic-inorganic fertilizer (OIF) as basal fertilizer had a significant negative effect (P ≤ 0.05) on root growth. The application of OIF and urea lowered the lateral root frequency in strawberry plants at 60 d (P ≤ 0.05) compared with the application of two organic fertilizers (OFA and OFB) and the control (CK). With the fertilizer treatments, there were the same concentrations of IAA and ABA in both roots and leaves at the initial growth stage (20 d), lower levels of IAA and ABA at the later stage (60 d), and higher iPA levels at all seedling stages as compared to those of CK. Thus, changes in the concentrations of endogenous phytohormones in strawberry plants could be responsible for the morphological changes of roots due to fertilization.
基金funded by the National Key Basic Research Program of China under Grant No. 2013CB956701the National Natural Science Foundation of China under Grant No. 31070365Funded by talents introduction of Anqing Normal University (No. 14000100032)
文摘The effect of zinc(Zn) deficiency and excessive bicarbonate on the allocation and exudation of organic acids in plant organs(root, stem, and leaf) and root exudates of two Moraceae plants(Broussonetia papyrifera and Morus alba) were investigated. Two Moraceae plants were hydroponically grown and cultured in nutrient solution in four different treatments with 0.02 mM Zn or no Zn,combined with no or 10 mM bicarbonate. The variations of organic acids in different plant organs were similar to those of root exudates in the four treatments except B. papyrifera, which was in a treatment that was a combination of 0.02 mM Zn and no bicarbonate. The response characteristics in the production, translocation, and allocation of organic acids in the plant organs and root exudates varied with species and treatments. Organic acids in plant organs and root exudates increased under Zn-deficient conditions,excessive bicarbonate, or both. An increase of organic acids in the leaves resulted in an increase of root-exuded organic acids. B. papyrifera translocated more oxalate and citrate from the roots to the rhizosphere than M. alba under the dual influence of 10 mM bicarbonate and Zn deficiency. Organic acids of leaves may be derived from dark respiration and photorespiration. By comparison, organic acids in stems, roots, and root exudates may be derived from dark respiration and organic acid translocation from the leaves. These results provide evidence for the selective adaptation of plants to environments with low Zn levels or high bicarbonate levels such as a karst ecosystem.
文摘Technological and economic opportunities,alongside the apparent ecological benefits,point to biodesign as a new industrial paradigm for the fabrication of products in the twenty-first century.The presented work studies plant roots as a biodesign material in the fabrication of self-supported 3D structures,where the biologically and digitally designed materials provide each other with structural stability.Taking a material-driven design approach,we present our systematic tinkering activities with plant roots to better understand and anticipate their responsive behaviour.These helped us to identify the key design parameters and advance the unique potential of plant roots to bind discrete porous structures.We illustrate this binding potential of plant roots with a hybrid 3D object,for which plant roots connect 600 computationally designed,optimized,and fabricated bioplastic beads into a low stool.
文摘The comparative studies on properties of growth and cultivated conditions of seven transformed ginkgo hairy root clones were reported. Different clones display various phenotypes characterized by growth rate.The results show that the suitable inoculum is benefical to the growth of ginkgo hairy root.NH + 4/NO - 3, pH ,sucrose, and inositol have important effects on the growth of ginkgo hairy root.
文摘A novel form of hydroponic culture was employed to explore the physiological function of roots of a tea plant (Camellia sinensis). The pH of the nutrient solution with an actively growing tea plant decreased during cultivation. Furthermore, no oxalic acid, tartaric acid, malic acid or citric acid, all possible factors in acidification, was detected in the nutrient solution of a growing plant. A proton pump inhibitor suppressed the acidification of the solution. Soil acidification might have been accelerated with a proton released from ammoniacal nitrogen preferentially for the growth, suggesting the specific mechanism of tea plant as a functional food.
文摘The allelopathic potential of aqueous and organic solvent extacts from Corrigiola telephiifolia Pour which is an aromatic and medicinal plant in mediterranean regions, was investigated under laboratory conditions on two plant species: Raphanus sativus and Triticum aestivum. The aqueous extract of Corrigiola telephiifolia roots had an important inhibitory effect on the seed germination of the two tested plant species. The dichloromethane and the methanol extracts significantly reduced the growth of radish roots up to 84.44% and 68.85% respectively. The butanol, the dichloromethane and the ethyl acetate extracts had a high inhibitory effect on seed germination and roots growth of wheat. The presence of saponins in butanol extracts and tanins in dichlorometane and ethyl acetate extracts may be responsible of these allelopathic activities. These results suggest that Corrigiola telephiifolia Pour have allelopathic effects and contains potent allelochemicals which should be used for weeds management.