期刊文献+
共找到7篇文章
< 1 >
每页显示 20 50 100
N_2O emissions from forest and grassland soils in northern China
1
《Journal of Environmental Sciences》 SCIE EI CAS CSCD 1997年第4期35-42,共8页
N2OemisionsfromforestandgraslandsoilsinnorthernChinaLiuYe,MuYujing,YangWenxiangResearchCenterforEcoEnvironme... N2OemisionsfromforestandgraslandsoilsinnorthernChinaLiuYe,MuYujing,YangWenxiangResearchCenterforEcoEnvironmentalSciences,Ch... 展开更多
关键词 N2O emissions from forest and grassland soils in northern China
下载PDF
Effects of grazing on carbon and nitrogen in plants and soils in a semiarid desert grassland,China 被引量:28
2
作者 Hui AN GuoQi LI 《Journal of Arid Land》 SCIE CSCD 2015年第3期341-349,共9页
Grazing can modulate the feedback between vegetation and soil nutrient dynamics(carbon and nitrogen),altering the cycles of these elements in grassland ecosystems.For clarifying the impact of grazing on the C and N ... Grazing can modulate the feedback between vegetation and soil nutrient dynamics(carbon and nitrogen),altering the cycles of these elements in grassland ecosystems.For clarifying the impact of grazing on the C and N in plants and soils in the desert grassland of Ningxia,China,we examined the plant biomass,SOC(soil organic carbon),total soil N and stable isotope signatures of plants and soils from both the grazed and ungrazed sites.Significantly lower aboveground biomass,root biomass,litter biomass and vegetation coverage were found in the grazed site compared to the ungrazed site,with decreases of 42.0%,16.2%,59.4% and 30.0%,respectively.The effects of grazing on plant carbon,nitrogen,?15N and ?13C values were uniform among species.The levels of plant carbon and nitrogen in grasses were greater than those in the forbs(except for the carbon of Cynanchum komarovii and Euphorbia esula).Root 15 N and 13 C values increased with grazing,while the responses of root carbon and nitrogen to grazing showed no consistent patterns.Root 15 N and 13 C were increased by 79.0% and 22.4% in the grazed site compared to the ungrazed site,respectively.The values of SOC and total N were significantly lower in the grazed than in the ungrazed sites for all sampling depths(0–10 and 10–20 cm),and values of SOC and total N at the surface(0–10 cm) were lower than those in the deeper soils(10–20 cm).Soil ?15N values were not affected by grazing at any sampling depth,whereas soil ?13C values were significantly affected by grazing and increased by 19.3% and 8.6% in the soils at 0–10 and 10–20 cm,respectively.The soil ?13C values(–8.3‰ to –6.7‰) were higher than those for roots(–20.2‰ to –15.6‰) and plant tissues(–27.9‰ to –13.3‰).Our study suggests that grazing could greatly affect soil organic carbon and nitrogen in contrast to ungrazed grassland and that grazing appears to exert a negative effect on soil carbon and nitrogen in desert grassland. 展开更多
关键词 grazing 15N 13C soil properties desert grassland plant properties
下载PDF
Short-term Effects of Nitrogen Deposition on Soil Enzyme Activities in Tibet Grasslands
3
作者 Han Yanying Gao Yi +4 位作者 Ye Yanhui Liu Yunlong Da Buqiong Zhao Yalei Li Linwei 《Animal Husbandry and Feed Science》 CAS 2018年第3期206-212,共7页
[Objective] The paper was to study the effects of nitrogen deposition on enzyme activity in different layers of soil. [Method] With grass-land located in Zhuqudeng Village, Bujiu Township, Linzhi City, the Tibet Auton... [Objective] The paper was to study the effects of nitrogen deposition on enzyme activity in different layers of soil. [Method] With grass-land located in Zhuqudeng Village, Bujiu Township, Linzhi City, the Tibet Autonomous Region, as the object, nitrogen deposition was simulated from July 2014 to August 2015. Four N addition treatments were established: control (0 kg·hm^2/a), low N (LN, 25kg·hm^2/a), medium N (MN, 50 kg·hm^2/a) and High N (HN, 150 kg·hm^2/a), aiming at measuring enzyme activity (invertase, catalase, urease, amylase, cellulase, polyphenol oxidase and β-glucosi- dase) in different layers of grassland soil (0 -20 cm and 20-40 cm). [Result] (1) Different levels of simulated nitrogen deposition had significant impact on invertase and β-glucosidase at the soil depth of 0-20 cm (P〈0.05), but no significant impact on catalase, urease, amylase, cellulase and polyphenol oxidase(P〉0.05); invertase, polyphenol oxidase and β-glucosidase had significant response to nitrogen deposition at the soil depth of 20- 40 cm (P〈0.05), while catalase, urease, amylase and cellulose had no significant response (P〉0.05). (2) The activities of invertase and polyphenol oxidase were enhanced at the soil depth of 0-20 cm, and that of β-glucosidase was inhibited. (3) With the deepening of nitrogen deposition, the ac- tivities of invertase and cellulose were enhanced at the soil depth of 20-40 cm; the activity of polyphenol oxidase was reduced in LN treatment, but increased in HN treatment; the activity of β-glucosidase was increased in LN treatment, but decreased in MN treatment. (4) With the deepening of soil layers, invertase and polyphenol oxidase responded similarly to simulated nitrogen deposition. [Conclusion] The results provide certain scientific basis and fundamental data for better understanding and evaluating the effects of nitrogen deposition on enzyme activity in grassland soil. 展开更多
关键词 Nitrogen deposition Linzhi grassland soil Soil enzyme activity
下载PDF
Sheep manure application increases soil exchangeable base cations in a semi-arid steppe of Inner Mongolia 被引量:9
4
作者 YuGe ZHANG Shan YANG +6 位作者 MingMing FU JiangPing CAI YongYong ZHANG RuZhen WANG ZhuWen XU YongFei BAI Yong JIANG 《Journal of Arid Land》 SCIE CSCD 2015年第3期361-369,共9页
The long-term productivity of a soil is greatly influenced by cation exchange capacity(CEC).Moreover,interactions between dominant base cations and other nutrients are important for the health and stability of grass... The long-term productivity of a soil is greatly influenced by cation exchange capacity(CEC).Moreover,interactions between dominant base cations and other nutrients are important for the health and stability of grassland ecosystems.Soil exchangeable base cations and cation ratios were examined in a 11-year experiment with sheep manure application rates 0–1,500 g/(m2?a) in a semi-arid steppe in Inner Mongolia of China,aiming to clarify the relationships of base cations with soil p H,buffer capacity and fertility.Results showed that CEC and contents of exchangeable calcium(Ca2+),magnesium(Mg2+),potassium(K+) and sodium(Na+) were significantly increased,and Ca2+ saturation tended to decrease,while K+ saturation tended to increase with the increases of sheep manure application rates.The Ca2+/Mg2+ and Ca2+/K+ ratios decreased,while Mg2+,K+ and Na+ saturations increased with increasing manure application rates.Both base cations and CEC were significantly and positively correlated with soil organic carbon(SOC) and soil p H.The increases of SOC and soil p H would be the dominant factors that contribute to the increase of cations in soil.On a comparison with the initial soil p H before the experiment,we deduced that sheep manure application could partly buffer soil p H decrease potentially induced by atmospheric deposition of nitrogen and sulfur.Our results indicate that sheep manure application is beneficial to the maintenance of base cations and the buffering of soil acidification,and therefore can improve soil fertility in the semi-arid steppes of northeastern China. 展开更多
关键词 base cation sheep manure soil p H soil fertility buffer capacity grassland conservation
下载PDF
Functional profiles of soil microbial communities in the alpine and temperate grasslands of China
5
作者 Yunfeng Yang Jizhong Zhou Xue Guo 《Grassland Research》 2022年第1期3-13,共11页
Grassland ecosystems in cold regions are typical of short growing seasons and limited primary productivity,rendering soil microorganisms as major ecosystem engineers in governing biogeochemical cycling.Climate warming... Grassland ecosystems in cold regions are typical of short growing seasons and limited primary productivity,rendering soil microorganisms as major ecosystem engineers in governing biogeochemical cycling.Climate warming and extensive livestock grazing have dramatically influenced soil microbial diversity and function in grassland worldwide,but it remains elusive how functional microbial communities exist and respond to global changes.Here,we present a review to highlight similarities and differences in soil functional microbial communities between alpine grasslands in the Qinghai-Tibet Plateau and temperate grasslands in the Inner Mongolian Plateau,both of which are major plateaus in China,but differ substantially in geography.We show that many specialized functional groups thrive under harsh conditions,exhibiting a high functional diversity.Their community compositions mirror the heterogeneity and complexity of grassland soils.Moreover,functional microbial responses to environmental changes have been extremely variable,with few consistent patterns across both plateaus.Because we identify a lack of technical standardization that prevents in-depth comparative studies for functional microbial communities,we conclude the review by outlining several research gaps that need to be filled in future studies. 展开更多
关键词 climate changes functional microbial communities grassland soils GRAZING Inner Mongolian Plateau Qinghai-Tibet Plateau
原文传递
Response of soil CO_2 efflux to precipitation manipulation in a semiarid grassland 被引量:2
6
作者 Xiaorong Wei Yanjiang Zhang +6 位作者 Jian Liu Hailong Gao Jun Fan Xiaoxu Jia Jimin Cheng Mingan Shao Xingchang Zhang 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2016年第7期207-214,共8页
Soil CO_2efflux(SCE) is an important component of ecosystem CO_2 exchange and is largely temperature and moisture dependent, providing feedback between C cycling and the climate system. We used a precipitation manip... Soil CO_2efflux(SCE) is an important component of ecosystem CO_2 exchange and is largely temperature and moisture dependent, providing feedback between C cycling and the climate system. We used a precipitation manipulation experiment to examine the effects of precipitation treatment on SCE and its dependences on soil temperature and moisture in a semiarid grassland. Precipitation manipulation included ambient precipitation, decreased precipitation(- 43%), or increased precipitation(+ 17%). The SCE was measured from July2013 to December 2014, and CO_2 emission during the experimental period was assessed.The response curves of SCE to soil temperature and moisture were analyzed to determine whether the dependence of SCE on soil temperature or moisture varied with precipitation manipulation. The SCE significantly varied seasonally but was not affected by precipitation treatments regardless of season. Increasing precipitation resulted in an upward shift of SCE–temperature response curves and rightward shift of SCE–moisture response curves,while decreasing precipitation resulted in opposite shifts of such response curves. These shifts in the SCE response curves suggested that increasing precipitation strengthened the dependence of SCE on temperature or moisture, and decreasing precipitation weakened such dependences. Such shifts affected the predictions in soil CO_2 emissions for different precipitation treatments. When considering such shifts, decreasing or increasing precipitation resulted in 43 or 75% less change, respectively, in CO_2 emission compared with changes in emissions predicted without considering such shifts. Furthermore, the effects of shifts in SCE response curves on CO_2 emission prediction were greater during the growing than the non-growing season. 展开更多
关键词 Soil CO2 efflux response curve Soil moisture Soil temperature Precipitation regimes Semiarid grassland Soil CO2 efflux
原文传递
Detecting the storage and change on topsoil organic carbon in grasslands of Inner Mongolia from 1980s to 2010s 被引量:5
7
作者 DAI Erfu ZHAI Ruixue +1 位作者 GE Quansheng WU Xiuqin 《Journal of Geographical Sciences》 SCIE CSCD 2014年第6期1035-1046,共12页
Soil carbon sequestration and potential has been a focal issue in global carbon research. Under the background of global change, the estimation of the size as well as its change of soil organic carbon(SOC) storage i... Soil carbon sequestration and potential has been a focal issue in global carbon research. Under the background of global change, the estimation of the size as well as its change of soil organic carbon(SOC) storage is of great importance. Based on soil data from the second national soil survey and field survey during 2011–2012, by using the regression method between sampling soil data and remote sensing data, this paper aimed to investigate spatial distribution and changes of topsoil(0–20 cm) organic carbon storage in grasslands of Inner Mongolia between the 1980 s and 2010 s. The results showed that:(1) the SOC storage in grasslands of Inner Mongolia between the 1980 s and 2010 s was estimated to be 2.05 and 2.17 Pg C, with an average density of 3.48 and 3.69 kg C·m–2, respectively. The SOC storage was mainly distributed in the typical steppe and meadow steppe, which accounted for over 98% of the total SOC storage. The spatial distribution showed a decreased trend from the meadow steppe, typical steppe to the desert steppe, corresponding to the temperature and precipitation gradient.(2) SOC changes during 1982–2012 were estimated to be 0.12 Pg C, at 7.00 g C·m–2·yr–1, which didn't show a significant change, indicating that SOC storage in grasslands of Inner Mongolia remained relatively stable over this period. However, topsoil organic carbon showed different trends of carbon source/sink during the past three decades. Meadow steppe and typical steppe had sequestered 0.15 and 0.03 Pg C, respectively, served as a carbon sink; while desert steppe lost 0.06 Pg C, served as a carbon source. It appears that SOC storage in grassland ecosystem may respond differently to climate change, related to vegetation type, regional climate type and grazing intensity. These results might give advice to decision makers on adopting suitable countermeasures for sustainable grassland utilization and protection. 展开更多
关键词 surface soil organic carbon storage climate change spatial differences grassland in Inner Mongolia
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部