期刊文献+
共找到63篇文章
< 1 2 4 >
每页显示 20 50 100
Gravitational radiation fields in teleparallel equivalent of general relativity and their energies
1
作者 Gamal G.L.Nashed 《Chinese Physics B》 SCIE EI CAS CSCD 2010年第11期132-139,共8页
We derive two new retarded solutions in the teleparallel theory equivalent to general relativity (TEGR). One of these solutions gives a divergent energy. Therefore, we use the regularized expression of the gravitati... We derive two new retarded solutions in the teleparallel theory equivalent to general relativity (TEGR). One of these solutions gives a divergent energy. Therefore, we use the regularized expression of the gravitational energymomentum tensor, which is a coordinate dependent. A detailed analysis of the loss of the mass of Bondi space-time is carried out using the flux of the gravitational energy-momentum. 展开更多
关键词 teleparallel equivalent of general relativity energy-momentum tensor Bondi mass gravitational radiation
下载PDF
Nonlinear Spinor Field Equations in Gravitational Theory: Spherical Symmetric Soliton-Like Solutions 被引量:2
2
作者 V. Adanhounme A. Adomou +1 位作者 F. P. Codo M. N. Hounkonnou 《Journal of Modern Physics》 2012年第9期935-942,共8页
This paper deals with an extension of a previous work [Gravitation & Cosmology, Vol. 4, 1998, pp 107-113] to exact spherical symmetric solutions to the spinor field equations with nonlinear terms which are arbitra... This paper deals with an extension of a previous work [Gravitation & Cosmology, Vol. 4, 1998, pp 107-113] to exact spherical symmetric solutions to the spinor field equations with nonlinear terms which are arbitrary functions of S=ψψ, taking into account their own gravitational field. Equations with power and polynomial nonlinearities are studied in detail. It is shown that the initial set of the Einstein and spinor field equations with a power nonlinearity has regular solutions with spinor field localized energy and charge densities. The total energy and charge are finite. Besides, exact solutions, including soliton-like solutions, to the spinor field equations are also obtained in flat space-time. 展开更多
关键词 Lagrangian Static SPHERICAL SYMMETRIC Metric field EQUATIONS EINSTEIN EQUATIONS Dirac Equation energy-momentum tensor Charge density Current Vector SOLITON-LIKE Solution
下载PDF
Riemannian Space-Time, de Donder Conditions and Gravitational Field in Flat Space-Time 被引量:1
3
作者 Gordon Liu 《International Journal of Astronomy and Astrophysics》 2013年第1期8-19,共12页
Let the coordinate system xi of flat space-time to absorb a second rank tensor field Φij of the flat space-time deforming into a Riemannian space-time, namely, the tensor field Φuv is regarded as a metric tensor wit... Let the coordinate system xi of flat space-time to absorb a second rank tensor field Φij of the flat space-time deforming into a Riemannian space-time, namely, the tensor field Φuv is regarded as a metric tensor with respect to the coordinate system xu. After done this, xu is not the coordinate system of flat space-time anymore, but is the coordinate system of the new Riemannian space-time. The inverse operation also can be done. According to these notions, the concepts of the absorption operation and the desorption operation are proposed. These notions are actually compatible with Einstein’s equivalence principle. By using these concepts, the relationships of the Riemannian space-time, the de Donder conditions and the gravitational field in flat space-time are analyzed and elaborated. The essential significance of the de Donder conditions (the harmonic conditions or gauge) is to desorb the tensor field of gravitation from the Riemannian space-time to the Minkowski space-time with the Cartesian coordinates. Einstein equations with de Donder conditions can be solved in flat space-time. Base on Fock’s works, the equations of gravitational field in flat space-time are obtained, and the tensor expression of the energy-momentum of gravitational field is found. They all satisfy the global Lorentz covariance. 展开更多
关键词 General Relativity gravitation RIEMANNIAN SPACE-TIME FLAT SPACE-TIME Einstein Equations Harmonic CONDITIONS energy-momentum tensor Significance of the Coordinates gravitational RED-SHIFT
下载PDF
A Locally Conservative Energy-Momentum Tensor in the General Relativity Based on a Cosmological Model without Singularity 被引量:1
4
作者 Shihao Chen 《Journal of Modern Physics》 2016年第3期277-280,共4页
According to the conventional theory it is difficult to define the energy-momentum tensor which is locally conservative. The energy-momentum tensor of the gravitational field is defined. Based on a cosmological model ... According to the conventional theory it is difficult to define the energy-momentum tensor which is locally conservative. The energy-momentum tensor of the gravitational field is defined. Based on a cosmological model without singularity, the total energy-momentum tensor is defined which is locally conservative in the general relativity. The tensor of the gravitational mass is different from the energy-momentum tensor, and it satisfies the gravitational field equation and its covariant derivative is zero. 展开更多
关键词 energy-momentum tensor of gravitational field Locally Conservative energy-momentum tensor in General Relativity tensor of the gravitational Mass Quasi-Local energy-momentum tensor
下载PDF
The Basic Concepts and Basic Laws Relating to Matter and Gravitational Fields in Physics
5
作者 Fangpei Chen 《Journal of Modern Physics》 2017年第11期1784-1794,共11页
In this work, the author applied the universal gauge field theory and Noether theorem to prove that universality exists for the Lorentz and Levi-Civita law of conservation of energy momentum tensor density. We also fo... In this work, the author applied the universal gauge field theory and Noether theorem to prove that universality exists for the Lorentz and Levi-Civita law of conservation of energy momentum tensor density. We also found that this conservation law has profound implications in physics. For example, based on this law, one can explore the origin of the matter field, and propose a new view about what is “dark energy” and what is “dark matter”. 展开更多
关键词 LAGRANGIAN MATTER field gravitational field energy-momentum tensor density Conservation Law Origin of MATTER field
下载PDF
Curvature Energy and Their Spectrum in the Spinor-Twistor Framework: Torsion as Indicium of Gravitational Waves
6
作者 Francisco Bulnes Yuri Stropovsvky Igor Rabinovich 《Journal of Modern Physics》 2017年第10期1723-1736,共14页
The twistor kinematic-energy model of the space-time and the kinematic-energy tensor as the energy-matter tensor in relativity are considered to demonstrate the possible behavior of gravity as gravitational waves that... The twistor kinematic-energy model of the space-time and the kinematic-energy tensor as the energy-matter tensor in relativity are considered to demonstrate the possible behavior of gravity as gravitational waves that derive of mass-energy source in the space-time and whose contorted image is the spectrum of the torsion field acting in the space-time. The energy of this field is the energy of their second curvature. Likewise, it is assumed that the curvature energy as spectral curvature in the twistor kinematic frame is the curvature in twistor-spinor framework, which is the mean result of this work. This demonstrates the lawfulness of the torsion as the indicium of the gravitational waves in the space-time. A censorship to detect gravitational waves in the space-time is designed using the curvature energy. 展开更多
关键词 CENSORSHIP Condition Contorted Surface CURVATURE energy gravitational Waves Matter-energy tensor 3-Dimensional Sphere SPINOR fields Twistor Kinematic-energy Model WEYL CURVATURE
下载PDF
Fourth Rank Energy-Momentum Tensor
7
作者 Vu B. Ho 《Journal of Applied Mathematics and Physics》 2022年第12期3684-3692,共9页
In this work, we introduce the new concept of fourth rank energy-momentum tensor. We first show that a fourth rank electromagnetic energy-momentum tensor can be constructed from the second rank electromagnetic energy-... In this work, we introduce the new concept of fourth rank energy-momentum tensor. We first show that a fourth rank electromagnetic energy-momentum tensor can be constructed from the second rank electromagnetic energy-momentum tensor. We then generalise to construct a fourth rank stress energy-momentum tensor and apply it to Dirac field of quantum particles. Furthermore, since the established fourth rank energy-momentum tensors have mathematical properties of the Riemann curvature tensor, thus it is reasonable to suggest that quantum fields should also possess geometric structures of a Riemannian manifold. 展开更多
关键词 Fourth Rank energy-momentum tensor Riemannian Manifold Riemann Curvature tensor Electromagnetic field Dirac field
下载PDF
Brane world black holes in teleparallel theory equivalent to general relativity and their Killing vectors,energy,momentum and angular momentum
8
作者 Gamal G.L.Nashed 《Chinese Physics B》 SCIE EI CAS CSCD 2010年第2期77-91,共15页
The energy--momentum tensor, which is coordinate-independent, is used to calculate energy, momentum and angular momentum of two different tetrad fields. Although, the two tetrad fields reproduce the same space--time t... The energy--momentum tensor, which is coordinate-independent, is used to calculate energy, momentum and angular momentum of two different tetrad fields. Although, the two tetrad fields reproduce the same space--time their energies are different. Therefore, a regularized expression of the gravitational energy--momentum tensor of the teleparallel equivalent of general relativity (TEGR), is used to make the energies of the two tetrad fields equal. The definition of the gravitational energy--momentum is used to investigate the energy within the external event horizon. The components of angular momentum associated with these space--times are calculated. In spite of using a static space--time, we get a non-zero component of angular momentum! Therefore, we derive the Killing vectors associated with these space--times using the definition of the Lie derivative of a second rank tensor in the framework of the TEGR to make the picture more clear. 展开更多
关键词 teleparallel equivalent of general relativity brane world black holes gravitational energy--momentum tensor regularized expression of the gravitational energy--momentum
下载PDF
Gravitational Space-Time Curve Generation via Accelerated Charged Particles
9
作者 Edward A. Walker 《Journal of Modern Physics》 2016年第9期863-874,共12页
A force with an acceleration that is equal to multiples greater than the speed of light per unit time is exerted on a cloud of charged particles. The particles are resultantly accelerated to within an infinitesimal fr... A force with an acceleration that is equal to multiples greater than the speed of light per unit time is exerted on a cloud of charged particles. The particles are resultantly accelerated to within an infinitesimal fraction of the speed of light. As the force or acceleration increases, the particles’ velocity asymptotically approaches but never achieves the speed of light obeying relativity. The asymptotic increase in the particles’ velocity toward the speed of light as acceleration increasingly surpasses the speed of light per unit time does not compensate for the momentum value produced on the particles at sub-light velocities. Hence, the particles’ inertial mass value must increase as acceleration increases. This increase in the particles’ inertial mass as the particles are accelerated produce a gravitational field which is believed to occur in the oscillation of quarks achieving velocities close to the speed of light. The increased inertial mass of the density of accelerated charged particles becomes the source mass (or Big “M”) in Newton’s equation for gravitational force. This implies that a space-time curve is generated by the accelerated particles. Thus, it is shown that the acceleration number (or multiple of the speed of light greater than 1 per unit of time) and the number of charged particles in the cloud density are surjectively mapped to points on a differential manifold or space-time curved surface. Two aspects of Einstein’s field equations are used to describe the correspondence between the gravitational field produced by the accelerated particles and the resultant space-time curve. The two aspects are the Schwarzchild metric and the stress energy tensor. Lastly, the possibility of producing a sufficient acceleration or electromagnetic force on the charged particles to produce a gravitational field is shown through the Lorentz force equation. Moreover, it is shown that a sufficient voltage can be generated to produce an acceleration/force on the particles that is multiples greater than the speed of light per unit time thereby generating gravity. 展开更多
关键词 Charged Particles Accelerated Particles Inertial Mass gravitational Force Einstein’s field Equations Space-Time Manifold Schwardchild Metric Stress energy tensor Surjective Mapping Lorentz Force
下载PDF
Representation of Physical Fields as Einstein Manifold
10
作者 Vu B. Ho 《Journal of Applied Mathematics and Physics》 2023年第3期599-607,共9页
In this work we investigate the possibility to represent physical fields as Einstein manifold. Based on the Einstein field equations in general relativity, we establish a general formulation for determining the metric... In this work we investigate the possibility to represent physical fields as Einstein manifold. Based on the Einstein field equations in general relativity, we establish a general formulation for determining the metric tensor of the Einstein manifold that represents a physical field in terms of the energy-momentum tensor that characterises the physical field. As illustrations, we first apply the general formulation to represent the perfect fluid as Einstein manifold. However, from the established relation between the metric tensor and the energy-momentum tensor, we show that if the trace of the energy-momentum tensor associated with a physical field is equal to zero then the corresponding physical field cannot be represented as an Einstein manifold. This situation applies to the electromagnetic field since the trace of the energy-momentum of the electromagnetic field vanishes. Nevertheless, we show that a system that consists of the electromagnetic field and non-interacting charged particles can be represented as an Einstein manifold since the trace of the corresponding energy-momentum of the system no longer vanishes. As a further investigation, we show that it is also possible to represent physical fields as maximally symmetric spaces of constant scalar curvature. 展开更多
关键词 General Relativity Einstein Manifold energy-momentum tensor Electromagnetic field Perfect Fluid Maximally Symmetric Spaces
下载PDF
全球重力势能特征及其地质意义——基于Crust1.0模型的分析 被引量:2
11
作者 张倩文 徐亚 王信国 《地球物理学报》 SCIE EI CAS CSCD 北大核心 2024年第1期77-88,共12页
重力势能及重力势能差是分析岩石圈内部密度变化所引起的岩石圈平均应力特征的主要方法之一.本文基于全球Crust1.0模型地壳结构,结合常密度、横向变密度和三维变密度三种不同的地幔密度模型,获得了全球尺度更为精细的重力势能及重力势... 重力势能及重力势能差是分析岩石圈内部密度变化所引起的岩石圈平均应力特征的主要方法之一.本文基于全球Crust1.0模型地壳结构,结合常密度、横向变密度和三维变密度三种不同的地幔密度模型,获得了全球尺度更为精细的重力势能及重力势能差分布特征并开展分析.研究结果表明,在北美西部、安第斯山脉、东非、青藏高原等区域表现为重力势能高,呈拉张应力状态;在洋盆、高原周围的盆地等地区表现为重力势能低,呈挤压应力状态.对比分析不同地幔密度模型结果,发现大洋地区洋壳薄,岩石圈地幔密度受构造及热影响变化较大,对重力势能影响大;大陆地区地壳厚度大,对重力势能影响大,地幔密度变化影响相对较小.采用三维变密度地幔模型获得的重力势能差分布和大地水准面异常计算获得的全球重力势能差分布具有相似特征,表明该模型的计算结果更符合全球岩石圈尺度的应力分布特征.三维变密度地幔模型计算的重力势能差显示洋中脊轴部地区趋于零,说明该处岩石圈密度变化对应力影响较小,其拉张应力与洋中脊地区地幔上涌更为相关. 展开更多
关键词 重力势能 岩石圈密度结构 大地水准面 岩石圈应力
下载PDF
Plane Symmetric Solutions to the Nonlinear Spinor Field Equations in General Relativity Theory 被引量:5
12
作者 A. Adomou Jonas Edou Siaka Massou 《Journal of Modern Physics》 2019年第10期1222-1234,共13页
We have obtained exact static plane-symmetric solutions to the spinor field equations with nonlinear terms which are arbitrary functions of invariant , taking into account their own gravitational field. It is shown th... We have obtained exact static plane-symmetric solutions to the spinor field equations with nonlinear terms which are arbitrary functions of invariant , taking into account their own gravitational field. It is shown that the initial set of the Einstein and spinor field equations with a power-law nonlinearity have regular solutions with a localized energy density of the spinor field only if m=0 (m is the mass parameter in the spinor field equations). Equations with power and polynomial nonlinearities are studied in detail. In this case, a soliton-like configuration has negative energy. We have also obtained exact static plane-symmetric solutions to the above spinor field equations in flat space-time. It is proved that in this case soliton-like solutions are absent. 展开更多
关键词 LAGRANGIAN Static Plane-Symmetric Metric field EQUATIONS energy-momentum tensor Charge density Current Vector SOLITON-LIKE Solution
下载PDF
地球物理信号能量(密度)多维分形及应用 被引量:13
13
作者 李庆谋 刘少华 《地球物理学进展》 CSCD 2001年第1期24-30,共7页
地球物理信号代表的地质地球物理过程在多种尺度上和尺度之间表现为自相似性 (self affinity)或尺度无关性 (ScaleInvariant) ,称为地球物理信号的分形性质 .多个分形地球物理信号叠加在一起表现为多维分形特征 .研究多维分形地球物理... 地球物理信号代表的地质地球物理过程在多种尺度上和尺度之间表现为自相似性 (self affinity)或尺度无关性 (ScaleInvariant) ,称为地球物理信号的分形性质 .多个分形地球物理信号叠加在一起表现为多维分形特征 .研究多维分形地球物理信号的能量或能量密度特征 ,可以进行时间或空间地球物理信号的校正、奇异性研究分析 ,或进行不同地球物理动力学过程的分解 .本文描述了地球物理时间 (空间 )信号的多维分形过程和功率谱密度 (能量密度 )与波数以及重磁场能谱密度及面积 (能量 )与能谱密度的多维分形关系 。 展开更多
关键词 多维分形 能量密度 测井序列分析 重磁场 地球物理信号 自相似性 尺度无关性
下载PDF
电磁能量-动量转化和守恒定律四维形式的一种推导 被引量:4
14
作者 李子军 杨尚明 +3 位作者 钟玉荣 王子安 李作宏 崔建营 《大学物理》 北大核心 2004年第10期17-20,24,共5页
定义了电磁场的四维动量流密度张量,并将电磁能量转化和守恒定律及动量转化和守恒定律写成了四维协变形式.给出了三维电磁能量密度、能流密度、动量密度和动量流密度关于两个惯性系之间的变换关系.还给出了四维动量流密度张量与四维电... 定义了电磁场的四维动量流密度张量,并将电磁能量转化和守恒定律及动量转化和守恒定律写成了四维协变形式.给出了三维电磁能量密度、能流密度、动量密度和动量流密度关于两个惯性系之间的变换关系.还给出了四维动量流密度张量与四维电磁场张量之间的依赖关系. 展开更多
关键词 四维动量流密度张量 能量转化和守恒定律 动量转化和守恒定律 四维形式 变换关系
下载PDF
有挠引力场之能动张量密度及自旋密度的再研究 被引量:5
15
作者 陈方培 《大连理工大学学报》 CAS CSCD 北大核心 1998年第2期157-161,共5页
在有挠情况下对引力场的能动张量密度及自旋密度进行了再研究,肯定了定义T(G)μidefδLG/δhiμ及C(G)μijdef-2δLG/δΓijμ的合理性,导出了引力波虽存在但不携带能量、动量及自旋的结论.
关键词 引力场 能动张量密度 自旋密度 挠率
下载PDF
荷磁矩中子星外部的电磁场能量动量张量 被引量:1
16
作者 石东平 吴张晗 《重庆大学学报(自然科学版)》 EI CAS CSCD 北大核心 2004年第3期69-73,共5页
利用王永久等人所得到的具有磁矩的球对称质量外部的引力场度规和电磁势的表达式,计算出了球对称质量外部的电磁场量动量张量。数值计算结果和分布曲线表明,时空的弯曲将引起磁偶极子电磁场能量的增加。
关键词 磁矩 球对称质量 引力场度规 电磁势 电磁场能量动量张量 中子星
下载PDF
关于静态电磁场的动量密度 被引量:5
17
作者 何贤美 《安徽师范大学学报(自然科学版)》 CAS 2003年第2期137-138,共2页
本文由动量、能量守恒定律,简便地推导出静态电磁场的动量密度表达式.与通常做法不同,推导过程未涉及麦克斯韦方程组.
关键词 静态电磁场 动量密度 动量守恒定律 能量守恒定律 电磁学 电场 磁场 麦克斯韦方程组
下载PDF
引力场能动张量定义的历史争论及重新研究 被引量:2
18
作者 陈方培 《河北师范大学学报(自然科学版)》 CAS 2000年第3期326-329,共4页
引力场的能动张量是引力理论中一个极为重要的物理量 .八十多年前 Levi-Civita等人同爱因斯坦曾就这个量的定义及守恒律展开过一次重大争论 .后来虽然爱因斯坦的观点占了上风 ,但其定义的引力场能动张量 ,由于缺乏协变性 ,成了至今尚未... 引力场的能动张量是引力理论中一个极为重要的物理量 .八十多年前 Levi-Civita等人同爱因斯坦曾就这个量的定义及守恒律展开过一次重大争论 .后来虽然爱因斯坦的观点占了上风 ,但其定义的引力场能动张量 ,由于缺乏协变性 ,成了至今尚未完满解决的“老大难”问题 .文章对这场争论的前因后果和双方的观点进行了较详细叙述 ;且结合作者自己的研究对这场争论作了新的评论 ;并介绍了作者重新研究的成果 ,特别是引力波不传播能量的新观点及可能的实验验证 . 展开更多
关键词 引力场 能动张量 守恒定律 引力波 广义相对论
下载PDF
引力波的基本场方程与假性能动张量 被引量:1
19
作者 陈方培 《大连理工大学学报》 CAS CSCD 北大核心 1999年第3期372-377,共6页
导出了适用于各种背景时空的引力波基本场方程;定义了引力波的假性能动张量并阐述了它与引力场的赝能动张量的区别;还对射电脉冲双星能否验证“引力辐射”
关键词 引力波 引力场 场方程 赝能动张量 假性能动张量
下载PDF
等效原理与引力场的能量-动量表示 被引量:3
20
作者 邓昭镜 《西南大学学报(自然科学版)》 CAS CSCD 北大核心 2008年第9期11-15,共5页
等效原理是作为时-空背景的引力场的独特规律,又是引力场籍以区别于所有其它物质场(或非背景场)的最独特的性质.正因为如此,和所有其它物质场不同,引力场的能量-动量不可能有张量表示,或者说不可能定域化.对此学术界曾引发了一场争论,... 等效原理是作为时-空背景的引力场的独特规律,又是引力场籍以区别于所有其它物质场(或非背景场)的最独特的性质.正因为如此,和所有其它物质场不同,引力场的能量-动量不可能有张量表示,或者说不可能定域化.对此学术界曾引发了一场争论,提出了引力场能量-动量的各种表述.纵观各种表述,只有Landau提出的能量-动量赝张量表示才是最能反映等效原理要求的表述.因此,就比较而言,Landau和Hans提出的关于引力场的能量-动量赝张量表述是更为合理的表述.重温Landau和Hans关于引力场能量-动量赝张量表述,以阐明如何依靠等效原理来探求纯引力场的能量-动量表述. 展开更多
关键词 等效原理 守恒律 能量-动量张量 能量-动量赝张量
下载PDF
上一页 1 2 4 下一页 到第
使用帮助 返回顶部