Common ways of disposing waste plastic such as incineration and landfilling have negative impacts on the environment. Partial replacement of natural aggregate in concrete with waste plastic including polyethylene tere...Common ways of disposing waste plastic such as incineration and landfilling have negative impacts on the environment. Partial replacement of natural aggregate in concrete with waste plastic including polyethylene terephthalate (PET) is more environmental friendly and sustainable. The effect of adding 5% to 20% waste plastic by volume of natural coarse aggregate (“gravel”) and plastic particle size (3 to 7 mm) on the density and compressive strength of plastic-concrete mix after 28 days of curing was studied. The results showed that density of the concrete decreased from 2406.7 to 2286.7 kg/m3 as waste plastic increased from 5% to 20% v/v compared with 2443.3 kg/m3 recorded by concrete without waste plastic. Change in particle size from 3 to 7 mm has no significant effect on the density of the plastic-concrete mix. The compressive strength decreased as the volume and particle size of waste plastic increased. When waste plastic volume changed from 5% to 20% v/v, the compressive strength decreased from 20.5 to 15 MPa, 18.6 to 14.3 MPa and 17.2 to 13.8 MPa for 3, 5 and 7 mm waste plastic particle size respectively while the concrete without plastic has 21.33 MPa. Therefore, the addition of 5% (v/v gravel) of flaky waste plastic in the concrete produces a lightweight concrete which could offer economic benefit without substantially reducing the compressive strength of the plastic-concrete mix.展开更多
Drought is one of the main factors limiting the agricultural planting and production;gravel mulching is an effective inhibiting evaporation and water-saving planting pattern in the arid regions. In this study, experim...Drought is one of the main factors limiting the agricultural planting and production;gravel mulching is an effective inhibiting evaporation and water-saving planting pattern in the arid regions. In this study, experiments were conducted to study soil moisture effect and regression model with different gravel mulching, the soil moisture content and evaporation were compared that gravel mulched with different particle sizes, different thickness layer and different mulched years. The results showed that: 1) The cumulative soil evaporation of gravel mulched was only 29.3% of that bare fields. Mulching gravel could significantly reduce soil moisture evaporation. 2) The effects of inhibiting soil moisture evaporation are the best when mulch gravel thickness is 10 - 15 cm. 3) The particle size of gravel mulched is smaller, the evaporation inhibition effect will be better. Considering the water holding capacity and material economy, it is the most suitable to mulch gravel with the particle size of 3 - 5 cm. 4) Mulching gravel on the soil surface for 1 - 3 years can improve the soil moisture content. However, the gravel was mulched for more than five years, the soil moisture content decreased significantly. 5) The quadratic polynomial regression fitting model can better simulate and predict the cumulative evaporation on different gravel mulched, and the regression fitting degree R<sup>2</sup> is more than 0.98.展开更多
文摘Common ways of disposing waste plastic such as incineration and landfilling have negative impacts on the environment. Partial replacement of natural aggregate in concrete with waste plastic including polyethylene terephthalate (PET) is more environmental friendly and sustainable. The effect of adding 5% to 20% waste plastic by volume of natural coarse aggregate (“gravel”) and plastic particle size (3 to 7 mm) on the density and compressive strength of plastic-concrete mix after 28 days of curing was studied. The results showed that density of the concrete decreased from 2406.7 to 2286.7 kg/m3 as waste plastic increased from 5% to 20% v/v compared with 2443.3 kg/m3 recorded by concrete without waste plastic. Change in particle size from 3 to 7 mm has no significant effect on the density of the plastic-concrete mix. The compressive strength decreased as the volume and particle size of waste plastic increased. When waste plastic volume changed from 5% to 20% v/v, the compressive strength decreased from 20.5 to 15 MPa, 18.6 to 14.3 MPa and 17.2 to 13.8 MPa for 3, 5 and 7 mm waste plastic particle size respectively while the concrete without plastic has 21.33 MPa. Therefore, the addition of 5% (v/v gravel) of flaky waste plastic in the concrete produces a lightweight concrete which could offer economic benefit without substantially reducing the compressive strength of the plastic-concrete mix.
文摘Drought is one of the main factors limiting the agricultural planting and production;gravel mulching is an effective inhibiting evaporation and water-saving planting pattern in the arid regions. In this study, experiments were conducted to study soil moisture effect and regression model with different gravel mulching, the soil moisture content and evaporation were compared that gravel mulched with different particle sizes, different thickness layer and different mulched years. The results showed that: 1) The cumulative soil evaporation of gravel mulched was only 29.3% of that bare fields. Mulching gravel could significantly reduce soil moisture evaporation. 2) The effects of inhibiting soil moisture evaporation are the best when mulch gravel thickness is 10 - 15 cm. 3) The particle size of gravel mulched is smaller, the evaporation inhibition effect will be better. Considering the water holding capacity and material economy, it is the most suitable to mulch gravel with the particle size of 3 - 5 cm. 4) Mulching gravel on the soil surface for 1 - 3 years can improve the soil moisture content. However, the gravel was mulched for more than five years, the soil moisture content decreased significantly. 5) The quadratic polynomial regression fitting model can better simulate and predict the cumulative evaporation on different gravel mulched, and the regression fitting degree R<sup>2</sup> is more than 0.98.