期刊文献+
共找到5,933篇文章
< 1 2 250 >
每页显示 20 50 100
Sedimentary Characteristics,Ages,and Environmental Significance of Gravel Deposits and Loess in Shandong,Eastern China:Regional Response to Global Change Since the Last Glacial Period
1
作者 WANG Min KONG Fanbiao +6 位作者 KONG Xianglun CHEN Haitao WANG Jiawei MIAO Xiaodong JIA Guangju HAN Mei XU Shujian 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2024年第2期491-504,共14页
Investigation of rarely studied gravel layers found in the loess in Shandong Province,eastern China,reveals the fabric characteristics of two gravel layers(G1,G2)and the sedimentary characteristics of loess at the typ... Investigation of rarely studied gravel layers found in the loess in Shandong Province,eastern China,reveals the fabric characteristics of two gravel layers(G1,G2)and the sedimentary characteristics of loess at the typical and well-preserved Heiyu section(HY),where,to determine the paleoclimatic changes during Marine Isotope Stage 3a.Optically stimulated luminescence dates of the HY formation range from 0.26±0.02 ka to 39.00±2.00 ka.In addition,the ages of G1 and G2 were estimated using the Bayesian model to be 39.60-40.50 and 29.00-29.50 ka.G1 and G2 are mainly composed of fine and medium gravel,both of which were subangular to subrounded limestone,with gravel directions to NE and E.The average flow velocity,average depth,and flood peak flow of G1 are 1.10 m/s,0.49 m,and 37.04 m^(3)/s,respectively,calculated using the flow energy method,whereas those of G2 are 0.98 m/s,0.38 m,and 18.38 m^(3)/s,respectively.Analysis of climate proxy indices show that the sedimentary environment of the gravel and loess in HY might be a regional response to global change. 展开更多
关键词 PALEOENVIRONMENT GEOCHRONOLOGY gravel layer SEDIMENTOLOGY PLEISTOCENE Shandong Province
下载PDF
Experimental and numerical investigation on alternatives to sandy gravel
2
作者 V.Denefeld H.Aurich 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第1期130-141,共12页
The NATO agreement STANAG 4569 defines the protection levels for the occupants of logistic and light armored vehicle.The Allied Engineering Publication,AEP-55,Volume 2 document outlines the test conditions for underbe... The NATO agreement STANAG 4569 defines the protection levels for the occupants of logistic and light armored vehicle.The Allied Engineering Publication,AEP-55,Volume 2 document outlines the test conditions for underbelly improvised explosive device(IEDs),which must be buried in water-saturated sandy gravel.The use of sandy gravel has some drawbacks,for instance reproducibility,time consumption,and cost.This paper focuses on the investigation of four alternatives to sandy gravel,which could produce similar specific and cumulative impulses:a concrete pot filled with water,a concrete pot filled with quartz sand,a steel pot without filling and a concrete pot filled with glass spheres(diameter 200μm—300μm)and different water contents.The impulses are measured with a ring technology developed at the Fraunhofer EMI.A numerical soil model based on the work of Marrs,2014 and Fi serov a,2006 and considering the soil moisture was used to simulate the experiments with glass spheres at different water contents,showing much better agreement with the experiments than the classical Laine&Sandvik model,even for high saturation levels.These results can be used to create new test conditions at original scale that are more cost-effective,more reproducible and simpler to manage in comparison to the current tests carried out with STANAG sandy gravel. 展开更多
关键词 Improvised explosive device(IED) Specific impulse Momentum transfer Sandy gravel Glass spheres Numerical model Soil moisture
下载PDF
Effects of gravel on the water absorption characteristics and hydraulic parameters of stony soil
3
作者 MA Yan WANG Youqi +2 位作者 MA Chengfeng YUAN Cheng BAI Yiru 《Journal of Arid Land》 SCIE CSCD 2024年第7期895-909,共15页
The eastern foothills of the Helan Mountains in China are a typical mountainous region of soil and gravel,where gravel could affect the water movement process in the soil.This study focused on the effects of different... The eastern foothills of the Helan Mountains in China are a typical mountainous region of soil and gravel,where gravel could affect the water movement process in the soil.This study focused on the effects of different gravel contents on the water absorption characteristics and hydraulic parameters of stony soil.The stony soil samples were collected from the eastern foothills of the Helan Mountains in April 2023 and used as the experimental materials to conduct a one-dimensional horizontal soil column absorption experiment.Six experimental groups with gravel contents of 0%,10%,20%,30%,40%,and 50%were established to determine the saturated hydraulic conductivity(K_(s)),saturated water content(θ_(s)),initial water content(θ_(i)),and retention water content(θ_(r)),and explore the changes in the wetting front depth and cumulative absorption volume during the absorption experiment.The Philip model was used to fit the soil absorption process and determine the soil water absorption rate.Then the length of the characteristic wetting front depth,shape coefficient,empirical parameter,inverse intake suction and soil water suction were derived from the van Genuchten model.Finally,the hydraulic parameters mentioned above were used to fit the soil water characteristic curves,unsaturated hydraulic conductivity(K_(θ))and specific water capacity(C(h)).The results showed that the wetting front depth and cumulative absorption volume of each treatment gradually decreased with increasing gravel content.Compared with control check treatment with gravel content of 0%,soil water absorption rates in the treatments with gravel contents of 10%,20%,30%,40%,and 50%decreased by 11.47%,17.97%,25.24%,29.83%,and 42.45%,respectively.As the gravel content increased,inverse intake suction gradually increased,and shape coefficient,K_(s),θ_(s),andθ_(r)gradually decreased.For the same soil water content,soil water suction and K_(θ)gradually decreased with increasing gravel content.At the same soil water suction,C(h)decreased with increasing gravel content,and the water use efficiency worsened.Overall,the water holding capacity,hydraulic conductivity,and water use efficiency of stony soil in the eastern foothills of the Helan Mountains decreased with increasing gravel content.This study could provide data support for improving soil water use efficiency in the eastern foothills of the Helan Mountains and other similar rocky mountainous areas. 展开更多
关键词 stony soil gravel content water absorption characteristics hydraulic parameters one-dimensional horizontal soil column absorption experiment van Genuchten model eastern foothills of Helan Mountains
下载PDF
Microscopic Analysis of Cementitious Sand and Gravel Damming Materia
4
作者 Ran Wang Aimin Gong +4 位作者 Shanqing Shao Baoli Qu Jing Xu Fulai Wang Feipeng Liu 《Fluid Dynamics & Materials Processing》 EI 2024年第4期749-769,共21页
The mechanical properties of cementitious sand and gravel damming material have been experimentally determined by means of microscopic SEM(Scanning Electron Microscopy)image analysis.The results show that the combinat... The mechanical properties of cementitious sand and gravel damming material have been experimentally determined by means of microscopic SEM(Scanning Electron Microscopy)image analysis.The results show that the combination of fly ash and water can fill the voids in cemented sand and gravel test blocks because of the presence of hydrated calcium silicate and other substances;thereby,the compactness and mechanical properties of these materials can be greatly improved.For every 10 kg/m^(3) increase in the amount of cementitious material,the density increases by about 2%,and the water content decreases by 0.2%.The amount of cementitious material used in the sand and gravel in these tests was 80-110 kg/m^(3),the water-binder ratio was 1-1.50.Moreover,the splitting tensile strength was 1/10 of the compressive strength,and the maximum strength was 7.42 MPa at 90 d.The optimal mix ratio has been found to be 50 kg of cement,60 kg of fly ash and 120 kg of water(C50F60W120).The related dry density was 2.6 g/cm^(3),the water content was 6%,and the water-binder ratio was 1.09. 展开更多
关键词 Cementitious sand gravel material scanning electron microscopy optimal mix ratio maximum strength
下载PDF
Three-dimensional(3D)parametric measurements of individual gravels in the Gobi region using point cloud technique
5
作者 JING Xiangyu HUANG Weiyi KAN Jiangming 《Journal of Arid Land》 SCIE CSCD 2024年第4期500-517,共18页
Gobi spans a large area of China,surpassing the combined expanse of mobile dunes and semi-fixed dunes.Its presence significantly influences the movement of sand and dust.However,the complex origins and diverse materia... Gobi spans a large area of China,surpassing the combined expanse of mobile dunes and semi-fixed dunes.Its presence significantly influences the movement of sand and dust.However,the complex origins and diverse materials constituting the Gobi result in notable differences in saltation processes across various Gobi surfaces.It is challenging to describe these processes according to a uniform morphology.Therefore,it becomes imperative to articulate surface characteristics through parameters such as the three-dimensional(3D)size and shape of gravel.Collecting morphology information for Gobi gravels is essential for studying its genesis and sand saltation.To enhance the efficiency and information yield of gravel parameter measurements,this study conducted field experiments in the Gobi region across Dunhuang City,Guazhou County,and Yumen City(administrated by Jiuquan City),Gansu Province,China in March 2023.A research framework and methodology for measuring 3D parameters of gravel using point cloud were developed,alongside improved calculation formulas for 3D parameters including gravel grain size,volume,flatness,roundness,sphericity,and equivalent grain size.Leveraging multi-view geometry technology for 3D reconstruction allowed for establishing an optimal data acquisition scheme characterized by high point cloud reconstruction efficiency and clear quality.Additionally,the proposed methodology incorporated point cloud clustering,segmentation,and filtering techniques to isolate individual gravel point clouds.Advanced point cloud algorithms,including the Oriented Bounding Box(OBB),point cloud slicing method,and point cloud triangulation,were then deployed to calculate the 3D parameters of individual gravels.These systematic processes allow precise and detailed characterization of individual gravels.For gravel grain size and volume,the correlation coefficients between point cloud and manual measurements all exceeded 0.9000,confirming the feasibility of the proposed methodology for measuring 3D parameters of individual gravels.The proposed workflow yields accurate calculations of relevant parameters for Gobi gravels,providing essential data support for subsequent studies on Gobi environments. 展开更多
关键词 Gobi gravels three-dimensional(3D)parameters point cloud 3D reconstruction Random Sample Consensus(RANSAC)algorithm Density-Based Spatial Clustering of Applications with Noise(DBSCAN)
下载PDF
Recycling of Local Qatar’s Steel Slag and Gravel Deposits in Road Construction
6
作者 Husam Sadek 《Journal of Civil Engineering and Architecture》 2024年第8期403-414,共12页
Every year,the State of Qatar generates about 400,000 tons of steel slag and another 500,000 tons of gravel as a result of steel manufacturing and washing sand,respectively.The two materials(by-products)are not fully ... Every year,the State of Qatar generates about 400,000 tons of steel slag and another 500,000 tons of gravel as a result of steel manufacturing and washing sand,respectively.The two materials(by-products)are not fully utilized to their best market values.At the same time,infrastructural renewal will take place in Qatar over the next ten years,and there will be a greater demand for aggregates and other construction materials as the country suffers from the availability of good aggregates.This paper presents results obtained on the use of steel slag,gravel and gabbro(control)in HMAC(hot mix asphalt concrete)paving mixtures and road bases and sub-bases.Tests were conducted in accordance with QCS-2010(Qatar Construction Specifications)and results were compared with QCS requirements for aggregates used in these applications.Based on the data obtained in this work,steel slag and gravel aggregates have a promising potential to be used in HMAC paving mixtures on Qatar’s roads,whether in asphalt base and asphalt wearing courses or as unbound aggregates in the base and sub-base pavement structure. 展开更多
关键词 Steel slag gravel by-products asphalt concrete sub-base Qatar.
下载PDF
Characterization and Geotechnical Classification of Soils and Lateritic Gravelly Materials along the Songololo-Lufu Road Axis (Kongo Central Province, DR Congo)
7
作者 Jean-Luc Albini Tshupa Blaise Mutombo Kabulu +1 位作者 Ivon Ndala Tshiwisa Clément N’zau Umba-Di-Mbudi 《Journal of Geoscience and Environment Protection》 2024年第5期355-372,共18页
This study aims to characterize from a geotechnical point of view, the soils as well as the lateritic gravels along the Songololo-Lufu road route in the Kongo Central Province in the Democratic Republic of Congo (DRC)... This study aims to characterize from a geotechnical point of view, the soils as well as the lateritic gravels along the Songololo-Lufu road route in the Kongo Central Province in the Democratic Republic of Congo (DRC). Ten soil samples and eight lateritic gravel samples were analysed and tested in the laboratory. For each sample, identification parameters were determined such as particle size analysis, natural water content, Atterberg limits (plasticity index and consistency index), but also compaction and lift parameters such as optimal water content, maximum dry density and CBR lift index. All materials and soils have been classified according to the Congolese Road Standard (NRC) and according to the American HRB classification. The test results show us that clay soils almost always contain between 70% and 90% fine fraction;the grained fraction represents less than 30% in clay samples. For lateritic gravels soils, the percentage of fine elements varies between 35% and 15%;in sand around 20%;the gravelly fraction represents a little more than 50% of the soil. The majority of soil facies encountered define a plasticity index lower than 15. As for the consistency index, we obtained values greater than 1, both for clayey soils and for gravelly soils. The classification according to NRC defined for these soils the types Ae1 and Ae2 for the clayey facies and the types GL1 and GL2 for the gravelly soils, while that of the HRB identified the classes and subclasses A-6 and A-7-6 for clayey soils, and subclass A-2-6 for gravelly soils. The optimal water content values obtained range between 10.2% and 23.10%;the maximum dry densities are between 1.66 and 2.07 t/m<sup>3</sup> and the CBR index is between 6 and 26. As for the lateritic gravels materials of the Songololo region, the percentage of fine elements generally remains between 12% and 31%;the plasticity index is between 8 and 18;the optimal dry density is around 2 t/m<sup>3</sup>;the optimal water content is between 9.8% and 14.5% and the CBR index is between 27 and 82. The Songololo-Lufu lateritic gravels are characteristic of laterites in the savannah region, with a high gravel fraction at the expense of the fine fraction, but low parameters such as the liquid limit and plasticity index. 展开更多
关键词 Songololo-Lufu Lateritic gravels CLASSIFICATION GEOTECHNICAL NRC
下载PDF
Collaborative Effect of Fines on Changes in Grain Distribution in the Process of Improving the Geotechnical Properties of an Alluvial Gravel 0/14
8
作者 Adolphe Ekouya Louis Ahouet Sylvain Ndinga Okina 《Geomaterials》 2024年第3期29-48,共20页
The technical and economic optimization of road projects has led to research into the use of materials obtained by mechanical stabilization for pavement construction. This research has enabled us to outline a solution... The technical and economic optimization of road projects has led to research into the use of materials obtained by mechanical stabilization for pavement construction. This research has enabled us to outline a solution capable of giving the sub-base layer the necessary and sufficient capacity to support the induced loads forecast for the traffic. This work evaluates the effect of adding fine silty clay (Cl) and clayey silt (Csp), two corrective materials to alluvial gravel (0/14), the main material, in the process of improving its cohesion and geotechnical properties. The results obtained show that the optimum mix is obtained with 10% by weight of Cl and 15% Csp. The granulometry of the mixes is spread out, but poorly calibrated. The Ag-Cl mixtures made at 10%, 15%, 20%, 25% 30% and Ag-Csp at 15%, 20%, 25%, 30%, and 35%, do not obey the law of mixtures. Mixing with 10% Cl reduces the sand equivalent of alluvial gravel by 60.23%, while mixing with 15% Cl reduces the sand equivalent by 6.82%. The addition of correctors increases the optimum water content and fine sand content of the mixes. Increasing the fine sand content reduces the optimum dry density, CBR index and static modulus. Mixes containing 10% Cl and 15% Csp have CBR values of CBRCl (96%) and CBRCsp (84%) and are not suitable for pavement base layers. In fact, the hardness of the grains has a Los Anges value of 41%, higher than the maximum permitted by the standard of 35%. The mixes obtained can be used as pavement base layers for traffic levels in a cumulative number of heavy goods vehicles 5 × 105 6 for an approximate life of 15 years. 展开更多
关键词 Alluvial gravel Cubitermes Sp Termite FINES Mechanical Treatment CORRECTOR
下载PDF
Architectural Model of a Dryland Gravel Braided River,based on 3D UAV Oblique Photogrammetric Data:A Case Study of West Dalongkou River in Eastern Xinjiang,China 被引量:1
9
作者 YIN Senlin ZHU Baiyu +5 位作者 GUO Haiping XU Zhenhua LI Xiaoshan WU Xiaojun CHEN Yukun JIANG Zhibin 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2023年第1期269-285,共17页
Three-dimensional unmanned aerial vehicle(UAV)oblique photogrammetric data were used to infer mountainous gravel braided river lithofacies,lithofacies associations and architectural elements.Hierarchical architecture ... Three-dimensional unmanned aerial vehicle(UAV)oblique photogrammetric data were used to infer mountainous gravel braided river lithofacies,lithofacies associations and architectural elements.Hierarchical architecture and lithofacies associations with detailed lithofacies characterizations were comprehensively described to document the architectural model,architectural element scale and gravel particle scale.(1)Nine lithofacies(i.e.,Gmm,Gcm,Gcc,Gci,Gcl,Ss,Sm,Fsm and Fl)were identified and classified as gravel,sand and fine matrix deposits.These are typical depositional features of a mountainous dryland gravel-braided river.(2)Three architectural elements were identified,including channel(CH),gravel bar(GB)and overbank(OB).CH can be further divided into flow channel and abandoned channel,while GB consists of Central Gravel bar(CGB)and Margin Gravel bar(MGB).(3)The gravel bar is the key architectural element of the gravel braided river,with its geological attributes.The dimensions of GBs and their particles are various,but exhibit good relationships with each other.The grain size of GB decreases downstream,but the dimensions of GB do not.The bank erosion affects the GB dimensions,whereas channel incision and water flow velocity influence the grain size of GB.The conclusions can be applied to the dryland gravel braided river studies in tectonically active areas. 展开更多
关键词 three-dimensional UAV oblique photogrammetry gravel braided river architecture modern deposits West Dalongkou River
下载PDF
Numerical simulation on the impact characteristics between rockfalls of different shapes and gravel cushions
10
作者 ZHU Chun XU Jia-jun +4 位作者 WANG Ya-jun HE Man-chao CUI Sheng-hua ZHANG Xiao-hu TAO Zhi-gang 《Journal of Mountain Science》 SCIE CSCD 2023年第9期2731-2743,共13页
The shape of rockfalls significantly affects the performance of the impact cushion,which is manifested by the difference in the impact force and the penetration depth of the rockfall during the collision.In this study... The shape of rockfalls significantly affects the performance of the impact cushion,which is manifested by the difference in the impact force and the penetration depth of the rockfall during the collision.In this study,we built the collision numerical model between rockfalls and cushions based on the results from previous studies,and simulated the collision process of rockfalls with four different shapes(cylindrical,cuboid,spherical,and cubic)and different cushions.Essential parameters when rockfalls impact cushions are calculated,including the maximum impact forces on the surface and bottom of the cushions and the maximum penetration depth of the rockfall.The results showed that the maximum impact force on the surface and the bottom of the cushions varies with the rockfall shapes.The maximum impact force on the cushion surface caused by cylindrical rockfall is the smallest,followed by the cuboid rockfall,the cube rockfall,and the spherical rockfall.The maximum impact force at the cushion bottom also follows this trend.However,the penetration depth of cuboid rockfall is the smallest,followed by the cylindrical rockfall,the cubic rockfall,and the spherical rockfall.The results of this study provide more extensive theoretical support for rockfall disaster prevention using gravel cushions. 展开更多
关键词 gravel cushion Impact force Penetration depth Rockfall shape Numerical simulation
下载PDF
Influence law of modified glutinous rice-based materials on gravel soil reinforcement and water erosion process
11
作者 ZHANG Weng-xiang PEI Xiang-jun +4 位作者 ZHANG Xiao-chao WU Xue-min XIAO Wei-yang QIN Liang ZHU Jin-yu 《Journal of Mountain Science》 SCIE CSCD 2023年第12期3552-3567,共16页
A large number of loose piles formed by mountain hazards are highly susceptible to hydraulic erosion under rainfall conditions.The use of ecological substrate materials for erosion control and ecological restoration o... A large number of loose piles formed by mountain hazards are highly susceptible to hydraulic erosion under rainfall conditions.The use of ecological substrate materials for erosion control and ecological restoration of gravel soil slopes has become a current research hotspot and the study difficulty.The post-earthquake slump accumulation gravel soil in Jiuzhaigou was selected as the research object,and the self-developed modified glutinous rice-based material was used to reinforce the gravel soil.The variable slope flume erosion test and rainfall simulation test were carried out to study the water erosion resistance of the material reconstructed soil under the influence of runoff erosion and raindrop splash erosion.The results show that:As the material content reached 12.5%,the reconstructed soil did not disintegrate after 24 hours of immersion,the internal friction angle was increased by 42.26%,and the cohesion was increased by 235.5%,which played a significant reinforcement effect.In the process of slope erosion,the soil rill erodibility parameter Kr was only 3‰ of the gravel soil control group,the critical shear force τ increased by 272%,and the soil erosion resistance was significantly improved.In the process of rainfall and rainfall on the slope,the runoff intensity of the reconstructed soil was stable,and the ability to resist runoff erosion and raindrop splash erosion was enhanced.The maximum value of soil loss rate on different slope slopes is 0.02-0.10 g·m^(-2)s^(-1),which is significantly lower than that of the control group and has better erosion reduction effect. 展开更多
关键词 Modified glutinous rice substrate gravel soil Soil reconstruction Trauma repair Water erosion
下载PDF
Experimental and Numerical Analysis of Particle Migration and Patterning Behavior in a Gravel Pack
12
作者 Bobo Luo Yunbin Xiong +5 位作者 Zhuoyi Li Zhanqing Qu Fenggang Liu Tiankui Guo Zugui Yang Yina Shi 《Fluid Dynamics & Materials Processing》 EI 2023年第4期911-928,共18页
Due to its long lifespan and high sand-removal efficiency,gravel packing is one of the most applied sand control methods during the recovery of reservoirs with sanding problems.The blockage and retention of injected s... Due to its long lifespan and high sand-removal efficiency,gravel packing is one of the most applied sand control methods during the recovery of reservoirs with sanding problems.The blockage and retention of injected sand in a gravel pack is a complex process affected by multiple mechanisms.The majority of existing studies based on the phenomenological deep bed filtration(DBF)theory focused on the gravel pack’s overall permeability damage and failed to obtain the inner-pore particle distribution pattern.In this work,experiments and simulations were carried out to reveal the particle distribution in a gravel pack during flooding.In particular,through real-time monitoring of particle migration,the penetration depth and distribution pattern of invaded particles with different gravel-sand particle ratios,fluid viscosities and injection rates could be determined.By simplifying each unit bed element(UBE)into a pore-throat structure with four tunnels(two horizontals for discharge and two verticals for sedimentation),a new network simulation method,which combines deep bed filtration with a particle trajectory model,was implemented.Cross comparison of experimental and numerical results demonstrates the validity and accuracy of the model. 展开更多
关键词 gravel pack sand control deep bed filtration visual experiment particle trajectory
下载PDF
A study on impacts of groundwater seepage on artificial freezing process of gravel strata
13
作者 Tianliang Wang Ya-Meng He +1 位作者 Zhen Wu Jun-jun Li 《Railway Sciences》 2023年第1期1-12,共12页
Purpose–This paper aims to study the impacts of groundwater seepage on artificial freezing process of gravel strata,the temperature field characteristics of the strata,and the strata process,closure time and thicknes... Purpose–This paper aims to study the impacts of groundwater seepage on artificial freezing process of gravel strata,the temperature field characteristics of the strata,and the strata process,closure time and thickness evolution mechanism of the frozen wall.Design/methodology/approach–In this paper several laboratory model tests were conducted,considering different groundwater seepage rate.Findings–The results show that there is a significant coupling effect between the cold diffusion of artificial freezing pipes and groundwater seepage;when there is no seepage,temperature fields upstream and downstream of the gravel strata are symmetrically distributed,and the thickness of the frozen soil column/frozen wall is consistent during artificial freezing;groundwater seepage causes significant asymmetry in the temperature fields upstream and downstream of the gravel strata,and the greater the seepage rate,the more obvious the asymmetry;the frozen wall closure time increases linearly with the increase in the groundwater seepage rate,and specifically,the time length under seepage rate of 5.00 m d1 is 3.2 times longer than that under no seepage;due to the erosion from groundwater seepage,the thickness of the upstream frozen wall decreases linearly with the seepage velocity,while that of the downstream frozen wall increases linearly,resulting in a saddle-shaped frozen wall.Originality/value–The research results are beneficial to the optimum design and risk control of artificial freezing process in gravel strata. 展开更多
关键词 Underground works gravel strata Temperature field Groundwater seepage Artificial freezing Frozen wall
下载PDF
Effects of Different Thicknesses of Gravel Covering on Daily Soil Evaporation 被引量:1
14
作者 周约 谢铁娜 《Agricultural Science & Technology》 CAS 2015年第10期2347-2349,2353,共4页
[Objective] The research aimed to explore the most suitable gravel cover- ing thickness for selenium sand melon in arid region of central Ningxia. [Method] The natural gravel, which was from Nanshantai Region in Zhong... [Objective] The research aimed to explore the most suitable gravel cover- ing thickness for selenium sand melon in arid region of central Ningxia. [Method] The natural gravel, which was from Nanshantai Region in Zhongwei City, Ningxia, was acted as test materials to study the effects of different thicknesses of gravel covering on daily evaporation using evaporator overall weighing method. [Result] The daily evaporation capacity order of the gravel covering thickness was as follows: CK〉HI(5 cm)〉 H2(8 cm)〉 H3(10 cm)〉 H4(15 cm). Meanwhile, with the increase of test days, the difference of cumulative evaporation capacity between H3 (10 cm) and H4 (15 cm) decreased gradually. Soil evaporation capacity reduced at the pow- er function with the increase of gravel covering thickness, and the decision coeffi- cient of the fitted curve reached to 0.925 5. [Conclusion] With the increase of gravel covering thickness, evaporation capacity of soil reduced gradually, and the soil water content increased gradually. Gravel covering could effectively reduce the evapora- tion. The thicker of covering, the more obvious inhibition effect on evaporation. The thickness of covering should increase moderately to prevent moisture loss from e- vaporation. Gravel inhibition effect on the evaporation wasn't obvious when the gravel covering thickness reached more than 10 cm. 10 cm gravel covering was the most appropriate thickness for local natural condition. The soil evaporation capacity along with the change of gravel covering could be simulated with power function e- quation Y=at^b. 展开更多
关键词 Thickness gravel covering Soil evaporation
下载PDF
Effects of Different Gravel Mulched Years on Soil Microbial Flora and Physical and Chemical Properties in Gravelsand Mulched Fields 被引量:1
15
作者 Pang Lei Lu Jianlong +3 位作者 Zhou Maoxian Xiao Honglang Fan Zhilong Chai Shouxi 《Meteorological and Environmental Research》 CAS 2018年第1期75-82,共8页
Soil microbial flora and influencing factors of soil microbes in soil and gravel-sand mixed layer( SGSML),roots denseness layer( RDL),eluviate layer( EL) and calcium accumulation layer( CAL) in gravel-sand mul... Soil microbial flora and influencing factors of soil microbes in soil and gravel-sand mixed layer( SGSML),roots denseness layer( RDL),eluviate layer( EL) and calcium accumulation layer( CAL) in gravel-sand mulched fields( GSMFs) with different gravel mulched years( 1,6,12,19 and 25 years) were studied. The results showed that in the composition of soil microbes in the GSMFs,the quantity of bacteria was the largest,followed by actinomycetes,while the number of fungi was the smallest. The total quantity of soil microorganisms in the GSMFs dropped rapidly with the increase of soil depth,which was related to the sudden decrease in the quantity of bacteria. The number of microbes in the RDL was larger than that in the SGSML with few roots due to the effects of root distribution. The number of bacteria and actinomycete in the growing season was larger than that in the non-growing season,while the quantity of fungi in the growing season was smaller than that in the non-growing season. The quantity of bacteria and fungi was the largest in the GSMFs which had been mulched with gravel for 6-12 years. With the increase of mulching time,the GSMFs aged gradually,so their quantity reduced gradually. The quantity of actinomycetes was the smallest in the GSMFs which had been mulched with gravel for 6-12 years and increased with the increase of mulching time. The number of soil microbes in the GSMFs had a good correlation with soil moisture content,p H and mulching time. Soil total carbon content was an important factor restricting the quantity of soil microbes in the GSMFs. 展开更多
关键词 Arid and semi-arid areas gravel-sand mulched fields (GSMFs) Different gravel mulched years Soil microbes Environmental factors
下载PDF
G(E)法与Gravel法处理能谱-剂量转换效果研究 被引量:4
16
作者 张驰 王玉东 +1 位作者 周荣 杨朝文 《核电子学与探测技术》 北大核心 2017年第3期268-273,共6页
为准确地得到γ射线的辐射剂量,对G(E)函数法和Gravel算法处理能谱-剂量的转换效果进行了研究。根据实际应用需求,采取蒙特卡罗方法模拟获取了?50 mm×50 mm NaI(Tl)探测器的Gravel法响应矩阵,并使用Matlab得到探测器的G(E)函数。使... 为准确地得到γ射线的辐射剂量,对G(E)函数法和Gravel算法处理能谱-剂量的转换效果进行了研究。根据实际应用需求,采取蒙特卡罗方法模拟获取了?50 mm×50 mm NaI(Tl)探测器的Gravel法响应矩阵,并使用Matlab得到探测器的G(E)函数。使用NaI(Tl)探测器和多道谱仪系统测量标准源的能谱,分别使用G(E)法和Gravel法计算剂量值并与理论值进行比较,同时在计算过程中总结对比了两种方法的特点。 展开更多
关键词 NA I(Tl)探测器 γ剂量 G(E)函数 gravel算法
下载PDF
Long-term effects of gravel―sand mulch on soil organic carbon and nitrogen in the Loess Plateau of northwestern China 被引量:10
17
作者 Yang QIU ZhongKui XIE +2 位作者 YaJun WANG Sukhdev S MALHI JiLong REN 《Journal of Arid Land》 SCIE CSCD 2015年第1期46-53,共8页
Gravel-sand mulch has been used for centuries to conserve water in the Loess Plateau of north- western China. In this study, we assessed the influence of long-term (1996-2012) gravel-sand mulching of cultiv- ated so... Gravel-sand mulch has been used for centuries to conserve water in the Loess Plateau of north- western China. In this study, we assessed the influence of long-term (1996-2012) gravel-sand mulching of cultiv- ated soils on total organic carbon (TOC), light fraction organic carbon (LFOC), microbial biomass carbon (MBC), total organic nitrogen (TON), particulate organic carbon (POC), mineral-associated organic carbon (MOC), perma- nganate-oxidizable carbon (KMnO4-C), and non-KMnO4-C at 0-60 cm depths. Mulching durations were 7, 11 and 16 years, with a non-mulched control. Compared to the control, there was no significant and consistently positive effect of the mulch on TOC, POC, MOC, KMnO4-C and non-KMnO4-C before 11 years of mulching, and these organic C fractions generally decreased significantly by 16 years. LFOC, TON and MBC to at a 0-20 cm depth in- creased with increasing mulching duration until 11 years, and then these fractions decreased significantly between 11 and 16 years, reaching values comparable to or lower than those in the control. KMnO4-C was most strongly correlated with the labile soil C fractions. Our findings suggest that although gravel-sand mulch may conserve soil moisture, it may also lead to long-term decreases in labile soil organic C fractions and total organic N in the study area. The addition of manure or composted manure would be a good choice to reverse the soil deterioration that occurs after 11 years by increasing the inputs of organic matter. 展开更多
关键词 gravel mulch mulching duration permanganate-oxidizable carbon light fraction organic carbon microbial biomass carbon
下载PDF
Frost heave control of fine round gravel fillings in deep seasonal frozen regions 被引量:13
18
作者 ZuRun Yue TianLiang Wang +1 位作者 Chao Ma TieCheng Sun 《Research in Cold and Arid Regions》 CSCD 2013年第4期425-432,共8页
Fine round gravel soil is widely employed in the subgrade of high and thawing. The lower the fines content in fine round gravel soil, but compaction difficulty increases. This study is to obtain the speed railways in ... Fine round gravel soil is widely employed in the subgrade of high and thawing. The lower the fines content in fine round gravel soil, but compaction difficulty increases. This study is to obtain the speed railways in cold regions to prevent frost heaving the smaller the quantities of frost heaving and thawing, optimum fines content and limited frost heaving and thawing. The fine round gravel soil filling (FRGSF) used in the Harbin-Qiqihaer Passenger Dedicated Line is taken as the study object. Influence of fines content on optimum water content, maximum dry density and frost heaving properties of FRGSF were studied by means of compaction and frost heaving tests. Results show that the maximum dry density of the FRGSF increases first and then decreases with an increase of fines content, namely there is an optimum fines content for easy compaction. The method of surface-vibratory instrument is fit for coarse-grained soils, and wet state of coarse-grained soil is in favor of compaction. Considering the relationship of fines content with maximum dry density and the frost heaving ratio of FRGSF, the fines content should be limited to within the range of 9%-10%, so that the frost heaving ratio is less than 1%, and the FRGSF is easily compacted. Water supply is proved to be an important factor influencing the amount of frost heaving of FRGSF. We also conclude that in the field, it is imperative to control waterproofing and drainage measures. 展开更多
关键词 cold regions fine round gravel soil filling frost heaving ratio compaction properties
下载PDF
Mechanisms involved in triggering debris flows,within a cohesive gravel soil mass on a slope:a case in SW China 被引量:6
19
作者 CHEN Ning-sheng ZHU Yun-hua +3 位作者 HUANG Qi IQBAL Javed DENG Ming-feng HE Na 《Journal of Mountain Science》 SCIE CSCD 2017年第4期611-620,共10页
The triggering mechanisms of debris flows were explored in the field using artificial rainfall experiments in two gullies, Dawazi Gully and Aizi Gully, in Yunnan and Sichuan Provinces, China,respectively. The soils at... The triggering mechanisms of debris flows were explored in the field using artificial rainfall experiments in two gullies, Dawazi Gully and Aizi Gully, in Yunnan and Sichuan Provinces, China,respectively. The soils at both sites are bare, loose and cohesive gravel-dominated. The results of a direct shear test, rheological test and back-analysis using soil mass stability calculations indicate that the mechanisms responsible for triggering debris flows involved the decreases in static and dynamic resistance of the soil. The triggering processes can be divided into 7 stages: rainfall infiltration, generation of excess runoff, high pore water pressure, surface erosion, soil creep, soil slipping, debris flow triggering and debris flow increment. In addition, two critical steps are evident:(i) During the process of the soil mass changing from a static to a mobile state, its cohesion decreased sharply(e.g., the cohesion of the soil mass in Dawazi Gully decreased from 0.520 to0.090 k Pa, a decrease of 83%). This would have reduced the soil strength and the kinetic energy during slipping, eventually triggered the debris flow.(ii) When the soil mass began to slip, the velocity and the volume increment of the debris flow fluctuated as a result of the interaction of soil resistance and the sliding force. The displaced soil mass from the source area of the slope resulted in the deposition of a volume of soil more than 7-8 times greater than that in the source area. 展开更多
关键词 Debris flow Cohesive gravel soil Triggering mechanism Slip Soil erosion
下载PDF
Effects of temperature and age on physico-mechanical properties of cemented gravel sand backfills 被引量:5
20
作者 JIANG Fei-fei ZHOU Hui +2 位作者 SHENG Jia KOU Yong-yuan LI Xiang-dong 《Journal of Central South University》 SCIE EI CAS CSCD 2020年第10期2999-3012,共14页
Cemented backfill used in deep mines would inevitably be exposed to the ambient temperature of 20−60℃in the next few decades.In this paper,two types of cemented gravel sand backfills,cemented rod-mill sand backfill(C... Cemented backfill used in deep mines would inevitably be exposed to the ambient temperature of 20−60℃in the next few decades.In this paper,two types of cemented gravel sand backfills,cemented rod-mill sand backfill(CRB)and cemented gobi sand backfill(CGB),were prepared and cured at various temperatures(20,40,60℃)and ages(3,7,28 d),and the effects of temperature and age on the physico-mechanical properties of CRB and CGB were investigated based on laboratory tests.Results show that:1)the effects of temperature and age on the physico-mechanical properties of backfills mainly depend on the amount of hydration products and the refinement of cementation structures.The temperature has a more significant effect on thermal expansibility and ultrasonic performance at early ages.2)The facilitating effect of temperature and age on the compressive strength of CGB is higher than that on CRB.With the increase of temperature,the compressive failure modes changed from X-conjugate shear failure to tensile failure,and the integrity of specimens was significantly improved.3)Similarly,the shear performance of CGB is generally better than that of CRB.The temperature has a weaker effect on shear strength than age,but the shear deformation and shear plane morphology are closely related to temperature. 展开更多
关键词 cemented backfill gravel sand TEMPERATURE physico-mechanical properties deformation characteristics
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部