Three A10 absolute gravimeters(AGs) were first acquired in China by the Hubei Earthquake Agency under the Belt and Road Seismic Monitoring Network Project. Although AG measuring and testing technique is not new, the p...Three A10 absolute gravimeters(AGs) were first acquired in China by the Hubei Earthquake Agency under the Belt and Road Seismic Monitoring Network Project. Although AG measuring and testing technique is not new, the purchase and simultaneous testing of 3 A10 absolute gravimeters is unprecedented in China. This study conducted the first acceptance testing of the AGs at 3 locations(the Jiufengshan Gravity Observation Station, the Global Navigation Satellite System Observation Station in Wuhan, and the Jiugongshan Observation Station in Xianning). The results were compared using a method based on expert validation, and the acceptance testing scheme was formulated by referring to the Technical Regulations for Tectonic Environment Monitoring Networks in China and Specifications for Gravimetry Control. Based on the repeatability, precision, and consistency of the measured g values, the results from each instrument were evaluated using the air pressure precision test. Comparing the instrument reference values, the final test results can identify the indicator parameters for 3 A10 AGs, the effects of the surrounding environment, and the related parameters on measurement precision. The precision of A10-059, A10-058, and A10-057 exceeded 0.78 μGal, 0.79 μGal, and 0.42 μGal, respectively.This testing scheme can be used as a reference for conducting acceptance testing of AGs in the future and obtaining absolute gravimetric measurements.展开更多
The vibration interference of the reference corner cube runs through the free flight process of the free-falling corner cube,which is superimposed on the whole laser interference fringes.Thus,it is necessary to solve ...The vibration interference of the reference corner cube runs through the free flight process of the free-falling corner cube,which is superimposed on the whole laser interference fringes.Thus,it is necessary to solve the interference fringes with the entire fringe to analyze the quantitative influence of vibration on gravity measurements.展开更多
The Earth’s Free Core Nutation(FCN) causes Earth tides and forced nutation with frequencies close to the FCN that exhibit resonance effects.High-precision superconducting gravimeter(SG) and very long baseline interfe...The Earth’s Free Core Nutation(FCN) causes Earth tides and forced nutation with frequencies close to the FCN that exhibit resonance effects.High-precision superconducting gravimeter(SG) and very long baseline interferometry(VLBI) provide good observation techniques for detecting the FCN parameters.However,some choices in data processing and solution procedures increase the uncertainty of the FCN parameters.In this study,we analyzed the differences and the effectiveness of weight function and ocean tide corrections in the FCN parameter detection using synthetic data,SG data from thirty-one stations,and the 10 celestial pole offset(CPO) series.The results show that significant discrepancies are caused by different computing options for a single SG station.The stacking method,which results in a variation of0.24-5 sidereal days(SDs) in the FCN period(T) and 10^(3)-10^(4) in the quality factor(Q) due to the selection of the weighting function and the ocean tide model(OTM),can effectively suppress this influence.The statistical analysis results of synthetic data shows that although different weight choices,while adjusting the proportion of diurnal tidal waves involved,do not significantly improve the accuracy of fitted FCN parameters from gravity observations.The study evaluated a series of OTMs using the loading correction efficiency.The fitting of FCN parameters can be improved by selecting the mean of appropriate OTMs based on the evaluation results.Through the estimation of the FCN parameters based on the forced nutation,it was found that the weight function P_(1) is more suitable than others,and different CPO series(after 2009) resulted in a difference of 0.4 SDs in the T and of 103 in the Q.We estimated the FCN parameters for SG(T=430.4±1.5 SDs and Q=1.52×10^(4)±2.5×10^(3)) and for VLBI(T=429.8±0.7 SDs,Q=1.88×10^(4)±2.1×10^(3)).展开更多
基金supported by the Open Fund of Wuhan,Gravitation and Solid Earth Tides,National Observation and Research Station (No. WHYWZ202214)the Scientific Research Fund of Institute of Seismology and Institute of Crustal Dynamics,China Earthquake Administration (Grant No.IS202236336, No. IS202226326)+1 种基金the Researchof Hubei Earthquake Agency (No. 2022HBJJ039)the National Natural Science Foundation of China (No. 41774093)
文摘Three A10 absolute gravimeters(AGs) were first acquired in China by the Hubei Earthquake Agency under the Belt and Road Seismic Monitoring Network Project. Although AG measuring and testing technique is not new, the purchase and simultaneous testing of 3 A10 absolute gravimeters is unprecedented in China. This study conducted the first acceptance testing of the AGs at 3 locations(the Jiufengshan Gravity Observation Station, the Global Navigation Satellite System Observation Station in Wuhan, and the Jiugongshan Observation Station in Xianning). The results were compared using a method based on expert validation, and the acceptance testing scheme was formulated by referring to the Technical Regulations for Tectonic Environment Monitoring Networks in China and Specifications for Gravimetry Control. Based on the repeatability, precision, and consistency of the measured g values, the results from each instrument were evaluated using the air pressure precision test. Comparing the instrument reference values, the final test results can identify the indicator parameters for 3 A10 AGs, the effects of the surrounding environment, and the related parameters on measurement precision. The precision of A10-059, A10-058, and A10-057 exceeded 0.78 μGal, 0.79 μGal, and 0.42 μGal, respectively.This testing scheme can be used as a reference for conducting acceptance testing of AGs in the future and obtaining absolute gravimetric measurements.
基金funded by Hebei Key Laboratory of Seismic Disaster Instrument and Monitoring Technology(Grant No.FZ224201)National Key Research and Development Project(Grant No.2022YFC2204301)the Special Fund of the Institute of Earthquake Forecasting,China Earthquake Administration(Grant No.CEAIEF2022030105).
文摘The vibration interference of the reference corner cube runs through the free flight process of the free-falling corner cube,which is superimposed on the whole laser interference fringes.Thus,it is necessary to solve the interference fringes with the entire fringe to analyze the quantitative influence of vibration on gravity measurements.
基金supported by the Open Fund of Hubei Luojia Laboratory (No. 220100033)the Strategic Priority Research Program of Chinese Academy of Sciences (Grant No. XDB41000000)+1 种基金National Natural Science Foundation of China (Grant Nos. 42174108, 41874094, 42192535 and 42242015)the Young Top-notch Talent Cultivation Program of Hubei Province。
文摘The Earth’s Free Core Nutation(FCN) causes Earth tides and forced nutation with frequencies close to the FCN that exhibit resonance effects.High-precision superconducting gravimeter(SG) and very long baseline interferometry(VLBI) provide good observation techniques for detecting the FCN parameters.However,some choices in data processing and solution procedures increase the uncertainty of the FCN parameters.In this study,we analyzed the differences and the effectiveness of weight function and ocean tide corrections in the FCN parameter detection using synthetic data,SG data from thirty-one stations,and the 10 celestial pole offset(CPO) series.The results show that significant discrepancies are caused by different computing options for a single SG station.The stacking method,which results in a variation of0.24-5 sidereal days(SDs) in the FCN period(T) and 10^(3)-10^(4) in the quality factor(Q) due to the selection of the weighting function and the ocean tide model(OTM),can effectively suppress this influence.The statistical analysis results of synthetic data shows that although different weight choices,while adjusting the proportion of diurnal tidal waves involved,do not significantly improve the accuracy of fitted FCN parameters from gravity observations.The study evaluated a series of OTMs using the loading correction efficiency.The fitting of FCN parameters can be improved by selecting the mean of appropriate OTMs based on the evaluation results.Through the estimation of the FCN parameters based on the forced nutation,it was found that the weight function P_(1) is more suitable than others,and different CPO series(after 2009) resulted in a difference of 0.4 SDs in the T and of 103 in the Q.We estimated the FCN parameters for SG(T=430.4±1.5 SDs and Q=1.52×10^(4)±2.5×10^(3)) and for VLBI(T=429.8±0.7 SDs,Q=1.88×10^(4)±2.1×10^(3)).