期刊文献+
共找到1,453篇文章
< 1 2 73 >
每页显示 20 50 100
Modeling of Sensor Enabled IrrigationManagement for Intelligent Agriculture Using Hybrid Deep Belief Network
1
作者 Saud Yonbawi Sultan Alahmari +5 位作者 B.R.S.S.Raju Chukka Hari Govinda Rao Mohamad Khairi Ishak Hend Khalid Alkahtani JoséVarela-Aldás Samih M.Mostafa 《Computer Systems Science & Engineering》 SCIE EI 2023年第8期2319-2335,共17页
Artificial intelligence(AI)technologies and sensors have recently received significant interest in intellectual agriculture.Accelerating the application of AI technologies and agriculture sensors in intellectual agric... Artificial intelligence(AI)technologies and sensors have recently received significant interest in intellectual agriculture.Accelerating the application of AI technologies and agriculture sensors in intellectual agriculture is urgently required for the growth of modern agriculture and will help promote smart agriculture.Automatic irrigation scheduling systems were highly required in the agricultural field due to their capability to manage and save water deficit irrigation techniques.Automatic learning systems devise an alternative to conventional irrigation management through the automatic elaboration of predictions related to the learning of an agronomist.With this motivation,this study develops a modified black widow optimization with a deep belief network-based smart irrigation system(MBWODBN-SIS)for intelligent agriculture.The MBWODBN-SIS algorithm primarily enables the Internet of Things(IoT)based sensors to collect data forwarded to the cloud server for examination purposes.Besides,the MBWODBN-SIS technique applies the deep belief network(DBN)model for different types of irrigation classification:average,high needed,highly not needed,and not needed.The MBWO algorithm is used for the hyperparameter tuning process.A wideranging experiment was conducted,and the comparison study stated the enhanced outcomes of the MBWODBN-SIS approach to other DL models with maximum accuracy of 95.73%. 展开更多
关键词 agriculture smart farming hyperparameter tuning artificial intelligence irrigation management SENSORS deep learning
下载PDF
Artificial Intelligence for Maximizing Agricultural Input Use Efficiency: Exploring Nutrient, Water and Weed Management Strategies
2
作者 Sumit Sow Shivani Ranjan +8 位作者 Mahmoud F.Seleiman Hiba M.Alkharabsheh Mukesh Kumar Navnit Kumar Smruti Ranjan Padhan Dhirendra Kumar Roy Dibyajyoti Nath Harun Gitari Daniel O.Wasonga 《Phyton-International Journal of Experimental Botany》 SCIE 2024年第7期1569-1598,共30页
Agriculture plays a crucial role in the economy,and there is an increasing global emphasis on automating agri-cultural processes.With the tremendous increase in population,the demand for food and employment has also i... Agriculture plays a crucial role in the economy,and there is an increasing global emphasis on automating agri-cultural processes.With the tremendous increase in population,the demand for food and employment has also increased significantly.Agricultural methods traditionally used to meet these requirements are no longer ade-quate,requiring solutions to issues such as excessive herbicide use and the use of chemical fertilizers.Integration of technologies such as the Internet of Things,wireless communication,machine learning,artificial intelligence(AI),and deep learning shows promise in addressing these challenges.However,there is a lack of comprehensive documentation on the application and potential of AI in improving agricultural input efficiency.To address this gap,a desk research approach was used by utilizing peer-reviewed electronic databases like PubMed,Scopus,Goo-gle Scholar,Web of Science,and Science Direct for relevant articles.Out of 327 initially identified articles,180 were deemed pertinent,focusing primarily on AI’s potential in enhancing yield through better management of nutrients,water,and weeds.Taking into account researchfindings worldwide,we found that AI technologies could assist farmers by providing recommendations on the optimal nutrients to enhance soil quality and deter-mine the best time for irrigation or herbicide application.The present status of AI-driven automation in agricul-ture holds significant promise for optimizing agricultural input utilization and reducing resource waste,particularly in the context of three pillars of crop management,i.e.,nutrient,irrigation,and weed management. 展开更多
关键词 agriculture artificial intelligence crop management NUTRIENT IRRIGATION weed management resource use efficiency
下载PDF
Intelligent Recommendation and Matching Method for Agricultural Knowledge Based on Context-Aware Models
3
作者 Chang Liu Huarui Wu +3 位作者 Huaji Zhu Yisheng Miao Jingqiu Gu Chunjiang Zhao 《Journal of Beijing Institute of Technology》 EI CAS 2023年第3期341-351,共11页
The personalized recommendation of the cloud platform for agricultural knowledge and agricultural intelligent service is one of the core technologies for the development of smart agriculture.Revealing the implicit law... The personalized recommendation of the cloud platform for agricultural knowledge and agricultural intelligent service is one of the core technologies for the development of smart agriculture.Revealing the implicit laws and dynamic characteristics of agricultural knowledge demand is a key problem to be solved urgently.In order to enhance the matching ability of knowledge recommendation and service in human-computer interaction of cloud platform,the mechanism of agricultural knowledge intelligent recommendation service integrated with context-aware model was analyzed.By combining context data acquisition,data analysis and matching,and personalized knowledge recommendation,a framework for agricultural knowledge recommendation service is constructed to improve the ability to extract multidimensional information features and predict sequence data.Using the cloud platform for agricultural knowledge and agricultural intelligent service,this research aims to deliver interesting video service content to users in order to solve key problems faced by farmers,including planting technology,disease control,expert advice,etc.Then the knowledge needs of different users can be met and user satisfaction can be improved. 展开更多
关键词 situational awareness agricultural knowledge intelligent recommendation service match
下载PDF
Application of Deep Learning to Production Forecasting in Intelligent Agricultural Product Supply Chain
4
作者 Xiao Ya Ma Jin Tong +3 位作者 Fei Jiang Min Xu Li Mei Sun Qiu Yan Chen 《Computers, Materials & Continua》 SCIE EI 2023年第3期6145-6159,共15页
Production prediction is an important factor influencing the realization of an intelligent agricultural supply chain.In an Internet of Things(IoT)environment,accurate yield prediction is one of the prerequisites for a... Production prediction is an important factor influencing the realization of an intelligent agricultural supply chain.In an Internet of Things(IoT)environment,accurate yield prediction is one of the prerequisites for achieving an efficient response in an intelligent agricultural supply chain.As an example,this study applied a conventional prediction method and deep learning prediction model to predict the yield of a characteristic regional fruit(the Shatian pomelo)in a comparative study.The root means square error(RMSE)values of regression analysis,exponential smoothing,grey prediction,grey neural network,support vector regression(SVR),and long short-term memory(LSTM)neural network methods were 53.715,6.707,18.440,1.580,and 1.436,respectively.Among these,the mean square error(MSE)values of the grey neural network,SVR,and LSTM neural network methods were 2.4979,31.652,and 2.0618,respectively;and theirRvalues were 0.99905,0.94,and 0.94501,respectively.The results demonstrated that the RMSE of the deep learning model is generally lower than that of a traditional prediction model,and the prediction results are more accurate.The prediction performance of the grey neural network was shown to be superior to that of SVR,and LSTM neural network,based on the comparison of parameters. 展开更多
关键词 Internet of things intelligent agricultural supply chain deep learning production prediction
下载PDF
Science and Technology Innovation Promoting the Development of Intelligent Agriculture in Shandong Province 被引量:1
5
作者 Yong LI Xinling GAN 《Asian Agricultural Research》 2019年第8期71-72,76,共3页
This article introduces the concepts related to intelligent agriculture,summarizes the ideas and countermeasures of modern information technology innovation to promote the development of intelligent agriculture in Sha... This article introduces the concepts related to intelligent agriculture,summarizes the ideas and countermeasures of modern information technology innovation to promote the development of intelligent agriculture in Shandong Province,analyzes the development trend of intelligent agriculture,and points out the direction for realizing the connotative development of agriculture in Shandong Province. 展开更多
关键词 intelligent agriculture Internet of THINGS CLOUD COMPUTING BIG data
下载PDF
Teaching Reform and Practice of Animal Products Processing under the Background of Intelligent Agriculture
6
作者 Zhoulin WU Wei WANG +3 位作者 Lili JI Bo HOU Ting BAI Jiamin ZHANG 《Asian Agricultural Research》 2022年第11期74-76,共3页
Effective food professional personnel training strategies are explored and implemented,and interdisciplinary talents of food science and engineering in accordance with the background of intelligent agriculture are cul... Effective food professional personnel training strategies are explored and implemented,and interdisciplinary talents of food science and engineering in accordance with the background of intelligent agriculture are cultivated from the aspects of construction of teaching staff,reform of teaching content,upgrading of teaching model,construction of industry-education integration platform,which is of great significance to the modernization development of Chinese animal products processing industry. 展开更多
关键词 Animal products processing intelligent agriculture Talent training Integration of production and education
下载PDF
China National Research Center of Intelligent Equipment for Agriculture
7
《Journal of Integrative Agriculture》 SCIE CAS CSCD 2013年第3期F0003-F0003,共1页
China National Research Center of Intelligent Equipment for Agriculture (NRCIEA) was established in 2009 on the basis of Beijing Research Center of Intelligent Equipment for Agriculture. According to the development... China National Research Center of Intelligent Equipment for Agriculture (NRCIEA) was established in 2009 on the basis of Beijing Research Center of Intelligent Equipment for Agriculture. According to the development trend of world Intelligent Equipment for Agriculture (lEA) and China's needs of modern agriculture, NRCIEA is engaged in solving the key, fundamental and common technical problems in lEA. 展开更多
关键词 China National Research Center of intelligent Equipment for agriculture
下载PDF
Research on the Application of Bayesian Network in Agriculture Intelligent System
8
作者 Guifen Chen Helong Yu 《通讯和计算机(中英文版)》 2006年第5期55-60,共6页
关键词 贝叶斯信息标准 农业信息化 网络技术 自动化
下载PDF
Sttudy on intelligent spatial decision support system of agriculture
9
作者 ZHANG Rong-mei SUN Jie-li 《哈尔滨工程大学学报》 EI CAS CSCD 北大核心 2006年第B07期607-611,共5页
关键词 农业 地理信息系统 专家系统 智能决策支持系统
下载PDF
Artificial Intelligence Enabled Apple Leaf Disease Classification for Precision Agriculture 被引量:3
10
作者 Fahd N.Al-Wesabi Amani Abdulrahman Albraikan +3 位作者 Anwer Mustafa Hilal Majdy M.Eltahir Manar Ahmed Hamza Abu Sarwar Zamani 《Computers, Materials & Continua》 SCIE EI 2022年第3期6223-6238,共16页
Precision agriculture enables the recent technological advancements in farming sector to observe,measure,and analyze the requirements of individual fields and crops.The recent developments of computer vision and artif... Precision agriculture enables the recent technological advancements in farming sector to observe,measure,and analyze the requirements of individual fields and crops.The recent developments of computer vision and artificial intelligence(AI)techniques find a way for effective detection of plants,diseases,weeds,pests,etc.On the other hand,the detection of plant diseases,particularly apple leaf diseases using AI techniques can improve productivity and reduce crop loss.Besides,earlier and precise apple leaf disease detection can minimize the spread of the disease.Earlier works make use of traditional image processing techniques which cannot assure high detection rate on apple leaf diseases.With this motivation,this paper introduces a novel AI enabled apple leaf disease classification(AIE-ALDC)technique for precision agriculture.The proposed AIE-ALDC technique involves orientation based data augmentation and Gaussian filtering based noise removal processes.In addition,the AIE-ALDC technique includes a Capsule Network(CapsNet)based feature extractor to generate a helpful set of feature vectors.Moreover,water wave optimization(WWO)technique is employed as a hyperparameter optimizer of the CapsNet model.Finally,bidirectional long short term memory(BiLSTM)model is used as a classifier to determine the appropriate class labels of the apple leaf images.The design of AIE-ALDC technique incorporating theWWO based CapsNetmodel with BiLSTM classifier shows the novelty of the work.Awide range of experiments was performed to showcase the supremacy of the AIE-ALDC technique.The experimental results demonstrate the promising performance of the AIEALDC technique over the recent state of art methods. 展开更多
关键词 Artificial intelligence apple leaf plant disease precision agriculture deep learning data augmentation
下载PDF
Research on Intelligent Agricultural Planting System Based on Internet of Things Technology 被引量:2
11
作者 Yunsheng Chen Shuduo Zhao Yunxu Zhou 《Journal of Computer and Communications》 2018年第6期54-60,共7页
Agriculture is the basic industry that concerns the national economy and people’s livelihood. In the process of transforming to modern agriculture, the traditional agriculture in our country faces the problems of ens... Agriculture is the basic industry that concerns the national economy and people’s livelihood. In the process of transforming to modern agriculture, the traditional agriculture in our country faces the problems of ensuring the quality of agricultural production, adjusting agricultural industrial structures, improving the low production efficiency and low utilization rate of resources, and environmental pollution, thus it cannot meet the needs of sustainable agricultural development. Therefore, the research on intelligent agriculture technology is imperative. This paper analyzes the key technologies of Internet of things applied in the intelligent agriculture, presents the application of Internet of things technology in agricultural planting system, constructs the intelligent agricultural planting system based on the Internet of things technology, and designs the framework of the management platform. 展开更多
关键词 Internet of THINGS intelligent agriculture Sensor WIRELESS Transmission Data COLLECTION
下载PDF
Popular Science Animation for the Future Intelligent Agricultural Ecology of Agricultural Products Innovation Design and Promotion 被引量:1
12
作者 Leiming Li Rui Liu 《Journal of Contemporary Educational Research》 2020年第7期110-113,共4页
The form of agricultural products promotion is also constantly updated with the continuous development of science and technology in recent years.Intelligent agriculture gradually leads the scientific and technological... The form of agricultural products promotion is also constantly updated with the continuous development of science and technology in recent years.Intelligent agriculture gradually leads the scientific and technological process of agricultural products planting,production,promotion and other fields,making agricultural production more efficient and controllable.The use of popular science animation in the innovative design and promotion of agricultural products will help to drive the agricultural economy,conform to the current new situation,and improve the competitiveness of agricultural products with the help of scientific and technological strength and innovation consciousness in this environment. 展开更多
关键词 Popular science animation intelligent agricultural production Promotion of agricultural products
下载PDF
Integrating artificial intelligence and high-throughput phenotyping for crop improvement
13
作者 Mansoor Sheikh Farooq Iqra +3 位作者 Hamadani Ambreen Kumar A Pravin Manzoor Ikra Yong Suk Chung 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2024年第6期1787-1802,共16页
Crop improvement is crucial for addressing the global challenges of food security and sustainable agriculture.Recent advancements in high-throughput phenotyping(HTP)technologies and artificial intelligence(AI)have rev... Crop improvement is crucial for addressing the global challenges of food security and sustainable agriculture.Recent advancements in high-throughput phenotyping(HTP)technologies and artificial intelligence(AI)have revolutionized the field,enabling rapid and accurate assessment of crop traits on a large scale.The integration of AI and machine learning algorithms with HTP data has unlocked new opportunities for crop improvement.AI algorithms can analyze and interpret large datasets,and extract meaningful patterns and correlations between phenotypic traits and genetic factors.These technologies have the potential to revolutionize plant breeding programs by providing breeders with efficient and accurate tools for trait selection,thereby reducing the time and cost required for variety development.However,further research and collaboration are needed to overcome the existing challenges and fully unlock the power of HTP and AI in crop improvement.By leveraging AI algorithms,researchers can efficiently analyze phenotypic data,uncover complex patterns,and establish predictive models that enable precise trait selection and crop breeding.The aim of this review is to explore the transformative potential of integrating HTP and AI in crop improvement.This review will encompass an in-depth analysis of recent advances and applications,highlighting the numerous benefits and challenges associated with HTP and AI. 展开更多
关键词 artificial intelligence crop improvement data analysis high-throughput phenotyping machine learning precision agriculture trait selection
下载PDF
Building a Business and Strategic Intelligence Policy as a Strategy for Promoting Congolese Business Progress and Healthy Economic Development in Eastern DRC
14
作者 Innocent Bora Uzima 《Intelligent Information Management》 2024年第2期77-103,共27页
The aim of this study was to verify the existence of business and strategic intelligence policies at the level of Congolese companies and at the state level, likely to foster progress and healthy development in the ea... The aim of this study was to verify the existence of business and strategic intelligence policies at the level of Congolese companies and at the state level, likely to foster progress and healthy development in the east of the DRC. The study was based on a mixed perspective consisting of objective analysis of quantitative data and interpretative analysis of qualitative data. The results showed that business and strategic intelligence policies have not been established at either company or state level, as this is an area of activity that is not known to the players in companies and public departments, and there are no units or offices in their organizational structures responsible for managing strategic information for competitiveness on the international market. In addition, there is a real need to establish strategic information management units within companies, upstream, and to set up a national strategic information management department or agency to help local companies compete in the marketplace, downstream. This reflects the importance and timeliness of building business and strategic intelligence policies to ensure economic progress and development in the eastern DRC. Business and strategic intelligence provides companies with an appropriate tool for researching, collecting, processing and disseminating information useful for decision-making among stakeholders, in order to cope with a crisis or competitive situation. The study suggests a number of key recommendations based on its findings. To the government, it is recommended to establish the national policy of business and strategic intelligence by setting up a national agency of strategic intelligence in favor of local companies;and to companies to establish business intelligence units in their organizational structures in favor of stakeholders to foster advantageous decision-making in the competitive market and achieve progress. Finally, the study suggests that studies be carried out to fully understand the opportunities and impact of business and strategic intelligence in African countries, particularly in the DRC. 展开更多
关键词 Business and Strategic intelligence Strategic Information Congolese Companies Public Departments Decision-Making Information Management Business and Strategic intelligence Policies PROGRESS Healthy Development Mining and agriculture Sectors International Market Eastern DRC
下载PDF
An Interpretable Artificial Intelligence Based Smart Agriculture System
15
作者 Fariza Sabrina Shaleeza Sohail +3 位作者 Farnaz Farid Sayka Jahan Farhad Ahamed Steven Gordon 《Computers, Materials & Continua》 SCIE EI 2022年第8期3777-3797,共21页
With increasing world population the demand of food production has increased exponentially.Internet of Things(IoT)based smart agriculture system can play a vital role in optimising crop yield by managing crop requirem... With increasing world population the demand of food production has increased exponentially.Internet of Things(IoT)based smart agriculture system can play a vital role in optimising crop yield by managing crop requirements in real-time.Interpretability can be an important factor to make such systems trusted and easily adopted by farmers.In this paper,we propose a novel artificial intelligence-based agriculture system that uses IoT data to monitor the environment and alerts farmers to take the required actions for maintaining ideal conditions for crop production.The strength of the proposed system is in its interpretability which makes it easy for farmers to understand,trust and use it.The use of fuzzy logic makes the system customisable in terms of types/number of sensors,type of crop,and adaptable for any soil types and weather conditions.The proposed system can identify anomalous data due to security breaches or hardware malfunction using machine learning algorithms.To ensure the viability of the system we have conducted thorough research related to agricultural factors such as soil type,soil moisture,soil temperature,plant life cycle,irrigation requirement and water application timing for Maize as our target crop.The experimental results show that our proposed system is interpretable,can detect anomalous data,and triggers actions accurately based on crop requirements. 展开更多
关键词 Explainable artificial intelligence fuzzy logic internet of things machine learning sensors smart agriculture
下载PDF
Hyperspectral Intelligent Monitoring System of Major Soil Nutrients Based on ArcGIS Engine 被引量:1
16
作者 周聪亮 陈红艳 +1 位作者 周雪 陈敬春 《Agricultural Science & Technology》 CAS 2014年第7期1205-1208,共4页
Based on the object-oriented concept,the hyperspectral intelligent monitoring system of major soil nutrients was designed and developed by using C# and ArcGIS Engine in combination with Microsoft SQL Server.The system... Based on the object-oriented concept,the hyperspectral intelligent monitoring system of major soil nutrients was designed and developed by using C# and ArcGIS Engine in combination with Microsoft SQL Server.The system mainly includes the following functions:file operation,basic map operation,spectral preprocessing,model management,nutrient content quick calculation,spatial distribution analysis,user management and so on.This system can accomplish the input and preprocessing of soil hyperspectra,and calculate the content of major nutrients,such as soil organic matter,nitrogen,phosphorus as well as potassium quickly and intelligently based on hyperspectral data.Thereby,the soil nutrients regional distribution in the research area can be analyzed by using the principle of geostatistics.This study can not only promote the practicability of soil quantitative remote sensing,but also provide references for the decision-making of agricultural fertilizing. 展开更多
关键词 Hyperspectra ArcGIS Engine intelligent monitoring system agricultural fertilizing decision-making
下载PDF
From Parallel Plants to Smart Plants:Intelligent Control and Management for Plant Growth 被引量:25
17
作者 Mengzhen Kang Fei-Yue Wang 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2017年第2期161-166,共6页
Precision management of agricultural systems, aiming at optimizing profitability, productivity and sustainability, comprises a set of technologies including sensors, information systems, and informed management, etc. ... Precision management of agricultural systems, aiming at optimizing profitability, productivity and sustainability, comprises a set of technologies including sensors, information systems, and informed management, etc. Expert systems are expected to aid farmers in plant management or environment control, but they are mostly based on the offline and static information, deviated from the actual situation. Parallel management, achieved by virtual/artificial agricultural system, computational experiment and parallel execution, provides a generic framework of solution for online decision support. In this paper, we present the three steps toward the parallel management of plant: growth description U+0028 the crop model U+0029, prediction, and prescription. This approach can update the expert system by adding learning ability and the adaption of knowledge database according to the descriptive and predictive model. The possibilities of passing the knowledge of experienced farmers to younger generation, as well as the application to the parallel breeding of plant through such system, are discussed. © 2017 Chinese Association of Automation. 展开更多
关键词 agriculture Artificial intelligence Decision support systems Expert systems Sustainable development
下载PDF
A Survey on Smart Agriculture:Development Modes,Technologies,and Security and Privacy Challenges 被引量:13
18
作者 Xing Yang Lei Shu +4 位作者 Jianing Chen Mohamed Amine Ferrag Jun Wu Edmond Nurellari Kai Huang 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2021年第2期273-302,共30页
With the deep combination of both modern information technology and traditional agriculture,the era of agriculture 4.0,which takes the form of smart agriculture,has come.Smart agriculture provides solutions for agricu... With the deep combination of both modern information technology and traditional agriculture,the era of agriculture 4.0,which takes the form of smart agriculture,has come.Smart agriculture provides solutions for agricultural intelligence and automation.However,information security issues cannot be ignored with the development of agriculture brought by modern information technology.In this paper,three typical development modes of smart agriculture(precision agriculture,facility agriculture,and order agriculture)are presented.Then,7 key technologies and 11 key applications are derived from the above modes.Based on the above technologies and applications,6 security and privacy countermeasures(authentication and access control,privacy-preserving,blockchain-based solutions for data integrity,cryptography and key management,physical countermeasures,and intrusion detection systems)are summarized and discussed.Moreover,the security challenges of smart agriculture are analyzed and organized into two aspects:1)agricultural production,and 2)information technology.Most current research projects have not taken agricultural equipment as potential security threats.Therefore,we did some additional experiments based on solar insecticidal lamps Internet of Things,and the results indicate that agricultural equipment has an impact on agricultural security.Finally,more technologies(5 G communication,fog computing,Internet of Everything,renewable energy management system,software defined network,virtual reality,augmented reality,and cyber security datasets for smart agriculture)are described as the future research directions of smart agriculture. 展开更多
关键词 agricultural artificial intelligence agricultural automation agricultural Internet of Things security smart agriculture
下载PDF
Multi-machine collaboration realization conditions and precise and efficient production mode of intelligent agricultural machinery
19
作者 Bo Wang Xiaoxue Du +1 位作者 Yana Wang Hanping Mao 《International Journal of Agricultural and Biological Engineering》 SCIE 2024年第2期27-36,共10页
Multi-machine collaboration of agricultural machinery is one of the international frontier and hot research in the field of agricultural equipment.However,the current domestic multi-machine collaborative operation of ... Multi-machine collaboration of agricultural machinery is one of the international frontier and hot research in the field of agricultural equipment.However,the current domestic multi-machine collaborative operation of agricultural machinery is limited to the research of task goal planning and collaborative path optimization in a single production link.In order to achieve the purpose of zero inventory of agricultural materials and precise and efficient production operations,a new technology of agricultural machinery multi-machine collaboration with multi-dimension and full chain was proposed,which takes into account the whole process of agricultural production,as well as agricultural machinery system and external supply chain,storage and transportation chain collaboration.The problems of data collaboration,process collaboration and organization collaboration were analyzed.And the realization conditions of new multi-machine cooperative technology were analyzed.Meanwhile,the zero inventory mode and precise operation mode of agricultural materials under the background of multi-machine cooperation of intelligent agricultural machinery were studied.Then,a precise and efficient agricultural production mode based on data-process-organization collaboration was constructed.The results showed that the multi-machine cooperative technology mode of multi-dimensional and full-chain agricultural machinery could greatly improve the efficiency of agricultural machinery,operation quality,land utilization rate and reduce production cost. 展开更多
关键词 intelligent agricultural machinery multi-machine collaboration multi-dimensional whole chain zero inventory precise and efficient production mode
原文传递
Intelligent IoT-Aided Early Sound Detection of Red Palm Weevils
20
作者 Mohamed Esmail Karar Omar Reyad +2 位作者 Abdel-Haleem Abdel-Aty Saud Owyed Mohd F.Hassan 《Computers, Materials & Continua》 SCIE EI 2021年第12期4095-4111,共17页
Smart precision agriculture utilizes modern information and wireless communication technologies to achieve challenging agricultural processes.Therefore,Internet of Things(IoT)technology can be applied to monitor and d... Smart precision agriculture utilizes modern information and wireless communication technologies to achieve challenging agricultural processes.Therefore,Internet of Things(IoT)technology can be applied to monitor and detect harmful insect pests such as red palm weevils(RPWs)in the farms of date palm trees.In this paper,we propose a new IoT-based framework for early sound detection of RPWs using fine-tuned transfer learning classifier,namely InceptionResNet-V2.The sound sensors,namely TreeVibes devices are carefully mounted on each palm trunk to setup wireless sensor networks in the farm.Palm trees are labeled based on the sensor node number to identify the infested cases.Then,the acquired audio signals are sent to a cloud server for further on-line analysis by our fine-tuned deep transfer learning model,i.e.,InceptionResNet-V2.The proposed infestation classifier has been successfully validated on the public TreeVibes database.It includes total short recordings of 1754 samples,such that the clean and infested signals are 1754 and 731 samples,respectively.Compared to other deep learning models in the literature,our proposed InceptionResNet-V2 classifier achieved the best performance on the public database of TreeVibes audio recordings.The resulted classification accuracy score was 97.18%.Using 10-fold cross validation,the fine-tuned InceptionResNet-V2 achieved the best average accuracy score and standard deviation of 94.53%and±1.69,respectively.Applying the proposed intelligent IoT-aided detection system of RPWs in date palm farms is the main prospect of this research work. 展开更多
关键词 Red palm weevils smart precision agriculture internet of things artificial intelligence
下载PDF
上一页 1 2 73 下一页 到第
使用帮助 返回顶部