Previously, the gravitational lens of a wormhole was introduced by various researchers. Their treatment was focused basically on the lens signature that describes wormhole geometrical character such as the differences...Previously, the gravitational lens of a wormhole was introduced by various researchers. Their treatment was focused basically on the lens signature that describes wormhole geometrical character such as the differences from a black hole or between any various types of wormhole models. The braneworld scenario provides the idea of spacetime with underlying extra-dimensions. The inclusion of extra-dimensional terms in the lens object spacetime line element will result in some variation in the expression for its gravitational lens deflection angle. Thus in this paper we investigate such variation by deriving this deflection angle expression. As such, this paper not only shows the existence of such variation but also suggests the potential utilization of gravitational lensing to prove the existence of extra dimensions by studying the deflection angle characteristic in accordance with the spacetime expansion rate of the universe.展开更多
We calculate the gravitational lensing probabilities by cold dark matter (CDM) halos with different density profiles, and compare them with current observations from the Cosmic Lens All-Sky Survey (CLASS) and the Jodr...We calculate the gravitational lensing probabilities by cold dark matter (CDM) halos with different density profiles, and compare them with current observations from the Cosmic Lens All-Sky Survey (CLASS) and the Jodrell-Bank VLA Astrometric Survey (JVAS). We find that the lensing probability is dramatically sensitive to the clumping of the dark matter, or quantitatively, the concentration parameter. We also find that our predicted lensing probabilities in most cases show inconsistency with the observations. It is argued that high lensing probability may not be an effective tool for probing the statistical properties of inner structures of dark matter halos.展开更多
We investigate the linear amplitude of mass fluctuations in the universe, σ8, and the present mass density parameter of the Universe, Ωm, from statistical strong gravitational lensing. We use the two population mode...We investigate the linear amplitude of mass fluctuations in the universe, σ8, and the present mass density parameter of the Universe, Ωm, from statistical strong gravitational lensing. We use the two population model of lens halos with fixed cooling mass scale Mc = 3×1013h-1M⊙ to match the observed lensing probabilities, and leave σ8 orΩm as a free parameter to be constrained by the data. Another varying parameter, the equation of state of dark energy ω, and its typical values of -1, -2/3, -1/2 and -1/3 are investigated. We find that σ8 is degenerate with Ωm in a way similar to that suggested by present day cluster abundance as well as cosmic shear lensing measurements: σ8Ω0.6m≈0.33. However, both σ8≤0.7 and Ωm≤0.2 can be safely ruled out, the best fit is when σ8 = 1.0, Ωm = 0.3 and ω= - 1. This result is different from that obtained by Bahcall & Bode, who gave σ8 = 0.98±0.1 and Ωm = 0.17 ±0.05. For σ8 = 1.0, the higher value ofΩm = 0.35 requires ω = -2/3 and Ωm = 0.40 requires ω= -1/2.展开更多
N-body simulations predict that dark matter halos with different mass scales are described by a universal model, the Navarro-Frenk-White (NFW) den- sity profiles. As a consequence of baryonic cooling effects, these ...N-body simulations predict that dark matter halos with different mass scales are described by a universal model, the Navarro-Frenk-White (NFW) den- sity profiles. As a consequence of baryonic cooling effects, these halos will become more concentrated, and similar to an isothermal sphere over a large range in radii (~ 300 h-1 kpc). The singular isothermal sphere (SIS) model however has to be trun- cated artificially at large radii since it extends to infinity. We model a massive galaxy halo as a combination of an isothermal sphere and an NFW density profile. We give an approximation for the mass concentration at different baryon fractions and present exact expressions for the weak lensing shear and flexion for such a halo. We compare the lensing properties with the SIS and NFW profiles. We find that the combined pro- file can generate higher order lensing signals at small radii and is more efficient in generating strong lensing events. In order to distinguish such a halo profile from the SIS or NFW profiles, one needs to combine strong and weak lensing constraints for small and large radii.展开更多
We investigate the potential of constraining the mass to light ratio of field galaxies using weak lensing shear and flexions. A suite of Monte Carlo simulations are used to generate weak lensing observations with diff...We investigate the potential of constraining the mass to light ratio of field galaxies using weak lensing shear and flexions. A suite of Monte Carlo simulations are used to generate weak lensing observations with different noise models. Using mock data, we find that the inclusion of flexions can improve the estimate of foreground halo parameters, but the details are strongly dependent on noise in the model. In the intrinsic noise limit, both shear and flexions are promising tools to study the mass to light ratio of galaxies. However, if the noise model of flexions follows the form described by Rowe et al., there is only - 5% improvement in the constraints even with next generation lensing observations.展开更多
We explore degeneracies in strong lensing model so to make time delay data consistent with the WMAP (Wilkinson Microwave Anisotropy Probe) cosmology. Previous models using a singular isothermal lens often yield a ti...We explore degeneracies in strong lensing model so to make time delay data consistent with the WMAP (Wilkinson Microwave Anisotropy Probe) cosmology. Previous models using a singular isothermal lens often yield a time delay between the observed multiple images too small than the observed value if we "hardwire" the now widely quoted post-WMAP "high" value of the Hubble constant (Ho ~71 ± 4km s^-1 Mpc^-1). Alternatively, the lens density profile (star plus dark matter) is required to be locally steeper than r-2 (isothermal) profile near the Einstein radius (of the order 3 kpc) to fit the time delays; a naive extrapolation of a very steep profile to large radius would imply a lens halo with a scale length of the order only 3 kpc, too compact to be consistent with CDM. We explore more sophisticated, mathematically smooth, positive lens mass density profiles which are consistent with a large halo and the post-WMAP H0. Thanks to the spherical monopole degeneracy, the "reshuffling" of the mass in a lens model does not affect the quality of the fit to the image positions, amplifications, and image time delays. Even better, unlike the better-known mass sheet degeneracy, the stellar mass-to-light and the H0 value are not affected either. We apply this monopole degeneracy to the quadruple imaged time-delay system PG 1115+080. Finally we discuss the implications of the time delay data on the newly proposed relativistic MOND theory.展开更多
Galaxy clusters present unique advantages for cosmological study.Here we collect a new sample of 10 lensing galaxy clusters with X-ray observations to constrain cosmological parameters.The redshifts of the lensing clu...Galaxy clusters present unique advantages for cosmological study.Here we collect a new sample of 10 lensing galaxy clusters with X-ray observations to constrain cosmological parameters.The redshifts of the lensing clusters lie between 0.1 and 0.6,and the redshift range of their arcs is from 0.4 to 4.9.These clusters are selected carefully from strong gravitational lensing systems which have both X-ray satellite observations and optical giant luminous arcs with known redshifts.Giant arcs usually appear in the central region of clusters,where mass can be traced with luminosity quite well.Based on gravitational lensing theory and a cluster mass distribution model,we can derive a ratio using two angular diameter distances.One is the distance between lensing sources and the other is that between the deflector and the source. Since angular diameter distance relies heavily on cosmological geometry,we can use these ratios to constrain cosmological models.Moreover,X-ray gas fractions of galaxy clusters can also be a cosmological probe.Because there are a dozen parameters to be fitted,we introduce a new analytic algorithm,Powell's UOBYQA(Unconstrained Optimization By Quadratic Approximation) ,to accelerate our calculation.Our result demonstrates that this algorithm is an effective fitting method for such a continuous multi-parameter constraint.We find an interesting fact that these two approaches are separately sensitive toΩΛandΩM.By combining them,we can get reasonable fitting values of basic cosmological parameters:ΩM=0.26 +0.04 -0.04,andΩΛ=0.82 +0.14 -0.16.展开更多
Considering corrections to all orders in the Planck length on the quantum state density from the generalized uncertainty principle and using the quantum state density to all degrees of freedom including extra dimensio...Considering corrections to all orders in the Planck length on the quantum state density from the generalized uncertainty principle and using the quantum state density to all degrees of freedom including extra dimensions, we calculate the statistical entropy of the scalar field in the higher-dimensional static spherically symmetric black hole spacetime without any artificial cutoff. Calculation shows that the entropy is proportional to the horizon area. The coefficient of proportionality is 1/4 when the minimal length parameter is selected appropriately.展开更多
The neutron star motions are based on the undisturbed finitely thick galactic disk gravitational potential model. Two initial conditions, i.e. the locations and velocities, are considered. The Monte Carlo method is em...The neutron star motions are based on the undisturbed finitely thick galactic disk gravitational potential model. Two initial conditions, i.e. the locations and velocities, are considered. The Monte Carlo method is employed to separate rich diversities of the orbits of neutron stars into several sorts. The Poineare section has the potential to play an important role in the diagnosis of the neutron star motion. It has been observed that the increasing ratio of the motion range vertical to the galactic plane to that parallel to the galactic plane results in the irregularity of neutron star motion.展开更多
We readdress the outstanding cluster mass discrepancy between strong and weak gravitational lensing techniques utilizing updated data of both giant arcs and weak lensing measurements from the literature. We find that ...We readdress the outstanding cluster mass discrepancy between strong and weak gravitational lensing techniques utilizing updated data of both giant arcs and weak lensing measurements from the literature. We find that the systematically higher values of cluster masses revealed by strong lensing can be attributed to the oversimplification of the lensing model when estimating the cluster mass enclosed within the giant arcs. This arises because inhomogeneities and substructures in the central cores of clusters may invalidate the spherical symmetry assumption used widely in previous applications. When a more realistic modeling of the arcs is used, then the masses by strong lensing agree fairly well with those given by weak lensing when both are extrapolated to the same cluster regions. We conclude that as of now no significant discrepancy has been found among different cluster mass estimators including optical galaxies, X-ray gas and lensing.展开更多
As we now know, there are at least two major difficulties with general rel- ativity (GR). The first one is related to its incompatibility with quantum mechanics, in the absence of a consistent, widely accepted theor...As we now know, there are at least two major difficulties with general rel- ativity (GR). The first one is related to its incompatibility with quantum mechanics, in the absence of a consistent, widely accepted theory that combines the two theo- ries. The second problem is related to the requirement of the dark sectors-inflaton, dark matter and dark energy by the energy-stress tensor, which are needed to explain a variety of astronomical and cosmological observations. Research has indicated that the dark sectors themselves do not have any non-gravitational or laboratory evidence. Moreover, the dark energy poses, in addition, a serious confrontation between funda- mental physics and cosmology. Guided by theoretical and observational evidences, we are led to an idea that the source of gravitation and its manifestation in GR should be modified. The result is in striking agreement with not only the theory, but also the ob- servations, without requiring the dark sectors of the standard approach. Additionally, it provides natural explanations to some unexplained puzzles.展开更多
One of the main goals of modern cosmic microwave background (CMB) missions is to measure the tensor-to-scalar ratio r accurately to constrain inflation models. Due to ignorance about the reionization history Xe (z...One of the main goals of modern cosmic microwave background (CMB) missions is to measure the tensor-to-scalar ratio r accurately to constrain inflation models. Due to ignorance about the reionization history Xe (z), this analysis is usu- ally done by assuming an instantaneous reionization Xe (z) which, however, can bias the best-fit value of r. Moreover, due to the strong mixing of B-mode and E-mode polarizations in cut-sky measurements, multiplying the sky coverage fraction fsky by the full-sky likelihood would not give satisfactory results. In this work, we forecast constraints on r for the Planck mission taking into account the general reionization scenario and cut-sky effects. Our results show that by applying an N-point interpo- lation analysis to the reionization history, the bias induced by the assumption of in- stantaneous reionization is removed and the value of r is constrained within 5% error level, if the true value of r is greater than about 0.1.展开更多
We study the statistics of large-separation multiply-imaged quasars lensed by clusters of galaxies. In particular, we examine how the observed brightest cluster galaxies (BCGs) affect the predicted numbers of wide-s...We study the statistics of large-separation multiply-imaged quasars lensed by clusters of galaxies. In particular, we examine how the observed brightest cluster galaxies (BCGs) affect the predicted numbers of wide-separation lenses. We model the lens as an NFW-profiled dark matter halo with a truncated singular isothermal sphere to represent the BCG in its center. We mainly make predictions for the Sloan Digital Sky Survey Quasar Lens Search (SQLS) sample from the Data Release 5 (DRS) in two standard ACDM cosmological models: a model with matter density ΩM = 0.3 and δ8 = 0.9, as is usually adopted in the literature (ACDM1), and a model suggested by the WMAP seven-year (WMAPT) data with ΩM = 0.266 and δ8 = 0.801. We also study the lensing properties for the WMAP3 cosmology in order to compare with the previous work. We find that BCGs in the centers of clusters significantly enhance the lensing efficiency by a factor of 2 - 3 compared with that of NFW-profiled pure dark matter halos. In addition, the dependence of mass ratios of BCGs to their host halos on the host halo masses reduces the lensing rate by - 20% from assuming a constant ratio as in previous studies, but considering the evolution of this ratio with redshift out to z - 1 would reduce it by - 3%. Moreover, we predict that the numbers of lensed quasars with image separations larger than 10″ in the statistical sample of SQLS from DR5 are 1.22 and 0.47, respectively for ACDM1 and WMAP7 and 0.73 and 0.33 for separations between 10″ and 20″, which are consistent with the only observed cluster lens with such a large separation in the complete SQLS sample.展开更多
This paper deals with study of generalized Chaplygin gas model with dynamical gravitational and cosmological constants. In this paper a new set of exact solutions of Einstein field equations for spatially homogeneous ...This paper deals with study of generalized Chaplygin gas model with dynamical gravitational and cosmological constants. In this paper a new set of exact solutions of Einstein field equations for spatially homogeneous and anisotropic Bianchi type Ⅰ space-time have been obtained. The solutions of the Einstein's field equations are obtained by considering(i) the power law relation between Hubble parameter H and scale factor R and(ii) scale factor of the form R =-1/t + t^2, t > 1. The assumptions lead to constant and variable deceleration parameter respectively. The physical and dynamical behaviors of the models have been discussed with the help of graphical representations. Also we have discussed the stability and physical acceptability of solutions for solution type-Ⅰ and solution type-Ⅱ.展开更多
基金Supported by the Short-Term Research Grant Awarded of University of Malaya
文摘Previously, the gravitational lens of a wormhole was introduced by various researchers. Their treatment was focused basically on the lens signature that describes wormhole geometrical character such as the differences from a black hole or between any various types of wormhole models. The braneworld scenario provides the idea of spacetime with underlying extra-dimensions. The inclusion of extra-dimensional terms in the lens object spacetime line element will result in some variation in the expression for its gravitational lens deflection angle. Thus in this paper we investigate such variation by deriving this deflection angle expression. As such, this paper not only shows the existence of such variation but also suggests the potential utilization of gravitational lensing to prove the existence of extra dimensions by studying the deflection angle characteristic in accordance with the spacetime expansion rate of the universe.
基金This work was partially supported by the National Natural Science Foundation of China under Grant No. 10003002.
文摘We calculate the gravitational lensing probabilities by cold dark matter (CDM) halos with different density profiles, and compare them with current observations from the Cosmic Lens All-Sky Survey (CLASS) and the Jodrell-Bank VLA Astrometric Survey (JVAS). We find that the lensing probability is dramatically sensitive to the clumping of the dark matter, or quantitatively, the concentration parameter. We also find that our predicted lensing probabilities in most cases show inconsistency with the observations. It is argued that high lensing probability may not be an effective tool for probing the statistical properties of inner structures of dark matter halos.
基金Supported by the National Natural Science Foundation of China
文摘We investigate the linear amplitude of mass fluctuations in the universe, σ8, and the present mass density parameter of the Universe, Ωm, from statistical strong gravitational lensing. We use the two population model of lens halos with fixed cooling mass scale Mc = 3×1013h-1M⊙ to match the observed lensing probabilities, and leave σ8 orΩm as a free parameter to be constrained by the data. Another varying parameter, the equation of state of dark energy ω, and its typical values of -1, -2/3, -1/2 and -1/3 are investigated. We find that σ8 is degenerate with Ωm in a way similar to that suggested by present day cluster abundance as well as cosmic shear lensing measurements: σ8Ω0.6m≈0.33. However, both σ8≤0.7 and Ωm≤0.2 can be safely ruled out, the best fit is when σ8 = 1.0, Ωm = 0.3 and ω= - 1. This result is different from that obtained by Bahcall & Bode, who gave σ8 = 0.98±0.1 and Ωm = 0.17 ±0.05. For σ8 = 1.0, the higher value ofΩm = 0.35 requires ω = -2/3 and Ωm = 0.40 requires ω= -1/2.
基金supported by the National Natural Science Foundation of China(Grant No.11203029)
文摘N-body simulations predict that dark matter halos with different mass scales are described by a universal model, the Navarro-Frenk-White (NFW) den- sity profiles. As a consequence of baryonic cooling effects, these halos will become more concentrated, and similar to an isothermal sphere over a large range in radii (~ 300 h-1 kpc). The singular isothermal sphere (SIS) model however has to be trun- cated artificially at large radii since it extends to infinity. We model a massive galaxy halo as a combination of an isothermal sphere and an NFW density profile. We give an approximation for the mass concentration at different baryon fractions and present exact expressions for the weak lensing shear and flexion for such a halo. We compare the lensing properties with the SIS and NFW profiles. We find that the combined pro- file can generate higher order lensing signals at small radii and is more efficient in generating strong lensing events. In order to distinguish such a halo profile from the SIS or NFW profiles, one needs to combine strong and weak lensing constraints for small and large radii.
基金support from the National Basic Research Program of China (973 program Grant No. 2009CB24901)+2 种基金the National Natural Science Foundation of China (Grant No. 10973018)the Partner Group program of the Max Planck Society and an STFC Advanced Fellowshipsupported by the China Postdoctoral Science Foundation (Grant No. 2011M500395)
文摘We investigate the potential of constraining the mass to light ratio of field galaxies using weak lensing shear and flexions. A suite of Monte Carlo simulations are used to generate weak lensing observations with different noise models. Using mock data, we find that the inclusion of flexions can improve the estimate of foreground halo parameters, but the details are strongly dependent on noise in the model. In the intrinsic noise limit, both shear and flexions are promising tools to study the mass to light ratio of galaxies. However, if the noise model of flexions follows the form described by Rowe et al., there is only - 5% improvement in the constraints even with next generation lensing observations.
基金Supported by the National Natural Science Foundation of China.
文摘We explore degeneracies in strong lensing model so to make time delay data consistent with the WMAP (Wilkinson Microwave Anisotropy Probe) cosmology. Previous models using a singular isothermal lens often yield a time delay between the observed multiple images too small than the observed value if we "hardwire" the now widely quoted post-WMAP "high" value of the Hubble constant (Ho ~71 ± 4km s^-1 Mpc^-1). Alternatively, the lens density profile (star plus dark matter) is required to be locally steeper than r-2 (isothermal) profile near the Einstein radius (of the order 3 kpc) to fit the time delays; a naive extrapolation of a very steep profile to large radius would imply a lens halo with a scale length of the order only 3 kpc, too compact to be consistent with CDM. We explore more sophisticated, mathematically smooth, positive lens mass density profiles which are consistent with a large halo and the post-WMAP H0. Thanks to the spherical monopole degeneracy, the "reshuffling" of the mass in a lens model does not affect the quality of the fit to the image positions, amplifications, and image time delays. Even better, unlike the better-known mass sheet degeneracy, the stellar mass-to-light and the H0 value are not affected either. We apply this monopole degeneracy to the quadruple imaged time-delay system PG 1115+080. Finally we discuss the implications of the time delay data on the newly proposed relativistic MOND theory.
基金Supported by the National Natural Science Foundation of Chinasupported by the National Science Foundation of China under the Distinguished Young Scholar Grant 10825313by the Ministry of Science and Technology's National Basic Science Program(Project 973)under grant No.2007CB815401
文摘Galaxy clusters present unique advantages for cosmological study.Here we collect a new sample of 10 lensing galaxy clusters with X-ray observations to constrain cosmological parameters.The redshifts of the lensing clusters lie between 0.1 and 0.6,and the redshift range of their arcs is from 0.4 to 4.9.These clusters are selected carefully from strong gravitational lensing systems which have both X-ray satellite observations and optical giant luminous arcs with known redshifts.Giant arcs usually appear in the central region of clusters,where mass can be traced with luminosity quite well.Based on gravitational lensing theory and a cluster mass distribution model,we can derive a ratio using two angular diameter distances.One is the distance between lensing sources and the other is that between the deflector and the source. Since angular diameter distance relies heavily on cosmological geometry,we can use these ratios to constrain cosmological models.Moreover,X-ray gas fractions of galaxy clusters can also be a cosmological probe.Because there are a dozen parameters to be fitted,we introduce a new analytic algorithm,Powell's UOBYQA(Unconstrained Optimization By Quadratic Approximation) ,to accelerate our calculation.Our result demonstrates that this algorithm is an effective fitting method for such a continuous multi-parameter constraint.We find an interesting fact that these two approaches are separately sensitive toΩΛandΩM.By combining them,we can get reasonable fitting values of basic cosmological parameters:ΩM=0.26 +0.04 -0.04,andΩΛ=0.82 +0.14 -0.16.
基金Supported by the Graduate Student Creative Foundation of Hunan University of Science and Technology under Grant No S080111, Scientific Research Foundation for the Returned Overseas Chinese Scholars from State Education Ministry of China under Grant No 527[2004]) and the Hunan Provincial Natural Science Foundation under Grant No 06JJ2026.
文摘Considering corrections to all orders in the Planck length on the quantum state density from the generalized uncertainty principle and using the quantum state density to all degrees of freedom including extra dimensions, we calculate the statistical entropy of the scalar field in the higher-dimensional static spherically symmetric black hole spacetime without any artificial cutoff. Calculation shows that the entropy is proportional to the horizon area. The coefficient of proportionality is 1/4 when the minimal length parameter is selected appropriately.
基金Supported by the National Natural Science Foundation of China under Grant Nos 10778611, 10773017, 10973021 and 10573026, and the National Basic Research Program of China under Grant No 2009CB824800.
文摘The neutron star motions are based on the undisturbed finitely thick galactic disk gravitational potential model. Two initial conditions, i.e. the locations and velocities, are considered. The Monte Carlo method is employed to separate rich diversities of the orbits of neutron stars into several sorts. The Poineare section has the potential to play an important role in the diagnosis of the neutron star motion. It has been observed that the increasing ratio of the motion range vertical to the galactic plane to that parallel to the galactic plane results in the irregularity of neutron star motion.
文摘We readdress the outstanding cluster mass discrepancy between strong and weak gravitational lensing techniques utilizing updated data of both giant arcs and weak lensing measurements from the literature. We find that the systematically higher values of cluster masses revealed by strong lensing can be attributed to the oversimplification of the lensing model when estimating the cluster mass enclosed within the giant arcs. This arises because inhomogeneities and substructures in the central cores of clusters may invalidate the spherical symmetry assumption used widely in previous applications. When a more realistic modeling of the arcs is used, then the masses by strong lensing agree fairly well with those given by weak lensing when both are extrapolated to the same cluster regions. We conclude that as of now no significant discrepancy has been found among different cluster mass estimators including optical galaxies, X-ray gas and lensing.
基金Expanded version(with new findings added) of the essay (arXiv:1206.2795) awarded ‘Honorable Mention’ of the year 2012 by the Gravity Research Foundation
文摘As we now know, there are at least two major difficulties with general rel- ativity (GR). The first one is related to its incompatibility with quantum mechanics, in the absence of a consistent, widely accepted theory that combines the two theo- ries. The second problem is related to the requirement of the dark sectors-inflaton, dark matter and dark energy by the energy-stress tensor, which are needed to explain a variety of astronomical and cosmological observations. Research has indicated that the dark sectors themselves do not have any non-gravitational or laboratory evidence. Moreover, the dark energy poses, in addition, a serious confrontation between funda- mental physics and cosmology. Guided by theoretical and observational evidences, we are led to an idea that the source of gravitation and its manifestation in GR should be modified. The result is in striking agreement with not only the theory, but also the ob- servations, without requiring the dark sectors of the standard approach. Additionally, it provides natural explanations to some unexplained puzzles.
基金partially supported by a grant from the Research Grant Councilof the Hong Kong Special Administrative Region,China(Project No.400910)the support of a postdoctoral fellowship by The Chinese University of Hong Kong
文摘One of the main goals of modern cosmic microwave background (CMB) missions is to measure the tensor-to-scalar ratio r accurately to constrain inflation models. Due to ignorance about the reionization history Xe (z), this analysis is usu- ally done by assuming an instantaneous reionization Xe (z) which, however, can bias the best-fit value of r. Moreover, due to the strong mixing of B-mode and E-mode polarizations in cut-sky measurements, multiplying the sky coverage fraction fsky by the full-sky likelihood would not give satisfactory results. In this work, we forecast constraints on r for the Planck mission taking into account the general reionization scenario and cut-sky effects. Our results show that by applying an N-point interpo- lation analysis to the reionization history, the bias induced by the assumption of in- stantaneous reionization is removed and the value of r is constrained within 5% error level, if the true value of r is greater than about 0.1.
基金supported by the National Natural Science Foundation of China(Grant No. 11073023)the National Basic Research Program of China (973 ProgramGrant No.2009CB24901)
文摘We study the statistics of large-separation multiply-imaged quasars lensed by clusters of galaxies. In particular, we examine how the observed brightest cluster galaxies (BCGs) affect the predicted numbers of wide-separation lenses. We model the lens as an NFW-profiled dark matter halo with a truncated singular isothermal sphere to represent the BCG in its center. We mainly make predictions for the Sloan Digital Sky Survey Quasar Lens Search (SQLS) sample from the Data Release 5 (DRS) in two standard ACDM cosmological models: a model with matter density ΩM = 0.3 and δ8 = 0.9, as is usually adopted in the literature (ACDM1), and a model suggested by the WMAP seven-year (WMAPT) data with ΩM = 0.266 and δ8 = 0.801. We also study the lensing properties for the WMAP3 cosmology in order to compare with the previous work. We find that BCGs in the centers of clusters significantly enhance the lensing efficiency by a factor of 2 - 3 compared with that of NFW-profiled pure dark matter halos. In addition, the dependence of mass ratios of BCGs to their host halos on the host halo masses reduces the lensing rate by - 20% from assuming a constant ratio as in previous studies, but considering the evolution of this ratio with redshift out to z - 1 would reduce it by - 3%. Moreover, we predict that the numbers of lensed quasars with image separations larger than 10″ in the statistical sample of SQLS from DR5 are 1.22 and 0.47, respectively for ACDM1 and WMAP7 and 0.73 and 0.33 for separations between 10″ and 20″, which are consistent with the only observed cluster lens with such a large separation in the complete SQLS sample.
文摘This paper deals with study of generalized Chaplygin gas model with dynamical gravitational and cosmological constants. In this paper a new set of exact solutions of Einstein field equations for spatially homogeneous and anisotropic Bianchi type Ⅰ space-time have been obtained. The solutions of the Einstein's field equations are obtained by considering(i) the power law relation between Hubble parameter H and scale factor R and(ii) scale factor of the form R =-1/t + t^2, t > 1. The assumptions lead to constant and variable deceleration parameter respectively. The physical and dynamical behaviors of the models have been discussed with the help of graphical representations. Also we have discussed the stability and physical acceptability of solutions for solution type-Ⅰ and solution type-Ⅱ.