Flexible pressure sensors have many potential applications in the monitoring of physiological signals because of their good biocompatibil-ity and wearability.However,their relatively low sensitivity,linearity,and stab...Flexible pressure sensors have many potential applications in the monitoring of physiological signals because of their good biocompatibil-ity and wearability.However,their relatively low sensitivity,linearity,and stability have hindered their large-scale commercial application.Herein,aflexible capacitive pressure sensor based on an interdigital electrode structure with two porous microneedle arrays(MNAs)is pro-posed.The porous substrate that constitutes the MNA is a mixed product of polydimethylsiloxane and NaHCO3.Due to its porous and interdigital structure,the maximum sensitivity(0.07 kPa-1)of a porous MNA-based pressure sensor was found to be seven times higher than that of an imporous MNA pressure sensor,and it was much greater than that of aflat pressure sensor without a porous MNA structure.Finite-element analysis showed that the interdigital MNA structure can greatly increase the strain and improve the sensitivity of the sen-sor.In addition,the porous MNA-based pressure sensor was found to have good stability over 1500 loading cycles as a result of its bilayer parylene-enhanced conductive electrode structure.Most importantly,it was found that the sensor could accurately monitor the motion of afinger,wrist joint,arm,face,abdomen,eye,and Adam’s apple.Furthermore,preliminary semantic recognition was achieved by monitoring the movement of the Adam’s apple.Finally,multiple pressure sensors were integrated into a 33 array to detect a spatial pressure distribu-×tion.Compared to the sensors reported in previous works,the interdigital electrode structure presented in this work improves sensitivity and stability by modifying the electrode layer rather than the dielectric layer.展开更多
A uniplanar capacitive sensor with 5-electrodes on one plane substrate and a large reflector electrode,was designed to get the corresponding capacitance information for weathering damage detection of non-metallic mate...A uniplanar capacitive sensor with 5-electrodes on one plane substrate and a large reflector electrode,was designed to get the corresponding capacitance information for weathering damage detection of non-metallic materials exposed to a service environment.A 2-D finite-element method was employed to simulate the electric potential distribution and capacitance measurements for the sensor.2 marble slabs,one was healthy and the other was notched,were experimentally detected.Both the simulation and the preliminary experimental results show that the measured capacitances decrease after weathering damage occurs in nonmetallic material.The reflector can enlarge the sensitive depth.The weathering assessment of nonmetallic materials can be done by processing the measured capacitances.The proposed approach can effectively detect the weathering damage of nonmetallic material and can be practically used for in-situ weathering damage evaluation.展开更多
Soil properties and water content vary from place to place. The calibration method based on capacitive soil moisture and humidity sensor is carried out. The sensor readings are compared with the mass water content mea...Soil properties and water content vary from place to place. The calibration method based on capacitive soil moisture and humidity sensor is carried out. The sensor readings are compared with the mass water content measured by the oven dried method,and the calibration formula of sensor reading and mass moisture content is established.Results show that the sensor reading has a good linear relationship with the mass water content measured by the oven dried method,and has high precision. It can calibrate the mass moisture content of the data obtained from the moisture migration test in the soil column.展开更多
In this research paper,we have presented variable area type capacitive sensor signal conditioning system for angular displacement measurement and for this purpose we have used timer LM555 based astable multivibrator a...In this research paper,we have presented variable area type capacitive sensor signal conditioning system for angular displacement measurement and for this purpose we have used timer LM555 based astable multivibrator and universal frequency to digital converter (UFDC). Due to variation in angular displacement in the variable area type capacitor which is connected in the timer based astable circuit,capacitance changes which in turn changes the time period of the timer circuit output. The time period of the timer output waveform is linear with the capacitance and hence linear with angular displacement. The timer output is further processed with UFDC for the measurement. The experimental results show that the time period is linear with the angular displacement in the range of 0- 180° and the uncertainty we should associate it with this average time period value is the standard deviation of the mean,often called the standard error (SE),which is ± 0.023 μs. Because of the simplicity,this measurement system can be used in both electronic and industrial instrumentation.展开更多
The future intelligent era that will be brought about by 5G technology can be well predicted.For example,the connection between humans and smart wearable devices will become increasingly more intimate.Flexible wearabl...The future intelligent era that will be brought about by 5G technology can be well predicted.For example,the connection between humans and smart wearable devices will become increasingly more intimate.Flexible wearable pressure sensors have received much attention as a part of this process.Nevertheless,there is a lack of complete and detailed discussion on the recent research status of capacitive pressure sensors composed of polymer composites.Therefore,this article will mainly discuss the key concepts,preparation methods and main performance of flexible wearable capacitive sensors.The concept of a processing“toolbox”is used to review the developmental status of the dielectric layer as revealed in highly cited literature from the past five years.The preparation methods are categorized into types of processing:primary and secondary.Using these categories,the preparation methods and structure of the dielectric layer are discussed.Their influence on the final capacitive sensing behavior is also addressed.Recent developments in the electrode layer are also systematically reviewed.Finally,the results of the above discussion are summarized and future development trends are discussed.展开更多
Capacitive humidity sensors were made of nanometer barium titanate.The pellets were prepared under different pressures between 3920N to 7850N force.The capacitance changes in three orders of magnitude in the relative ...Capacitive humidity sensors were made of nanometer barium titanate.The pellets were prepared under different pressures between 3920N to 7850N force.The capacitance changes in three orders of magnitude in the relative humidity range of 10%~98%,indicating high humidity sensitivity of the sensors.At a certain measuring frequency,the capacitance of the sensors increases as increasing of the preparation pressure,while the sensitivity of the sensors basically remains the same.The frequencies corresponding to the peaks of the dielectric loss of the sensors move to the higher frequency direction as increasing of the relative humidity.At a certain humidity,the frequencies corresponding to the peaks of the dielectric loss move to the higher frequency direction as increasing of the preparation pressure.展开更多
This study presents an improvement of high dynamic range contact-type capacitive displacement sensor by applying planarization. The sensor is called the contact-type linear encoder-like capacitive displacement sensor ...This study presents an improvement of high dynamic range contact-type capacitive displacement sensor by applying planarization. The sensor is called the contact-type linear encoder-like capacitive displacement sensor (CLECDiS), is a nano-meter-resolution sensor with a wide dynamic range. However, height differences due to patterned electrodes may cause a variety of problems or performance degradation. In devices of two glass wafer surfaces with patterned structures assembled face-to-face and in sliding contact, the heights of the patterns crucially affect their performance and practicality, so it should be planarized for reducing the problem. A number of techniques for planarizing glass wafer surfaces with patterned chrome electrodes were evaluated and the following three were selected as adequate: lift-off, etch-back, and chemical mechanical polishing (CMP). The fabricated samples showed that CMP provided the best planarization. CMP was successfully employed to produce CLECDiS with improved signal reliability due to reduced collisions between electrodes.展开更多
A novel capacitive biaxial microaccelerometer with a highly symmetrical microstructure is developed. The sensor is composed of a single seismic mass, grid strip, supporting beam, joint beam, and damping adjusting comb...A novel capacitive biaxial microaccelerometer with a highly symmetrical microstructure is developed. The sensor is composed of a single seismic mass, grid strip, supporting beam, joint beam, and damping adjusting combs. The sensing method of changing capacitance area is used in the design,which depresses the requirement of the DRIE process, and de- creases electronic noise by increasing sensing voltage to improve the resolution. The parameters and characteristics of the biaxial microaccelerometer are discussed with the FEM tool ANSYS. The simulated results show that the transverse sensitivity of the sensor is equal to zero. The testing devices based on the slide-film damping effect are fabricated, and the testing quality factor is 514, which shows that the designed structure can improve the resolution and proves the feasibility of the designed process.展开更多
For our research, a new hybrid experimental-computational method is presented. We applied a least squares fitting method (LSFM) to reconstruct the wood moisture content (WMC) from the data measured with a planar c...For our research, a new hybrid experimental-computational method is presented. We applied a least squares fitting method (LSFM) to reconstruct the wood moisture content (WMC) from the data measured with a planar capacitance sensor. A boundary element method (BEM) was used to compute the relationship between capacitance and the dielectric constant. A functional relationship between MC and the dielectric constant was identified by LSFM. The agreement of this final computation result with the experimental data indicates that this method can be used to estimate the WMC quickly and effectively with engineering analysis. Compared with popular statistical methods, a large number of experiments are avoided, some costs of testing are reduced and the efficiency of testing is enhanced.展开更多
This paper presents the characteristics of a double helix capacitance sensor for measurement of the liquid holdup in horizontal oil–water two-phase flow. The finite element method is used to calculate the sensitivity...This paper presents the characteristics of a double helix capacitance sensor for measurement of the liquid holdup in horizontal oil–water two-phase flow. The finite element method is used to calculate the sensitivity field of the sensor in a pipe with 20 mm inner diameter and the effect of sensor geometry on the distribution of sensitivity field is presented. Then, a horizontal oil–water two-phase flow experiment is carried out to measure the response of the double helix capacitance sensor, in which a novel method is proposed to calibrate the liquid holdup based on three pairs of parallel-wire capacitance probes. The performance of the sensor is analyzed in terms of the flow structures detected by mini-conductance array probes.展开更多
In this paper, a micro capacitive sensor with nanometer resolution is presented for ultra-precision measurement of micro components, which is fabricated by the MEMS (micro electromechanical systems) non-silicon tech...In this paper, a micro capacitive sensor with nanometer resolution is presented for ultra-precision measurement of micro components, which is fabricated by the MEMS (micro electromechanical systems) non-silicon technique. Based on the sensor, a micro capacitive tactile probe is constructed by stylus assembly and packaging design for dimension metrology on micro/nano scale, in which a data acquiring system is developed with AD7747. Some measurements of the micro capacitive tactile probe are performed on a nano positioning and measuring machine (NMM). The measurement results show good linearity and hysteresis with a range of 11.6 μm and resolution of better than 5 nm. Hence, the micro capacitive tactile probe can be integrated on NMM to realize measurement of micro structures with nanometer accuracy.展开更多
Simulation and optimization were applied to a capacitive sensor system based on electrical tomography technology. Sensors, consisting of Morgantown Energy Technology Center (METC) axial synchro driving guard electrode...Simulation and optimization were applied to a capacitive sensor system based on electrical tomography technology. Sensors, consisting of Morgantown Energy Technology Center (METC) axial synchro driving guard electrodes and two sets of detecting electrodes, make it possible to obtain simultaneously two groups of signals of the void fraction in oil-gas two-phase flow. The computational and experimental results showed that available sensors, charactered by high resolution and fast real-time response can be used for real-time liquid-gas two-phase flow pattern determination.展开更多
To continuously monitor the soil retreat due to erosion in field,provide valuable information about the erosion processes and overcome the disadvantages of inefficiency,high time-consumption and labor-intensity of exi...To continuously monitor the soil retreat due to erosion in field,provide valuable information about the erosion processes and overcome the disadvantages of inefficiency,high time-consumption and labor-intensity of existing methods,this paper describes a novel capacitance sensor for measuring the soil retreat.A capacitance sensor based probe is proposed,which can measure the depth of the soil around it automatically and the data can be recorded by a data logger.Experimental results in the lab verify its usefulness.展开更多
Flexible pressure monitoring device can help correct the sitting posture and prevent health problems(e.g.,deformity of spinal column and musculoskeletal disease).Currently,most measurement systems hinder their wide ap...Flexible pressure monitoring device can help correct the sitting posture and prevent health problems(e.g.,deformity of spinal column and musculoskeletal disease).Currently,most measurement systems hinder their wide applications owing to the high cost or low accuracy.In this study,a flexible sitting pressure measurement system was proposed based on a textile-based capacitive pressure sensor array in order to measure sitting pressure distribution simply and conveniently.The capacitive pressure sensor array is sandwich structure composed of a high-density sponge layer and two electrode array fabrics,which possesses high resolution(2.26 sensors/cm2),high sensitivity(0.701 kPa-1)and fast response(≤35 ms).It is worth noting that the raw materials of the sensing fabric include commercialized copper sheets and polyester yarns.The as-prepared pressure measurement system can accurately measure the pressure distribution nephogram for sitting posture analysis.The sitting pressure of 10 volunteers was measured and six types of posture were distinguished clearly.展开更多
Sensing structure of grid strip capacitors can be used in the design of capacitive micro-electromechanical system (MEMS) resonators, accelerometers etc. A grid strip structure consists of nonentirely overlap plates ...Sensing structure of grid strip capacitors can be used in the design of capacitive micro-electromechanical system (MEMS) resonators, accelerometers etc. A grid strip structure consists of nonentirely overlap plates so that the capacitor fringe effect cannot be neglected in the design. Electricmagnetic Finite Element Method (FEM) software ANSOFF-Maxwell is employed to analyze the fringe effect of a grid strip capacitor. The analysis includes capacitance changes with change of overlap length, overlap width, plate thickness, grid strip density etc. The results show that fringe effect leads to non-linear change of grid strip capacitance with the change of overlap length and width, that the capacitance increases with the increase of grid strip width and plate thickness, and that sensitivity can be improved through the increase of grid strip density in the condition of identical total overlap area, but linearity is reduced.展开更多
The recalibration of electrical capacitance tomography (ECT) system is one of the key problems in keeping the system running steadily.However, for engineering application in solids/gas transport,online calibration can...The recalibration of electrical capacitance tomography (ECT) system is one of the key problems in keeping the system running steadily.However, for engineering application in solids/gas transport,online calibration can not be implemented and the data from this sensor may be unreliable due to the sensor pipe interior wall abrasion during pneumatic transport,so the solids concentration calculated from the reconstructed image based on these data will be highly inaccurate.The simulations show that, the inter-electrode relative capacitance variation of electrode pair spacing 1 is the most sensitive to the abrasion of sensor pipe interior wall, so this relative capacitance variation when the sensor is filled with air can be used as an indicator demanding offline system recalibration when the wall abrasion goes significant.Furthermore, while the pipe interior wall abrasion is not very serious, online correcting measured inter-electrode capacitance with wall capacitance variation can improve the accuracy of concentration calculation.展开更多
Recently,electronic skins and fl exible wearable devices have been developed for widespread applications in medical monitoring,artifi cial intelligence,human–machine interaction,and artifi cial prosthetics.Flexible p...Recently,electronic skins and fl exible wearable devices have been developed for widespread applications in medical monitoring,artifi cial intelligence,human–machine interaction,and artifi cial prosthetics.Flexible proximity sensors can accurately perceive external objects without contact,introducing a new way to achieve an ultrasensitive perception of objects.This article reviews the progress of fl exible capacitive proximity sensors,fl exible triboelectric proximity sensors,and fl exible gate-enhanced proximity sensors,focusing on their applications in the electronic skin fi eld.Herein,their working mechanism,materials,preparation methods,and research progress are discussed in detail.Finally,we summarize the future challenges in developing fl exible proximity sensors.展开更多
Achieving a high sensitivity for practical applications has always been one of the main developmental directions for wearable flexible pressure sensors.This paper introduces a laser speckle grayscale lithography syste...Achieving a high sensitivity for practical applications has always been one of the main developmental directions for wearable flexible pressure sensors.This paper introduces a laser speckle grayscale lithography system and a novel method for fabricating random conical array microstructures using grainy laser speckle patterns.Its feasibility is attributed to the autocorrelation function of the laser speckle intensity,which adheres to a first-order Bessel function of the first kind.Through objective speckle size and exposure dose manipulations,we developed a microstructured photoresist with various micromorphologies.These microstructures were used to form polydimethylsiloxane microstructured electrodes that were used in flexible capacitive pressure sensors.These-1 sensors exhibited an ultra-high sensitivity:19.76 kPa for the low-pressure range of 0-100 Pa.Their minimum detection threshold was 1.9 Pa,and they maintained stability and resilience over 10,000 test cycles.These sensors proved to be adept at capturing physiological signals and providing tactile feedback,thereby emphasizing their practical value.展开更多
Small-sized,low-cost,and high-sensitivity sensors are required for pressure-sensing applications because of their critical role in consumer electronics,automotive applications,and industrial environments.Thus,micro/na...Small-sized,low-cost,and high-sensitivity sensors are required for pressure-sensing applications because of their critical role in consumer electronics,automotive applications,and industrial environments.Thus,micro/nanoscale pressure sensors based on micro/nanofabrication and micro/nanoelectromechanical system technologies have emerged as a promising class of pressure sensors on account of their remarkable miniaturization and performance.These sensors have recently been developed to feature multifunctionality and applicability to novel scenarios,such as smart wearable devices and health monitoring systems.In this review,we summarize the major sensing principles used in micro/nanoscale pressure sensors and discuss recent progress in the development of four major categories of these sensors,namely,novel material-based,flexible,implantable,and selfpowered pressure sensors.展开更多
A differential capacitance detection circuit aiming at detection of rotating angle in a novel levitation structure is presented. To ensure the low non-linearity and high resolution, noise analysis and non-linearity si...A differential capacitance detection circuit aiming at detection of rotating angle in a novel levitation structure is presented. To ensure the low non-linearity and high resolution, noise analysis and non-linearity simulation are conducted. In the capacitance interface, an integral charge amplifier is adopted as a front end amplifier to reduce the parasitic capacitance caused by connecting wire. For the novel differential capacitance bridge with a coupling capacitor, the noise floor and non-linearity of the detection circuit are analyzed, and the results show that the detecting circuit is capable of realizing angle detection with high angular resolution and relative low non-linearity. With a specially designed printed circuit board, the circuit is simulated by PSpice. The practical experiment shows that the detection board can achieve angular resolution as high as 0.04° with a non-linearity error 2.3%.展开更多
基金supported in part by the National Natural Science Foundation of China(Grant No.62104056)the Zhejiang Provincial Natural Science Foundation of China(Grant No.LQ21F010010)+4 种基金the National Natural Science Foundation of China(Grant Nos.62141409 and 62204204)the National Key R&D Program of China(Grant No.2022ZD0208602)the Zhejiang Provincial Key Research&Development Fund(Grant Nos.2019C04003 and 2021C01041)the Shanghai Sailing Program(Grant No.21YF1451000)the Key Research and Development Program of Shaanxi(Grant No.2022GY-001).
文摘Flexible pressure sensors have many potential applications in the monitoring of physiological signals because of their good biocompatibil-ity and wearability.However,their relatively low sensitivity,linearity,and stability have hindered their large-scale commercial application.Herein,aflexible capacitive pressure sensor based on an interdigital electrode structure with two porous microneedle arrays(MNAs)is pro-posed.The porous substrate that constitutes the MNA is a mixed product of polydimethylsiloxane and NaHCO3.Due to its porous and interdigital structure,the maximum sensitivity(0.07 kPa-1)of a porous MNA-based pressure sensor was found to be seven times higher than that of an imporous MNA pressure sensor,and it was much greater than that of aflat pressure sensor without a porous MNA structure.Finite-element analysis showed that the interdigital MNA structure can greatly increase the strain and improve the sensitivity of the sen-sor.In addition,the porous MNA-based pressure sensor was found to have good stability over 1500 loading cycles as a result of its bilayer parylene-enhanced conductive electrode structure.Most importantly,it was found that the sensor could accurately monitor the motion of afinger,wrist joint,arm,face,abdomen,eye,and Adam’s apple.Furthermore,preliminary semantic recognition was achieved by monitoring the movement of the Adam’s apple.Finally,multiple pressure sensors were integrated into a 33 array to detect a spatial pressure distribu-×tion.Compared to the sensors reported in previous works,the interdigital electrode structure presented in this work improves sensitivity and stability by modifying the electrode layer rather than the dielectric layer.
基金supported by the National Natural Science Foundation of China(60575015)
文摘A uniplanar capacitive sensor with 5-electrodes on one plane substrate and a large reflector electrode,was designed to get the corresponding capacitance information for weathering damage detection of non-metallic materials exposed to a service environment.A 2-D finite-element method was employed to simulate the electric potential distribution and capacitance measurements for the sensor.2 marble slabs,one was healthy and the other was notched,were experimentally detected.Both the simulation and the preliminary experimental results show that the measured capacitances decrease after weathering damage occurs in nonmetallic material.The reflector can enlarge the sensitive depth.The weathering assessment of nonmetallic materials can be done by processing the measured capacitances.The proposed approach can effectively detect the weathering damage of nonmetallic material and can be practically used for in-situ weathering damage evaluation.
文摘Soil properties and water content vary from place to place. The calibration method based on capacitive soil moisture and humidity sensor is carried out. The sensor readings are compared with the mass water content measured by the oven dried method,and the calibration formula of sensor reading and mass moisture content is established.Results show that the sensor reading has a good linear relationship with the mass water content measured by the oven dried method,and has high precision. It can calibrate the mass moisture content of the data obtained from the moisture migration test in the soil column.
文摘In this research paper,we have presented variable area type capacitive sensor signal conditioning system for angular displacement measurement and for this purpose we have used timer LM555 based astable multivibrator and universal frequency to digital converter (UFDC). Due to variation in angular displacement in the variable area type capacitor which is connected in the timer based astable circuit,capacitance changes which in turn changes the time period of the timer circuit output. The time period of the timer output waveform is linear with the capacitance and hence linear with angular displacement. The timer output is further processed with UFDC for the measurement. The experimental results show that the time period is linear with the angular displacement in the range of 0- 180° and the uncertainty we should associate it with this average time period value is the standard deviation of the mean,often called the standard error (SE),which is ± 0.023 μs. Because of the simplicity,this measurement system can be used in both electronic and industrial instrumentation.
基金The authors gratefully acknowledge the financial support of this work by National Natural Science Foundation of China(51773139,51922071).
文摘The future intelligent era that will be brought about by 5G technology can be well predicted.For example,the connection between humans and smart wearable devices will become increasingly more intimate.Flexible wearable pressure sensors have received much attention as a part of this process.Nevertheless,there is a lack of complete and detailed discussion on the recent research status of capacitive pressure sensors composed of polymer composites.Therefore,this article will mainly discuss the key concepts,preparation methods and main performance of flexible wearable capacitive sensors.The concept of a processing“toolbox”is used to review the developmental status of the dielectric layer as revealed in highly cited literature from the past five years.The preparation methods are categorized into types of processing:primary and secondary.Using these categories,the preparation methods and structure of the dielectric layer are discussed.Their influence on the final capacitive sensing behavior is also addressed.Recent developments in the electrode layer are also systematically reviewed.Finally,the results of the above discussion are summarized and future development trends are discussed.
基金The project is supported by the National Natural Science Foundation of China (60074031, 60474052).
文摘Capacitive humidity sensors were made of nanometer barium titanate.The pellets were prepared under different pressures between 3920N to 7850N force.The capacitance changes in three orders of magnitude in the relative humidity range of 10%~98%,indicating high humidity sensitivity of the sensors.At a certain measuring frequency,the capacitance of the sensors increases as increasing of the preparation pressure,while the sensitivity of the sensors basically remains the same.The frequencies corresponding to the peaks of the dielectric loss of the sensors move to the higher frequency direction as increasing of the relative humidity.At a certain humidity,the frequencies corresponding to the peaks of the dielectric loss move to the higher frequency direction as increasing of the preparation pressure.
文摘This study presents an improvement of high dynamic range contact-type capacitive displacement sensor by applying planarization. The sensor is called the contact-type linear encoder-like capacitive displacement sensor (CLECDiS), is a nano-meter-resolution sensor with a wide dynamic range. However, height differences due to patterned electrodes may cause a variety of problems or performance degradation. In devices of two glass wafer surfaces with patterned structures assembled face-to-face and in sliding contact, the heights of the patterns crucially affect their performance and practicality, so it should be planarized for reducing the problem. A number of techniques for planarizing glass wafer surfaces with patterned chrome electrodes were evaluated and the following three were selected as adequate: lift-off, etch-back, and chemical mechanical polishing (CMP). The fabricated samples showed that CMP provided the best planarization. CMP was successfully employed to produce CLECDiS with improved signal reliability due to reduced collisions between electrodes.
文摘A novel capacitive biaxial microaccelerometer with a highly symmetrical microstructure is developed. The sensor is composed of a single seismic mass, grid strip, supporting beam, joint beam, and damping adjusting combs. The sensing method of changing capacitance area is used in the design,which depresses the requirement of the DRIE process, and de- creases electronic noise by increasing sensing voltage to improve the resolution. The parameters and characteristics of the biaxial microaccelerometer are discussed with the FEM tool ANSYS. The simulated results show that the transverse sensitivity of the sensor is equal to zero. The testing devices based on the slide-film damping effect are fabricated, and the testing quality factor is 514, which shows that the designed structure can improve the resolution and proves the feasibility of the designed process.
基金supported by the Central University Basic Research Professional Expenses Special Foundation of Harbin Engineering University (Grant No. HEUCFL10101109)
文摘For our research, a new hybrid experimental-computational method is presented. We applied a least squares fitting method (LSFM) to reconstruct the wood moisture content (WMC) from the data measured with a planar capacitance sensor. A boundary element method (BEM) was used to compute the relationship between capacitance and the dielectric constant. A functional relationship between MC and the dielectric constant was identified by LSFM. The agreement of this final computation result with the experimental data indicates that this method can be used to estimate the WMC quickly and effectively with engineering analysis. Compared with popular statistical methods, a large number of experiments are avoided, some costs of testing are reduced and the efficiency of testing is enhanced.
基金Supported by the National Natural Science Foundation of China(50974095,41174109,61104148)the National Science and Technology Major Projects(2011ZX05020-006)
文摘This paper presents the characteristics of a double helix capacitance sensor for measurement of the liquid holdup in horizontal oil–water two-phase flow. The finite element method is used to calculate the sensitivity field of the sensor in a pipe with 20 mm inner diameter and the effect of sensor geometry on the distribution of sensitivity field is presented. Then, a horizontal oil–water two-phase flow experiment is carried out to measure the response of the double helix capacitance sensor, in which a novel method is proposed to calibrate the liquid holdup based on three pairs of parallel-wire capacitance probes. The performance of the sensor is analyzed in terms of the flow structures detected by mini-conductance array probes.
基金supported by the Nano Special Projects of Shanghai Science and Technology Commission of China(Grant No.11nm0560800)the Young Scientists Fund of the National Natural Science Foundation of China(Grant No.11104284)
文摘In this paper, a micro capacitive sensor with nanometer resolution is presented for ultra-precision measurement of micro components, which is fabricated by the MEMS (micro electromechanical systems) non-silicon technique. Based on the sensor, a micro capacitive tactile probe is constructed by stylus assembly and packaging design for dimension metrology on micro/nano scale, in which a data acquiring system is developed with AD7747. Some measurements of the micro capacitive tactile probe are performed on a nano positioning and measuring machine (NMM). The measurement results show good linearity and hysteresis with a range of 11.6 μm and resolution of better than 5 nm. Hence, the micro capacitive tactile probe can be integrated on NMM to realize measurement of micro structures with nanometer accuracy.
基金Project (No. 2002AA616050) supported by the Hi-Tech Researchand Development Program (863) of China
文摘Simulation and optimization were applied to a capacitive sensor system based on electrical tomography technology. Sensors, consisting of Morgantown Energy Technology Center (METC) axial synchro driving guard electrodes and two sets of detecting electrodes, make it possible to obtain simultaneously two groups of signals of the void fraction in oil-gas two-phase flow. The computational and experimental results showed that available sensors, charactered by high resolution and fast real-time response can be used for real-time liquid-gas two-phase flow pattern determination.
基金the National Natural Science Foundation of China (Grant No.60672076)
文摘To continuously monitor the soil retreat due to erosion in field,provide valuable information about the erosion processes and overcome the disadvantages of inefficiency,high time-consumption and labor-intensity of existing methods,this paper describes a novel capacitance sensor for measuring the soil retreat.A capacitance sensor based probe is proposed,which can measure the depth of the soil around it automatically and the data can be recorded by a data logger.Experimental results in the lab verify its usefulness.
基金Fundamental Research Fund for the Central Universities,China(Nos.2232020G-01 and 19D110106)Young Elite Scientists Sponsorship Program by China Association for Science and Technology,China(No.2017QNRC001)Graduate Student Innovation Fund of Donghua University,China(No.20D310111)。
文摘Flexible pressure monitoring device can help correct the sitting posture and prevent health problems(e.g.,deformity of spinal column and musculoskeletal disease).Currently,most measurement systems hinder their wide applications owing to the high cost or low accuracy.In this study,a flexible sitting pressure measurement system was proposed based on a textile-based capacitive pressure sensor array in order to measure sitting pressure distribution simply and conveniently.The capacitive pressure sensor array is sandwich structure composed of a high-density sponge layer and two electrode array fabrics,which possesses high resolution(2.26 sensors/cm2),high sensitivity(0.701 kPa-1)and fast response(≤35 ms).It is worth noting that the raw materials of the sensing fabric include commercialized copper sheets and polyester yarns.The as-prepared pressure measurement system can accurately measure the pressure distribution nephogram for sitting posture analysis.The sitting pressure of 10 volunteers was measured and six types of posture were distinguished clearly.
基金Supported by the National Natural Science Foundation of China ( No. 60903195 ) and the Key Technological Problems Tackling Project of Wuhan (No. 200750499172).
文摘Sensing structure of grid strip capacitors can be used in the design of capacitive micro-electromechanical system (MEMS) resonators, accelerometers etc. A grid strip structure consists of nonentirely overlap plates so that the capacitor fringe effect cannot be neglected in the design. Electricmagnetic Finite Element Method (FEM) software ANSOFF-Maxwell is employed to analyze the fringe effect of a grid strip capacitor. The analysis includes capacitance changes with change of overlap length, overlap width, plate thickness, grid strip density etc. The results show that fringe effect leads to non-linear change of grid strip capacitance with the change of overlap length and width, that the capacitance increases with the increase of grid strip width and plate thickness, and that sensitivity can be improved through the increase of grid strip density in the condition of identical total overlap area, but linearity is reduced.
文摘The recalibration of electrical capacitance tomography (ECT) system is one of the key problems in keeping the system running steadily.However, for engineering application in solids/gas transport,online calibration can not be implemented and the data from this sensor may be unreliable due to the sensor pipe interior wall abrasion during pneumatic transport,so the solids concentration calculated from the reconstructed image based on these data will be highly inaccurate.The simulations show that, the inter-electrode relative capacitance variation of electrode pair spacing 1 is the most sensitive to the abrasion of sensor pipe interior wall, so this relative capacitance variation when the sensor is filled with air can be used as an indicator demanding offline system recalibration when the wall abrasion goes significant.Furthermore, while the pipe interior wall abrasion is not very serious, online correcting measured inter-electrode capacitance with wall capacitance variation can improve the accuracy of concentration calculation.
基金supported by the National Key R&D Program of China(Nos.2022 YFF 1202700 and 2022YFB3203500)National Natural Science Foundation of China(Nos.62225403,62375046,51973024,an d U19A2091)+2 种基金“111”Project(No.B13013)Natur al Sci ence Foundation of Jilin Pro vin ce(No.20230101113JC)the Funding from Jilin Pr ovince(No.20220502002GH).
文摘Recently,electronic skins and fl exible wearable devices have been developed for widespread applications in medical monitoring,artifi cial intelligence,human–machine interaction,and artifi cial prosthetics.Flexible proximity sensors can accurately perceive external objects without contact,introducing a new way to achieve an ultrasensitive perception of objects.This article reviews the progress of fl exible capacitive proximity sensors,fl exible triboelectric proximity sensors,and fl exible gate-enhanced proximity sensors,focusing on their applications in the electronic skin fi eld.Herein,their working mechanism,materials,preparation methods,and research progress are discussed in detail.Finally,we summarize the future challenges in developing fl exible proximity sensors.
基金supported by the Key Research and Development Program of Shanxi Province(202102030201002)the Changjiang Scholars and Innovative Research Team at the University of Ministry of Education of China(IRT_17R70)+2 种基金the State Key Program of National Natural Science of China(11434007)the 111 Project(D18001)the Fund for Shanxi“1331 Project”Key Subjects Construction.
文摘Achieving a high sensitivity for practical applications has always been one of the main developmental directions for wearable flexible pressure sensors.This paper introduces a laser speckle grayscale lithography system and a novel method for fabricating random conical array microstructures using grainy laser speckle patterns.Its feasibility is attributed to the autocorrelation function of the laser speckle intensity,which adheres to a first-order Bessel function of the first kind.Through objective speckle size and exposure dose manipulations,we developed a microstructured photoresist with various micromorphologies.These microstructures were used to form polydimethylsiloxane microstructured electrodes that were used in flexible capacitive pressure sensors.These-1 sensors exhibited an ultra-high sensitivity:19.76 kPa for the low-pressure range of 0-100 Pa.Their minimum detection threshold was 1.9 Pa,and they maintained stability and resilience over 10,000 test cycles.These sensors proved to be adept at capturing physiological signals and providing tactile feedback,thereby emphasizing their practical value.
基金the National Natural Science Foundation of China(NSFC Nos.61674114,91743110,21861132001)National Key Research and Development Program of China(No.2017YFF0204604)+2 种基金Tianjin Applied Basic Research and Advanced Technology(No.17JCJQJC43600)the Foundation for Talent Scientists of Nanchang Institute for Microtechnology of Tianjin Universitythe 111 Project(No.B07014).
文摘Small-sized,low-cost,and high-sensitivity sensors are required for pressure-sensing applications because of their critical role in consumer electronics,automotive applications,and industrial environments.Thus,micro/nanoscale pressure sensors based on micro/nanofabrication and micro/nanoelectromechanical system technologies have emerged as a promising class of pressure sensors on account of their remarkable miniaturization and performance.These sensors have recently been developed to feature multifunctionality and applicability to novel scenarios,such as smart wearable devices and health monitoring systems.In this review,we summarize the major sensing principles used in micro/nanoscale pressure sensors and discuss recent progress in the development of four major categories of these sensors,namely,novel material-based,flexible,implantable,and selfpowered pressure sensors.
基金Foundation item: National Natural Science Foundation of China (60402003) The Key National Basic Research and Development Program of China (2002AA745120)
文摘A differential capacitance detection circuit aiming at detection of rotating angle in a novel levitation structure is presented. To ensure the low non-linearity and high resolution, noise analysis and non-linearity simulation are conducted. In the capacitance interface, an integral charge amplifier is adopted as a front end amplifier to reduce the parasitic capacitance caused by connecting wire. For the novel differential capacitance bridge with a coupling capacitor, the noise floor and non-linearity of the detection circuit are analyzed, and the results show that the detecting circuit is capable of realizing angle detection with high angular resolution and relative low non-linearity. With a specially designed printed circuit board, the circuit is simulated by PSpice. The practical experiment shows that the detection board can achieve angular resolution as high as 0.04° with a non-linearity error 2.3%.