In this paper, the effects of packaging material and structure of fiber Bragg grating sensor performance are investigated. The effects of thermal expansion coefficient of different embedding materials on the temperatu...In this paper, the effects of packaging material and structure of fiber Bragg grating sensor performance are investigated. The effects of thermal expansion coefficient of different embedding materials on the temperature sensitivities of the FBG sensors are studied both theoretically and experimentally with good agreement, which provides a means for selection of FBG packaging material to achieve desired temperature sensitivity. We also demonstrate a 4-point bending structured FBG lateral force sensor that measures up to 242N force with well-preserved reflection spectrum, whereas for 3-point bending structure, multiple-peaks start to occur when applied force reaches 72N.展开更多
In accordance with the characteristics of wavelength shift detection in fiber grating sensor interrogation system,the wavelength interrogation system which uses linear InGaAs as the spectrum receiver is proposed.Orien...In accordance with the characteristics of wavelength shift detection in fiber grating sensor interrogation system,the wavelength interrogation system which uses linear InGaAs as the spectrum receiver is proposed.Orientation of optic spectrum line affects the silt of volume phase grating and size of InGaAs photosensitive unit,thus the calibration method is needed.Based on an analysis of InGaAs imaging model,least square curve fitting method is proposed to detect spectrum wavelength and InGaAs photosensitive unit position.The experimental results show that the methods are effective and the demodulation system precision is improved.展开更多
A method to interrogate fiber Bragg grating vibration sensor by narrow line width light is demonstrated. The interrogation scheme takes advantage of the intensity modulation of narrow spectral bandwidth light, such as...A method to interrogate fiber Bragg grating vibration sensor by narrow line width light is demonstrated. The interrogation scheme takes advantage of the intensity modulation of narrow spectral bandwidth light, such as distributed feedback laser, when a reflection or transmission spectrum curve of an fiber Bragg grating (FBG) moves due to the strain which is applied on the sensor. The sensor's response to accelerating frequency and amplitude is measured by experiment. The factors which have impacts on the sensitivity of the interrogation system are also discussed.展开更多
Magneto-optic fiber Bragg gratings (MFBG) based on magneto-optic materials have a lot of potential applications for sensing and optical signal processing. The transmission and reflection spectra of guided optical wa...Magneto-optic fiber Bragg gratings (MFBG) based on magneto-optic materials have a lot of potential applications for sensing and optical signal processing. The transmission and reflection spectra of guided optical waves in the MFBG are investigated. According to the sensitivity of MFBG spectral lines to the magneto-optic coupling intensity varying with applied magnetic field, a novel magnetic field sensor of high-resolution up to 0.01 nm/(kA/m) is predicted.展开更多
A novel fiber Bragg grating (FBG) sensor array system based on digital phase generated carrier (PGC) demodulation and reference compensation method is proposed and set up. Experimental results confirm that the dig...A novel fiber Bragg grating (FBG) sensor array system based on digital phase generated carrier (PGC) demodulation and reference compensation method is proposed and set up. Experimental results confirm that the digital PGC demodulation can be used for wavelength-division-multiplexed FBG sensor array and the reference compensation method can reduce the environmental interference by approximately 40 dB in the frequency range from 20 Hz to 2 kHz. The minimum detectable wavelength-shift of the sensor system is 1 × 10^-3 pm/Hz^1/2.展开更多
Based on the advantages of the fiber Bragg grating sensing technology,this paper presents a principle of a novel smart concrete with fiber optical Bragg grating sensor,analyses the theory and characteristics,illustrat...Based on the advantages of the fiber Bragg grating sensing technology,this paper presents a principle of a novel smart concrete with fiber optical Bragg grating sensor,analyses the theory and characteristics,illustrates the key technology and method to make the fiber Bragg grating sensor for the smart concrete,and proves the feasibility with experiments.The results indicate that the smart concrete with fiber Bragg grating sensors is feasible in the structure monitoring and damage diagnosing in the long run.展开更多
The bending photonic crystal fiber grating sensor is an important role in underwater monitoring and fire alarm systems. It is studied that the resonant wavelength expression of bending long period photonic crystal fib...The bending photonic crystal fiber grating sensor is an important role in underwater monitoring and fire alarm systems. It is studied that the resonant wavelength expression of bending long period photonic crystal fiber gratings is deduced, it is designed that a bending long period photonic crystal fiber grating sensor system, it is calculated in theory that between the bending long period photonic crystal fiber gratings sensor resonance wavelength and the grating period and the bending strain. The result is shown by calculating and analysing in theory, the grating curvature is increased by the increase of the bending strain of the grating, and the resonance wavelength of the grating sensor is drifted, the drift amount is increased, one in this grating, the drifted amount of the resonant wavelength is 0.014 nm.展开更多
A fiber-optical intrusion alarm system based on quasi-distributed fiber Bragg grating (FBG) sensors is demonstrated in this paper. The algorithms of empirical mode decomposition (EMD) and wavelet packet characteri...A fiber-optical intrusion alarm system based on quasi-distributed fiber Bragg grating (FBG) sensors is demonstrated in this paper. The algorithms of empirical mode decomposition (EMD) and wavelet packet characteristic entropy are adopted to determine the intrusion location. The intrusion alarm software based on the Labview is developed, and it is also proved by the experiments. The results show that such a fiber-optical intrusion alarm system can offer the automatic intrusion alarm in real-time.展开更多
Based on the theory of fiber Bragg grating sensing, and using a 2 m plane stress material model of the simulation experiment, the wavelength shift regulations of fiber Bragg gratings under rock settlement deformation ...Based on the theory of fiber Bragg grating sensing, and using a 2 m plane stress material model of the simulation experiment, the wavelength shift regulations of fiber Bragg gratings under rock settlement deformation conditions were got, which provided reliable basis for the design of the wavelength bandwidth of sensing gratings. The wavelength increase when the rock layers are Compressive strain sensitivity is bigger under tension, and decrease under compression. than tensile strain sensitivity when the load is lower. However compressive strain sensitivity is smaller than tensile strain sensitivity when the load is higher. Experimental result coincides well with theory. The wavelength bandwidth of two neighboring fiber Bragg gratings of the gratings used for monitoring the deformation of rock layer should be no less than 6 nm. An effective new approach for detecting the deformation of rock settlement with fiber Bragg gratings is provided.展开更多
Optical fiber sensors have received increasing attention in the fields of aeronautic and civil engineering for their superior ability to stand explosion, immunity to electromagnetic interference and high accuracy, esp...Optical fiber sensors have received increasing attention in the fields of aeronautic and civil engineering for their superior ability to stand explosion, immunity to electromagnetic interference and high accuracy, especially fit for measureroent applications in harsh environment. In this study, a novel FBG (fiber Bragg grating) strain sensor, which is packaged in a 1.2 mm stainless steel tube with epoxy resin, is developed. Experiments are conducted on the universal material testing machine to calibrate its strain transferring characteristics. The sensor has the advantages of small size, high precision and flexible use, and exhibits promising potentials. Five tube-packaged strain FBG sensors have been applied to the vibration experiment of a submarine pipeline model. The strain measttred with the FBG sensor agrees well with that measttred with the electric resistance strain sensor.展开更多
Recent progress in long-distance in-Fiber Bragg Grating (FBG) sensor systems at University of Electronic Science & Technology of China (UESTC) is reviewed in this paper. Two novel approaches with a 50km transmiss...Recent progress in long-distance in-Fiber Bragg Grating (FBG) sensor systems at University of Electronic Science & Technology of China (UESTC) is reviewed in this paper. Two novel approaches with a 50km transmission distance are proposed and demonstrated. The first one is based on the combination of bidirectional Raman amplification and a dual Erbium-Doped Fiber (EDF) configuration. A good Signal-to-Noise Ratio (SNR) of ~16dB is achieved with only a pump power of ~280 mW, which is ~10 dB higher than that without amplification. The second is based on a novel tunable fiber ring laser configuration with hybrid Raman/EDFA configuration. Experimental results show that an excellent optical SNR of-~60 dB has been achieved for a 50 km transmission distance with a low Raman pump power of ~170 mW and a low EDFA pump power of~40 mW at wavelength of 980 nm. It is anticipated that these long-distance FBG sensing systems could find important applications in health monitoring of large infra-structures, such as oil or gas pipelines, ultra-long bridges and tunnels, river banks, and so on.展开更多
A structural displacement field reconstruction method is proposed to aim at the problems of deformation mon-itoring and displacement field reconstruction of flexible plate-like structures in the aerospace field.This m...A structural displacement field reconstruction method is proposed to aim at the problems of deformation mon-itoring and displacement field reconstruction of flexible plate-like structures in the aerospace field.This method combines the deep neural network model of the cross-layer connection structure with the fiber grating sensor network.This paper first introduces the principle of strain detection of fiber grating sensor,studies the mapping relationship between strain and displacement,and proposes a strain-displacement conversion model based on an improved neural network.Then the intelligent structure deformation monitoring system is built.By controlling the stepping distance of the motor to produce different deformations of the plate structure,the strain information and real displacement information are obtained based on the high-density fiber grating sensor network and the dial indicator array.Finally,based on the deformation prediction model obtained by training,the displacement field reconstruction of the structure under different deformation states is realized.Experimental results show that the mean absolute error of the deformation of the measuring points obtained by this method is less than 0.032 mm.This method is feasible in theory and practice and can be applied to the deformation monitoring of aerospace vehicle structures.展开更多
A novel fiber Bragg grating (FBG) pressure sensor with the enhanced sensitivity has been demonstrated. A piston-like diaphragm with a hard core in the center is used to enhance the sensitivity. Both the theoretical ...A novel fiber Bragg grating (FBG) pressure sensor with the enhanced sensitivity has been demonstrated. A piston-like diaphragm with a hard core in the center is used to enhance the sensitivity. Both the theoretical analysis and the experimental result show that the radius of the hard core has significant effect on the pressure sensitivity. When the radius of the hard core is 1.5 mm, a pressure sensitivity of 7.23 nm/MPa has been achieved.展开更多
A novel method of linear demodulation based on edge filter is presented. An experimental system is built up in which LPG is used as the edge filter. We achieve linear demodulation with a bandwidth of 5nm.
We report a fiber Bragg grating(FBG)-based sensor for the simultaneous measurement of a train bearing’s vibration and temperature. A pre-stretched optical fiber with an FBG and a mass is designed for axial vibratio...We report a fiber Bragg grating(FBG)-based sensor for the simultaneous measurement of a train bearing’s vibration and temperature. A pre-stretched optical fiber with an FBG and a mass is designed for axial vibration sensing. Another multiplexed FBG is embedded in a selected copper-based alloy with a high thermal expansion to detect temperature. Experiments show that the sensor possesses a high resonant frequency of 970 Hz, an acceleration sensitivity of 27.28 pm/g, and a high temperature sensitivity of 35.165 pm/℃. A resonant excitation test is also carried out that demonstrates the robustness and reliability of the sensor.展开更多
A novel time/wavelength-multiplexed fiber Bragg grating sensor array is presented. This type of sensor array has the advantages of more points for multi-point measurement, simple structure and low cost.
There may be more than 2% strain of carbon fiber composite material on solid rocket motor (SRM) in some extreme cases. A surface-bonded silica fiber Bragg grating (FBG) strain sensor coated by polymer is designed ...There may be more than 2% strain of carbon fiber composite material on solid rocket motor (SRM) in some extreme cases. A surface-bonded silica fiber Bragg grating (FBG) strain sensor coated by polymer is designed to detect the large strain of composite material. The strain transfer relation of the FBG large strain sensor is deduced, and the strain transfer mechanism is verified by finite element simulation. To calibrate the sensors, the tensile test is done by using the carbon fiber composite plate specimen attached to the designed strain sensor. The results show that the designed sensor can detect the strain more than 3%, the strain sensitivity is 0.0762pm/με, the resolution is 13.13με, and the fitting degree of the wavelength-strain curve fitting function is 0.9988. The accuracy and linearity of the sensor can meet the engineering requirements.展开更多
To investigate the long-term performance of the packaged fiber Bragg grating(FBG)sensors embedded in civil infrastructure for strain monitoring,in this paper,the influence of host matrix’s creep effect on the behavio...To investigate the long-term performance of the packaged fiber Bragg grating(FBG)sensors embedded in civil infrastructure for strain monitoring,in this paper,the influence of host matrix’s creep effect on the behavior of the FBG sensors was systematically studied through theoretical,numerical,and experimental analysis.A theoretical strain transfer analysis between the optic fiber,packaging layer,and host matrix to consider the creep effect of the host matrix was performed accordingly for long-term strain monitoring.Parametric studies were carried out using numerical analysis for FBG sensors packaged with glass fiber reinforced plastic(GFRP),also known as FBG-GFRP sensors in concrete,as an example.The results show that embedded in a creep medium,an acceptable long-term performance of packaged FBG sensors requires the packaging layer to have a minimum length and maximum thickness.Laboratory long-term creep tests using epoxy resin and concrete as host matrix for FBG-GFRP sensors also clearly demonstrated that the influence of creep effect cannot be ignored for strain measurements if the host matrix has a creep potential and the developed correction model performed well to reduce measurement errors of such sensors in creep medium.展开更多
In this paper, the basic principle and the design method of the bandwidth sensing of fiber grating are expounded, respectively. Several novel bandwidth sensor based fiber grating are analyzed and discussed.
This study introduces the optimization of the fiber Bragg grating (FBG) network and the load identification. Current researches on the optimal placement and reliability of the FBG network and the static load identif...This study introduces the optimization of the fiber Bragg grating (FBG) network and the load identification. Current researches on the optimal placement and reliability of the FBG network and the static load identification are generally analyzed. And then, the optimal placement of sensors and reliability of the FBG network are studied. Through the analysis of structural response characteristics, the general rules of sensors placement in structural static response parameters monitoring are proposed. The probability calculation is introduced, and the numerical analyses of the FBG sensor network reliability of several simple topologies are given.展开更多
基金Supported by Science & Engineering Research Council of Singapore (052 118 0052)
文摘In this paper, the effects of packaging material and structure of fiber Bragg grating sensor performance are investigated. The effects of thermal expansion coefficient of different embedding materials on the temperature sensitivities of the FBG sensors are studied both theoretically and experimentally with good agreement, which provides a means for selection of FBG packaging material to achieve desired temperature sensitivity. We also demonstrate a 4-point bending structured FBG lateral force sensor that measures up to 242N force with well-preserved reflection spectrum, whereas for 3-point bending structure, multiple-peaks start to occur when applied force reaches 72N.
文摘In accordance with the characteristics of wavelength shift detection in fiber grating sensor interrogation system,the wavelength interrogation system which uses linear InGaAs as the spectrum receiver is proposed.Orientation of optic spectrum line affects the silt of volume phase grating and size of InGaAs photosensitive unit,thus the calibration method is needed.Based on an analysis of InGaAs imaging model,least square curve fitting method is proposed to detect spectrum wavelength and InGaAs photosensitive unit position.The experimental results show that the methods are effective and the demodulation system precision is improved.
基金supported by the 11th Five Years Key Programs for Science and Technology Development of China under Grant No. 2006BAK04B02Natural Science Foundation of Shandong Province under Grant No. 2006ZRC01022.
文摘A method to interrogate fiber Bragg grating vibration sensor by narrow line width light is demonstrated. The interrogation scheme takes advantage of the intensity modulation of narrow spectral bandwidth light, such as distributed feedback laser, when a reflection or transmission spectrum curve of an fiber Bragg grating (FBG) moves due to the strain which is applied on the sensor. The sensor's response to accelerating frequency and amplitude is measured by experiment. The factors which have impacts on the sensitivity of the interrogation system are also discussed.
基金supported by the National Natural Science Foundation of China under Grant No. 60671027the Application Basis Research Foundation of Sichuan Province under Grant No. 07JY029-089.
文摘Magneto-optic fiber Bragg gratings (MFBG) based on magneto-optic materials have a lot of potential applications for sensing and optical signal processing. The transmission and reflection spectra of guided optical waves in the MFBG are investigated. According to the sensitivity of MFBG spectral lines to the magneto-optic coupling intensity varying with applied magnetic field, a novel magnetic field sensor of high-resolution up to 0.01 nm/(kA/m) is predicted.
基金supported by the National 863 Program under Grant No. 2007AA03Z415.
文摘A novel fiber Bragg grating (FBG) sensor array system based on digital phase generated carrier (PGC) demodulation and reference compensation method is proposed and set up. Experimental results confirm that the digital PGC demodulation can be used for wavelength-division-multiplexed FBG sensor array and the reference compensation method can reduce the environmental interference by approximately 40 dB in the frequency range from 20 Hz to 2 kHz. The minimum detectable wavelength-shift of the sensor system is 1 × 10^-3 pm/Hz^1/2.
文摘Based on the advantages of the fiber Bragg grating sensing technology,this paper presents a principle of a novel smart concrete with fiber optical Bragg grating sensor,analyses the theory and characteristics,illustrates the key technology and method to make the fiber Bragg grating sensor for the smart concrete,and proves the feasibility with experiments.The results indicate that the smart concrete with fiber Bragg grating sensors is feasible in the structure monitoring and damage diagnosing in the long run.
文摘The bending photonic crystal fiber grating sensor is an important role in underwater monitoring and fire alarm systems. It is studied that the resonant wavelength expression of bending long period photonic crystal fiber gratings is deduced, it is designed that a bending long period photonic crystal fiber grating sensor system, it is calculated in theory that between the bending long period photonic crystal fiber gratings sensor resonance wavelength and the grating period and the bending strain. The result is shown by calculating and analysing in theory, the grating curvature is increased by the increase of the bending strain of the grating, and the resonance wavelength of the grating sensor is drifted, the drift amount is increased, one in this grating, the drifted amount of the resonant wavelength is 0.014 nm.
基金supported by the National Natural Science Foundation of China under Grant No. 60537040.
文摘A fiber-optical intrusion alarm system based on quasi-distributed fiber Bragg grating (FBG) sensors is demonstrated in this paper. The algorithms of empirical mode decomposition (EMD) and wavelet packet characteristic entropy are adopted to determine the intrusion location. The intrusion alarm software based on the Labview is developed, and it is also proved by the experiments. The results show that such a fiber-optical intrusion alarm system can offer the automatic intrusion alarm in real-time.
基金the National Natural Science Foundation of China(50775060)
文摘Based on the theory of fiber Bragg grating sensing, and using a 2 m plane stress material model of the simulation experiment, the wavelength shift regulations of fiber Bragg gratings under rock settlement deformation conditions were got, which provided reliable basis for the design of the wavelength bandwidth of sensing gratings. The wavelength increase when the rock layers are Compressive strain sensitivity is bigger under tension, and decrease under compression. than tensile strain sensitivity when the load is lower. However compressive strain sensitivity is smaller than tensile strain sensitivity when the load is higher. Experimental result coincides well with theory. The wavelength bandwidth of two neighboring fiber Bragg gratings of the gratings used for monitoring the deformation of rock layer should be no less than 6 nm. An effective new approach for detecting the deformation of rock settlement with fiber Bragg gratings is provided.
基金This research was financially supported by the National Natural Science Foundation of China ( Nos . 50408031 ,50378012 and 50439010) the Natural Science Foundation of Liaoning Province (Nos .20032210 and 20042149)the Young Teacher’s Foundationfrom Dalian University of Technology.
文摘Optical fiber sensors have received increasing attention in the fields of aeronautic and civil engineering for their superior ability to stand explosion, immunity to electromagnetic interference and high accuracy, especially fit for measureroent applications in harsh environment. In this study, a novel FBG (fiber Bragg grating) strain sensor, which is packaged in a 1.2 mm stainless steel tube with epoxy resin, is developed. Experiments are conducted on the universal material testing machine to calibrate its strain transferring characteristics. The sensor has the advantages of small size, high precision and flexible use, and exhibits promising potentials. Five tube-packaged strain FBG sensors have been applied to the vibration experiment of a submarine pipeline model. The strain measttred with the FBG sensor agrees well with that measttred with the electric resistance strain sensor.
基金Supported by the Key Project of National Natural Science Foundation of China (No.60537040)
文摘Recent progress in long-distance in-Fiber Bragg Grating (FBG) sensor systems at University of Electronic Science & Technology of China (UESTC) is reviewed in this paper. Two novel approaches with a 50km transmission distance are proposed and demonstrated. The first one is based on the combination of bidirectional Raman amplification and a dual Erbium-Doped Fiber (EDF) configuration. A good Signal-to-Noise Ratio (SNR) of ~16dB is achieved with only a pump power of ~280 mW, which is ~10 dB higher than that without amplification. The second is based on a novel tunable fiber ring laser configuration with hybrid Raman/EDFA configuration. Experimental results show that an excellent optical SNR of-~60 dB has been achieved for a 50 km transmission distance with a low Raman pump power of ~170 mW and a low EDFA pump power of~40 mW at wavelength of 980 nm. It is anticipated that these long-distance FBG sensing systems could find important applications in health monitoring of large infra-structures, such as oil or gas pipelines, ultra-long bridges and tunnels, river banks, and so on.
基金This work was supported by National Natural Science Foundation of China(61903224,62073193 and 61873333)National Key Research and Development Project(2018YFE02013)Key Research and Development Plan of Shandong Province(2019TSLH0301 and 2019GHZ004).
文摘A structural displacement field reconstruction method is proposed to aim at the problems of deformation mon-itoring and displacement field reconstruction of flexible plate-like structures in the aerospace field.This method combines the deep neural network model of the cross-layer connection structure with the fiber grating sensor network.This paper first introduces the principle of strain detection of fiber grating sensor,studies the mapping relationship between strain and displacement,and proposes a strain-displacement conversion model based on an improved neural network.Then the intelligent structure deformation monitoring system is built.By controlling the stepping distance of the motor to produce different deformations of the plate structure,the strain information and real displacement information are obtained based on the high-density fiber grating sensor network and the dial indicator array.Finally,based on the deformation prediction model obtained by training,the displacement field reconstruction of the structure under different deformation states is realized.Experimental results show that the mean absolute error of the deformation of the measuring points obtained by this method is less than 0.032 mm.This method is feasible in theory and practice and can be applied to the deformation monitoring of aerospace vehicle structures.
基金the Key Projects Program of Chinese Academy of Sciences under Grant No.KGCX1-SW-10.
文摘A novel fiber Bragg grating (FBG) pressure sensor with the enhanced sensitivity has been demonstrated. A piston-like diaphragm with a hard core in the center is used to enhance the sensitivity. Both the theoretical analysis and the experimental result show that the radius of the hard core has significant effect on the pressure sensitivity. When the radius of the hard core is 1.5 mm, a pressure sensitivity of 7.23 nm/MPa has been achieved.
基金Supported by the National '863' high technology project (2002 AA313110)
文摘A novel method of linear demodulation based on edge filter is presented. An experimental system is built up in which LPG is used as the edge filter. We achieve linear demodulation with a bandwidth of 5nm.
基金supported in part by the National Natural Science Foundation of China(Nos.51605348 and 51605344)in part by the Natural Science Foundation of the Hubei Province(No.2016CFB116)in part by the Open Research Fund of the Hubei Digital Manufacturing Key Laboratory(No.SZ1801)
文摘We report a fiber Bragg grating(FBG)-based sensor for the simultaneous measurement of a train bearing’s vibration and temperature. A pre-stretched optical fiber with an FBG and a mass is designed for axial vibration sensing. Another multiplexed FBG is embedded in a selected copper-based alloy with a high thermal expansion to detect temperature. Experiments show that the sensor possesses a high resonant frequency of 970 Hz, an acceleration sensitivity of 27.28 pm/g, and a high temperature sensitivity of 35.165 pm/℃. A resonant excitation test is also carried out that demonstrates the robustness and reliability of the sensor.
基金Supported by Beijing Education Administration Foundation (00KG040)
文摘A novel time/wavelength-multiplexed fiber Bragg grating sensor array is presented. This type of sensor array has the advantages of more points for multi-point measurement, simple structure and low cost.
文摘There may be more than 2% strain of carbon fiber composite material on solid rocket motor (SRM) in some extreme cases. A surface-bonded silica fiber Bragg grating (FBG) strain sensor coated by polymer is designed to detect the large strain of composite material. The strain transfer relation of the FBG large strain sensor is deduced, and the strain transfer mechanism is verified by finite element simulation. To calibrate the sensors, the tensile test is done by using the carbon fiber composite plate specimen attached to the designed strain sensor. The results show that the designed sensor can detect the strain more than 3%, the strain sensitivity is 0.0762pm/με, the resolution is 13.13με, and the fitting degree of the wavelength-strain curve fitting function is 0.9988. The accuracy and linearity of the sensor can meet the engineering requirements.
基金supported by the The National Key R&D Program of China[2018FYC0705606]。
文摘To investigate the long-term performance of the packaged fiber Bragg grating(FBG)sensors embedded in civil infrastructure for strain monitoring,in this paper,the influence of host matrix’s creep effect on the behavior of the FBG sensors was systematically studied through theoretical,numerical,and experimental analysis.A theoretical strain transfer analysis between the optic fiber,packaging layer,and host matrix to consider the creep effect of the host matrix was performed accordingly for long-term strain monitoring.Parametric studies were carried out using numerical analysis for FBG sensors packaged with glass fiber reinforced plastic(GFRP),also known as FBG-GFRP sensors in concrete,as an example.The results show that embedded in a creep medium,an acceptable long-term performance of packaged FBG sensors requires the packaging layer to have a minimum length and maximum thickness.Laboratory long-term creep tests using epoxy resin and concrete as host matrix for FBG-GFRP sensors also clearly demonstrated that the influence of creep effect cannot be ignored for strain measurements if the host matrix has a creep potential and the developed correction model performed well to reduce measurement errors of such sensors in creep medium.
文摘In this paper, the basic principle and the design method of the bandwidth sensing of fiber grating are expounded, respectively. Several novel bandwidth sensor based fiber grating are analyzed and discussed.
基金This work was supported by the Chinese National Natural Science Foundation (Grant No. 51275239, 11402112), the Aerospace CAST Innovation Foundation, the Cooperative Innovation Foundation of Jiangsu Province (Grant No. 2014003-01), the Postdoctoral Science Foundation (Grant No. 20090461116), the Aviation Science Foundation (Grant No. 20125652055), the Doctor Research Foundation (Grant No. 20123218110003). We also thank the State Key Laboratory of Mechanics and Control of Mechanical Structures of Nanjing University of Aeronautics and Astronautics.
文摘This study introduces the optimization of the fiber Bragg grating (FBG) network and the load identification. Current researches on the optimal placement and reliability of the FBG network and the static load identification are generally analyzed. And then, the optimal placement of sensors and reliability of the FBG network are studied. Through the analysis of structural response characteristics, the general rules of sensors placement in structural static response parameters monitoring are proposed. The probability calculation is introduced, and the numerical analyses of the FBG sensor network reliability of several simple topologies are given.