The influence maximization problem in complex networks asks to identify a given size of seed spreaders set to maximize the number of expected influenced nodes at the end of the spreading process.This problem finds man...The influence maximization problem in complex networks asks to identify a given size of seed spreaders set to maximize the number of expected influenced nodes at the end of the spreading process.This problem finds many practical applications in numerous areas such as information dissemination,epidemic immunity,and viral marketing.However,most existing influence maximization algorithms are limited by the“rich-club”phenomenon and are thus unable to avoid the influence overlap of seed spreaders.This work proposes a novel adaptive algorithm based on a new gravity centrality and a recursive ranking strategy,named AIGCrank,to identify a set of influential seeds.Specifically,the gravity centrality jointly employs the neighborhood,network location and topological structure information of nodes to evaluate each node's potential of being selected as a seed.We also present a recursive ranking strategy for identifying seed nodes one-byone.Experimental results show that our algorithm competes very favorably with the state-of-the-art algorithms in terms of influence propagation and coverage redundancy of the seed set.展开更多
The gravity and magnetic survey lines of about 13,500 km were carried out in the centraland northern parts of the South China Sea from 1977 to 1978. The results obtained showthat the Bouguer gravity and magnetic anoma...The gravity and magnetic survey lines of about 13,500 km were carried out in the centraland northern parts of the South China Sea from 1977 to 1978. The results obtained showthat the Bouguer gravity and magnetic anomalies have a tendency to increase gradually theirvalues from the northern continental shelf, through the slope, to the central abyssal basin of theSouth China Sea. The change in free-air gravity anomaly values coincides to a certain degreewith the undulation of the sea-bottom topography. The primary factor determining regionalvariation of the Bouguer gravity anomayl values is the Moho depth. The main factor deter-mining the magnetic anomly values is the nature of the basement rock. The high magnetieand Bouguer gravity anomaly values observed in some fault basin areas are inferred to becaused by draping the basic and ultrabasic magma extruding along the faults on the basementof the metamorphic rock,or by intrusion of the same magma into the basement.展开更多
基金the National Social Science Foundation of China(Grant Nos.21BGL217 and 18AZD005)the National Natural Science Foundation of China(Grant Nos.71874108 and 11871328)。
文摘The influence maximization problem in complex networks asks to identify a given size of seed spreaders set to maximize the number of expected influenced nodes at the end of the spreading process.This problem finds many practical applications in numerous areas such as information dissemination,epidemic immunity,and viral marketing.However,most existing influence maximization algorithms are limited by the“rich-club”phenomenon and are thus unable to avoid the influence overlap of seed spreaders.This work proposes a novel adaptive algorithm based on a new gravity centrality and a recursive ranking strategy,named AIGCrank,to identify a set of influential seeds.Specifically,the gravity centrality jointly employs the neighborhood,network location and topological structure information of nodes to evaluate each node's potential of being selected as a seed.We also present a recursive ranking strategy for identifying seed nodes one-byone.Experimental results show that our algorithm competes very favorably with the state-of-the-art algorithms in terms of influence propagation and coverage redundancy of the seed set.
文摘The gravity and magnetic survey lines of about 13,500 km were carried out in the centraland northern parts of the South China Sea from 1977 to 1978. The results obtained showthat the Bouguer gravity and magnetic anomalies have a tendency to increase gradually theirvalues from the northern continental shelf, through the slope, to the central abyssal basin of theSouth China Sea. The change in free-air gravity anomaly values coincides to a certain degreewith the undulation of the sea-bottom topography. The primary factor determining regionalvariation of the Bouguer gravity anomayl values is the Moho depth. The main factor deter-mining the magnetic anomly values is the nature of the basement rock. The high magnetieand Bouguer gravity anomaly values observed in some fault basin areas are inferred to becaused by draping the basic and ultrabasic magma extruding along the faults on the basementof the metamorphic rock,or by intrusion of the same magma into the basement.