Based on the spatial modulation of active Raman gain,a two-dimensional gain cross-grating is theoretically proposed.As the probe field propagates along the z direction and passes through the intersectant region of the...Based on the spatial modulation of active Raman gain,a two-dimensional gain cross-grating is theoretically proposed.As the probe field propagates along the z direction and passes through the intersectant region of the two orthogonal standingwave fields in the x-y plane,it can be effectively diffracted into the high-order directions,and the zero-order diffraction intensity is amplified at the same time.In comparison with the two-dimensional electromagnetically induced cross-grating based on electromagnetically induced transparency,the two-dimensional gain cross-grating has much higher diffraction intensities in the first-order and the high-order directions.Hence,it is more suitable to be utilized as all-optical switching and routing in optical networking and communication.展开更多
This study introduces the optimization of the fiber Bragg grating (FBG) network and the load identification. Current researches on the optimal placement and reliability of the FBG network and the static load identif...This study introduces the optimization of the fiber Bragg grating (FBG) network and the load identification. Current researches on the optimal placement and reliability of the FBG network and the static load identification are generally analyzed. And then, the optimal placement of sensors and reliability of the FBG network are studied. Through the analysis of structural response characteristics, the general rules of sensors placement in structural static response parameters monitoring are proposed. The probability calculation is introduced, and the numerical analyses of the FBG sensor network reliability of several simple topologies are given.展开更多
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11274112 and 11347133)
文摘Based on the spatial modulation of active Raman gain,a two-dimensional gain cross-grating is theoretically proposed.As the probe field propagates along the z direction and passes through the intersectant region of the two orthogonal standingwave fields in the x-y plane,it can be effectively diffracted into the high-order directions,and the zero-order diffraction intensity is amplified at the same time.In comparison with the two-dimensional electromagnetically induced cross-grating based on electromagnetically induced transparency,the two-dimensional gain cross-grating has much higher diffraction intensities in the first-order and the high-order directions.Hence,it is more suitable to be utilized as all-optical switching and routing in optical networking and communication.
基金This work was supported by the Chinese National Natural Science Foundation (Grant No. 51275239, 11402112), the Aerospace CAST Innovation Foundation, the Cooperative Innovation Foundation of Jiangsu Province (Grant No. 2014003-01), the Postdoctoral Science Foundation (Grant No. 20090461116), the Aviation Science Foundation (Grant No. 20125652055), the Doctor Research Foundation (Grant No. 20123218110003). We also thank the State Key Laboratory of Mechanics and Control of Mechanical Structures of Nanjing University of Aeronautics and Astronautics.
文摘This study introduces the optimization of the fiber Bragg grating (FBG) network and the load identification. Current researches on the optimal placement and reliability of the FBG network and the static load identification are generally analyzed. And then, the optimal placement of sensors and reliability of the FBG network are studied. Through the analysis of structural response characteristics, the general rules of sensors placement in structural static response parameters monitoring are proposed. The probability calculation is introduced, and the numerical analyses of the FBG sensor network reliability of several simple topologies are given.