We derive two new retarded solutions in the teleparallel theory equivalent to general relativity (TEGR). One of these solutions gives a divergent energy. Therefore, we use the regularized expression of the gravitati...We derive two new retarded solutions in the teleparallel theory equivalent to general relativity (TEGR). One of these solutions gives a divergent energy. Therefore, we use the regularized expression of the gravitational energymomentum tensor, which is a coordinate dependent. A detailed analysis of the loss of the mass of Bondi space-time is carried out using the flux of the gravitational energy-momentum.展开更多
This paper deals with an extension of a previous work [Gravitation & Cosmology, Vol. 4, 1998, pp 107-113] to exact spherical symmetric solutions to the spinor field equations with nonlinear terms which are arbitra...This paper deals with an extension of a previous work [Gravitation & Cosmology, Vol. 4, 1998, pp 107-113] to exact spherical symmetric solutions to the spinor field equations with nonlinear terms which are arbitrary functions of S=ψψ, taking into account their own gravitational field. Equations with power and polynomial nonlinearities are studied in detail. It is shown that the initial set of the Einstein and spinor field equations with a power nonlinearity has regular solutions with spinor field localized energy and charge densities. The total energy and charge are finite. Besides, exact solutions, including soliton-like solutions, to the spinor field equations are also obtained in flat space-time.展开更多
Let the coordinate system xi of flat space-time to absorb a second rank tensor field Φij of the flat space-time deforming into a Riemannian space-time, namely, the tensor field Φuv is regarded as a metric tensor wit...Let the coordinate system xi of flat space-time to absorb a second rank tensor field Φij of the flat space-time deforming into a Riemannian space-time, namely, the tensor field Φuv is regarded as a metric tensor with respect to the coordinate system xu. After done this, xu is not the coordinate system of flat space-time anymore, but is the coordinate system of the new Riemannian space-time. The inverse operation also can be done. According to these notions, the concepts of the absorption operation and the desorption operation are proposed. These notions are actually compatible with Einstein’s equivalence principle. By using these concepts, the relationships of the Riemannian space-time, the de Donder conditions and the gravitational field in flat space-time are analyzed and elaborated. The essential significance of the de Donder conditions (the harmonic conditions or gauge) is to desorb the tensor field of gravitation from the Riemannian space-time to the Minkowski space-time with the Cartesian coordinates. Einstein equations with de Donder conditions can be solved in flat space-time. Base on Fock’s works, the equations of gravitational field in flat space-time are obtained, and the tensor expression of the energy-momentum of gravitational field is found. They all satisfy the global Lorentz covariance.展开更多
According to the conventional theory it is difficult to define the energy-momentum tensor which is locally conservative. The energy-momentum tensor of the gravitational field is defined. Based on a cosmological model ...According to the conventional theory it is difficult to define the energy-momentum tensor which is locally conservative. The energy-momentum tensor of the gravitational field is defined. Based on a cosmological model without singularity, the total energy-momentum tensor is defined which is locally conservative in the general relativity. The tensor of the gravitational mass is different from the energy-momentum tensor, and it satisfies the gravitational field equation and its covariant derivative is zero.展开更多
In this work, the author applied the universal gauge field theory and Noether theorem to prove that universality exists for the Lorentz and Levi-Civita law of conservation of energy momentum tensor density. We also fo...In this work, the author applied the universal gauge field theory and Noether theorem to prove that universality exists for the Lorentz and Levi-Civita law of conservation of energy momentum tensor density. We also found that this conservation law has profound implications in physics. For example, based on this law, one can explore the origin of the matter field, and propose a new view about what is “dark energy” and what is “dark matter”.展开更多
The twistor kinematic-energy model of the space-time and the kinematic-energy tensor as the energy-matter tensor in relativity are considered to demonstrate the possible behavior of gravity as gravitational waves that...The twistor kinematic-energy model of the space-time and the kinematic-energy tensor as the energy-matter tensor in relativity are considered to demonstrate the possible behavior of gravity as gravitational waves that derive of mass-energy source in the space-time and whose contorted image is the spectrum of the torsion field acting in the space-time. The energy of this field is the energy of their second curvature. Likewise, it is assumed that the curvature energy as spectral curvature in the twistor kinematic frame is the curvature in twistor-spinor framework, which is the mean result of this work. This demonstrates the lawfulness of the torsion as the indicium of the gravitational waves in the space-time. A censorship to detect gravitational waves in the space-time is designed using the curvature energy.展开更多
In this work, we introduce the new concept of fourth rank energy-momentum tensor. We first show that a fourth rank electromagnetic energy-momentum tensor can be constructed from the second rank electromagnetic energy-...In this work, we introduce the new concept of fourth rank energy-momentum tensor. We first show that a fourth rank electromagnetic energy-momentum tensor can be constructed from the second rank electromagnetic energy-momentum tensor. We then generalise to construct a fourth rank stress energy-momentum tensor and apply it to Dirac field of quantum particles. Furthermore, since the established fourth rank energy-momentum tensors have mathematical properties of the Riemann curvature tensor, thus it is reasonable to suggest that quantum fields should also possess geometric structures of a Riemannian manifold.展开更多
The energy--momentum tensor, which is coordinate-independent, is used to calculate energy, momentum and angular momentum of two different tetrad fields. Although, the two tetrad fields reproduce the same space--time t...The energy--momentum tensor, which is coordinate-independent, is used to calculate energy, momentum and angular momentum of two different tetrad fields. Although, the two tetrad fields reproduce the same space--time their energies are different. Therefore, a regularized expression of the gravitational energy--momentum tensor of the teleparallel equivalent of general relativity (TEGR), is used to make the energies of the two tetrad fields equal. The definition of the gravitational energy--momentum is used to investigate the energy within the external event horizon. The components of angular momentum associated with these space--times are calculated. In spite of using a static space--time, we get a non-zero component of angular momentum! Therefore, we derive the Killing vectors associated with these space--times using the definition of the Lie derivative of a second rank tensor in the framework of the TEGR to make the picture more clear.展开更多
A force with an acceleration that is equal to multiples greater than the speed of light per unit time is exerted on a cloud of charged particles. The particles are resultantly accelerated to within an infinitesimal fr...A force with an acceleration that is equal to multiples greater than the speed of light per unit time is exerted on a cloud of charged particles. The particles are resultantly accelerated to within an infinitesimal fraction of the speed of light. As the force or acceleration increases, the particles’ velocity asymptotically approaches but never achieves the speed of light obeying relativity. The asymptotic increase in the particles’ velocity toward the speed of light as acceleration increasingly surpasses the speed of light per unit time does not compensate for the momentum value produced on the particles at sub-light velocities. Hence, the particles’ inertial mass value must increase as acceleration increases. This increase in the particles’ inertial mass as the particles are accelerated produce a gravitational field which is believed to occur in the oscillation of quarks achieving velocities close to the speed of light. The increased inertial mass of the density of accelerated charged particles becomes the source mass (or Big “M”) in Newton’s equation for gravitational force. This implies that a space-time curve is generated by the accelerated particles. Thus, it is shown that the acceleration number (or multiple of the speed of light greater than 1 per unit of time) and the number of charged particles in the cloud density are surjectively mapped to points on a differential manifold or space-time curved surface. Two aspects of Einstein’s field equations are used to describe the correspondence between the gravitational field produced by the accelerated particles and the resultant space-time curve. The two aspects are the Schwarzchild metric and the stress energy tensor. Lastly, the possibility of producing a sufficient acceleration or electromagnetic force on the charged particles to produce a gravitational field is shown through the Lorentz force equation. Moreover, it is shown that a sufficient voltage can be generated to produce an acceleration/force on the particles that is multiples greater than the speed of light per unit time thereby generating gravity.展开更多
In this work we investigate the possibility to represent physical fields as Einstein manifold. Based on the Einstein field equations in general relativity, we establish a general formulation for determining the metric...In this work we investigate the possibility to represent physical fields as Einstein manifold. Based on the Einstein field equations in general relativity, we establish a general formulation for determining the metric tensor of the Einstein manifold that represents a physical field in terms of the energy-momentum tensor that characterises the physical field. As illustrations, we first apply the general formulation to represent the perfect fluid as Einstein manifold. However, from the established relation between the metric tensor and the energy-momentum tensor, we show that if the trace of the energy-momentum tensor associated with a physical field is equal to zero then the corresponding physical field cannot be represented as an Einstein manifold. This situation applies to the electromagnetic field since the trace of the energy-momentum of the electromagnetic field vanishes. Nevertheless, we show that a system that consists of the electromagnetic field and non-interacting charged particles can be represented as an Einstein manifold since the trace of the corresponding energy-momentum of the system no longer vanishes. As a further investigation, we show that it is also possible to represent physical fields as maximally symmetric spaces of constant scalar curvature.展开更多
We have obtained exact static plane-symmetric solutions to the spinor field equations with nonlinear terms which are arbitrary functions of invariant , taking into account their own gravitational field. It is shown th...We have obtained exact static plane-symmetric solutions to the spinor field equations with nonlinear terms which are arbitrary functions of invariant , taking into account their own gravitational field. It is shown that the initial set of the Einstein and spinor field equations with a power-law nonlinearity have regular solutions with a localized energy density of the spinor field only if m=0 (m is the mass parameter in the spinor field equations). Equations with power and polynomial nonlinearities are studied in detail. In this case, a soliton-like configuration has negative energy. We have also obtained exact static plane-symmetric solutions to the above spinor field equations in flat space-time. It is proved that in this case soliton-like solutions are absent.展开更多
文摘We derive two new retarded solutions in the teleparallel theory equivalent to general relativity (TEGR). One of these solutions gives a divergent energy. Therefore, we use the regularized expression of the gravitational energymomentum tensor, which is a coordinate dependent. A detailed analysis of the loss of the mass of Bondi space-time is carried out using the flux of the gravitational energy-momentum.
文摘This paper deals with an extension of a previous work [Gravitation & Cosmology, Vol. 4, 1998, pp 107-113] to exact spherical symmetric solutions to the spinor field equations with nonlinear terms which are arbitrary functions of S=ψψ, taking into account their own gravitational field. Equations with power and polynomial nonlinearities are studied in detail. It is shown that the initial set of the Einstein and spinor field equations with a power nonlinearity has regular solutions with spinor field localized energy and charge densities. The total energy and charge are finite. Besides, exact solutions, including soliton-like solutions, to the spinor field equations are also obtained in flat space-time.
文摘Let the coordinate system xi of flat space-time to absorb a second rank tensor field Φij of the flat space-time deforming into a Riemannian space-time, namely, the tensor field Φuv is regarded as a metric tensor with respect to the coordinate system xu. After done this, xu is not the coordinate system of flat space-time anymore, but is the coordinate system of the new Riemannian space-time. The inverse operation also can be done. According to these notions, the concepts of the absorption operation and the desorption operation are proposed. These notions are actually compatible with Einstein’s equivalence principle. By using these concepts, the relationships of the Riemannian space-time, the de Donder conditions and the gravitational field in flat space-time are analyzed and elaborated. The essential significance of the de Donder conditions (the harmonic conditions or gauge) is to desorb the tensor field of gravitation from the Riemannian space-time to the Minkowski space-time with the Cartesian coordinates. Einstein equations with de Donder conditions can be solved in flat space-time. Base on Fock’s works, the equations of gravitational field in flat space-time are obtained, and the tensor expression of the energy-momentum of gravitational field is found. They all satisfy the global Lorentz covariance.
文摘According to the conventional theory it is difficult to define the energy-momentum tensor which is locally conservative. The energy-momentum tensor of the gravitational field is defined. Based on a cosmological model without singularity, the total energy-momentum tensor is defined which is locally conservative in the general relativity. The tensor of the gravitational mass is different from the energy-momentum tensor, and it satisfies the gravitational field equation and its covariant derivative is zero.
文摘In this work, the author applied the universal gauge field theory and Noether theorem to prove that universality exists for the Lorentz and Levi-Civita law of conservation of energy momentum tensor density. We also found that this conservation law has profound implications in physics. For example, based on this law, one can explore the origin of the matter field, and propose a new view about what is “dark energy” and what is “dark matter”.
文摘The twistor kinematic-energy model of the space-time and the kinematic-energy tensor as the energy-matter tensor in relativity are considered to demonstrate the possible behavior of gravity as gravitational waves that derive of mass-energy source in the space-time and whose contorted image is the spectrum of the torsion field acting in the space-time. The energy of this field is the energy of their second curvature. Likewise, it is assumed that the curvature energy as spectral curvature in the twistor kinematic frame is the curvature in twistor-spinor framework, which is the mean result of this work. This demonstrates the lawfulness of the torsion as the indicium of the gravitational waves in the space-time. A censorship to detect gravitational waves in the space-time is designed using the curvature energy.
文摘In this work, we introduce the new concept of fourth rank energy-momentum tensor. We first show that a fourth rank electromagnetic energy-momentum tensor can be constructed from the second rank electromagnetic energy-momentum tensor. We then generalise to construct a fourth rank stress energy-momentum tensor and apply it to Dirac field of quantum particles. Furthermore, since the established fourth rank energy-momentum tensors have mathematical properties of the Riemann curvature tensor, thus it is reasonable to suggest that quantum fields should also possess geometric structures of a Riemannian manifold.
文摘The energy--momentum tensor, which is coordinate-independent, is used to calculate energy, momentum and angular momentum of two different tetrad fields. Although, the two tetrad fields reproduce the same space--time their energies are different. Therefore, a regularized expression of the gravitational energy--momentum tensor of the teleparallel equivalent of general relativity (TEGR), is used to make the energies of the two tetrad fields equal. The definition of the gravitational energy--momentum is used to investigate the energy within the external event horizon. The components of angular momentum associated with these space--times are calculated. In spite of using a static space--time, we get a non-zero component of angular momentum! Therefore, we derive the Killing vectors associated with these space--times using the definition of the Lie derivative of a second rank tensor in the framework of the TEGR to make the picture more clear.
文摘A force with an acceleration that is equal to multiples greater than the speed of light per unit time is exerted on a cloud of charged particles. The particles are resultantly accelerated to within an infinitesimal fraction of the speed of light. As the force or acceleration increases, the particles’ velocity asymptotically approaches but never achieves the speed of light obeying relativity. The asymptotic increase in the particles’ velocity toward the speed of light as acceleration increasingly surpasses the speed of light per unit time does not compensate for the momentum value produced on the particles at sub-light velocities. Hence, the particles’ inertial mass value must increase as acceleration increases. This increase in the particles’ inertial mass as the particles are accelerated produce a gravitational field which is believed to occur in the oscillation of quarks achieving velocities close to the speed of light. The increased inertial mass of the density of accelerated charged particles becomes the source mass (or Big “M”) in Newton’s equation for gravitational force. This implies that a space-time curve is generated by the accelerated particles. Thus, it is shown that the acceleration number (or multiple of the speed of light greater than 1 per unit of time) and the number of charged particles in the cloud density are surjectively mapped to points on a differential manifold or space-time curved surface. Two aspects of Einstein’s field equations are used to describe the correspondence between the gravitational field produced by the accelerated particles and the resultant space-time curve. The two aspects are the Schwarzchild metric and the stress energy tensor. Lastly, the possibility of producing a sufficient acceleration or electromagnetic force on the charged particles to produce a gravitational field is shown through the Lorentz force equation. Moreover, it is shown that a sufficient voltage can be generated to produce an acceleration/force on the particles that is multiples greater than the speed of light per unit time thereby generating gravity.
文摘In this work we investigate the possibility to represent physical fields as Einstein manifold. Based on the Einstein field equations in general relativity, we establish a general formulation for determining the metric tensor of the Einstein manifold that represents a physical field in terms of the energy-momentum tensor that characterises the physical field. As illustrations, we first apply the general formulation to represent the perfect fluid as Einstein manifold. However, from the established relation between the metric tensor and the energy-momentum tensor, we show that if the trace of the energy-momentum tensor associated with a physical field is equal to zero then the corresponding physical field cannot be represented as an Einstein manifold. This situation applies to the electromagnetic field since the trace of the energy-momentum of the electromagnetic field vanishes. Nevertheless, we show that a system that consists of the electromagnetic field and non-interacting charged particles can be represented as an Einstein manifold since the trace of the corresponding energy-momentum of the system no longer vanishes. As a further investigation, we show that it is also possible to represent physical fields as maximally symmetric spaces of constant scalar curvature.
文摘We have obtained exact static plane-symmetric solutions to the spinor field equations with nonlinear terms which are arbitrary functions of invariant , taking into account their own gravitational field. It is shown that the initial set of the Einstein and spinor field equations with a power-law nonlinearity have regular solutions with a localized energy density of the spinor field only if m=0 (m is the mass parameter in the spinor field equations). Equations with power and polynomial nonlinearities are studied in detail. In this case, a soliton-like configuration has negative energy. We have also obtained exact static plane-symmetric solutions to the above spinor field equations in flat space-time. It is proved that in this case soliton-like solutions are absent.