期刊文献+
共找到1,914篇文章
< 1 2 96 >
每页显示 20 50 100
Frequency characteristics and far-field effect of gravity perturbation before earthquake 被引量:1
1
作者 强建科 鲁凯 +4 位作者 张钱江 满开峰 李俊营 毛先成 赖健清 《Applied Geophysics》 SCIE CSCD 2017年第1期1-9,188,共10页
We used high-pass filtering and the Fourier transform to analyze tidal gravity data prior to five earthquakes from four superconducting gravity stations around the world. A stable gravitational perturbation signal is ... We used high-pass filtering and the Fourier transform to analyze tidal gravity data prior to five earthquakes from four superconducting gravity stations around the world. A stable gravitational perturbation signal is received within a few days before the earthquakes. The gravitational perturbation signal before the Wenchuan earthquake on May 12, 2008 has main frequency of 0.1–0.3 Hz, and the other four have frequency bands of 0.12-0.17 Hz and 0.06-0.085 Hz. For earthquakes in continental and oceanic plate fault zones, gravity anomalies often appear on the superconducting gravimeters away from the epicenter, whereas the stations near the epicenter record small or no anomalies. The results suggest that this kind of gravitational perturbation signals correlate with earthquake occurrence, making them potentially useful earthquake predictors. The far-field effect of the gravitational perturbation signals may reveal the interaction mechanisms of the Earth’s tectonic plates. However, owing to the uneven distribution of gravity tide stations, the results need to be further confirmed in the future. 展开更多
关键词 EARTHQUAKE pre-seismic gravity perturbation superconducting gravimeter far-field effect
下载PDF
Influence of topography on the fine structures of stratospheric gravity waves:An analysis using COSMIC-2 temperature data 被引量:1
2
作者 JiaRui Wei Xiao Liu +2 位作者 JiYao Xu QinZeng Li Hong Gao 《Earth and Planetary Physics》 EI CAS CSCD 2024年第3期497-513,共17页
We derive the potential energy of gravity waves(GWs)in the upper troposphere and stratosphere at 45°S-45°N from December 2019 to November 2022 by using temperature profiles retrieved from the Constellation O... We derive the potential energy of gravity waves(GWs)in the upper troposphere and stratosphere at 45°S-45°N from December 2019 to November 2022 by using temperature profiles retrieved from the Constellation Observing System for Meteorology,Ionosphere,and Climate-2(COSMIC-2)satellite.Owing to the dense sampling of COSMIC-2,in addition to the strong peaks of gravity wave potential energy(GWPE)above the Andes and Tibetan Plateau,we found weak peaks above the Rocky,Atlas,Caucasus,and Tianshan Mountains.The land-sea contrast is responsible for the longitudinal variations of the GWPE in the lower and upper stratosphere.At 40°N/S,the peaks were mainly above the topographic regions during the winter.At 20°N/S,the peaks were a slight distance away from the topographic regions and might be the combined effect of nontopographic GWs and mountain waves.Near the Equator,the peaks were mainly above the regions with the lowest sea level altitude and may have resulted from convection.Our results indicate that even above the local regions with lower sea level altitudes compared with the Andes and Tibetan Plateau,the GWPE also exhibits fine structures in geographic distributions.We found that dissipation layers above the tropopause jet provide the body force to generate secondary waves in the upper stratosphere,especially during the winter months of each hemisphere and at latitudes of greater than 20°N/S. 展开更多
关键词 TOPOGRAPHY fine structures stratospheric gravity waves Constellation Observing System for Meteorology Ionosphere and Climate-2(COSMIC-2) dissipation layers
下载PDF
Optimization of Center of Gravity Position and Anti-Wave Plate Angle of Amphibious Unmanned Vehicle Based on Orthogonal Experimental Method
3
作者 Deyong Shang Xi Zhang +3 位作者 Fengqi Liang Chunde Zhai Hang Yang Yanqi Niu 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第5期2027-2041,共15页
When the amphibious vehicle navigates in water,the angle of the anti-wave plate and the position of the center of gravity greatly influence the navigation characteristics.In the relevant research on reducing the navig... When the amphibious vehicle navigates in water,the angle of the anti-wave plate and the position of the center of gravity greatly influence the navigation characteristics.In the relevant research on reducing the navigation resistance of amphibious vehicles by adjusting the angle of the anti-wave plate,there is a lack of scientific selection of parameters and reasonable research of simulation results by using mathematical methods,and the influence of the center of gravity position on navigation characteristics is not considered at the same time.To study the influence of the combinations of the angle of the anti-wave plate and the position of the center of gravity on the resistance reduction characteristics,a numerical calculation model of the amphibious unmanned vehicle was established by using the theory of computational fluid dynamics,and the experimental data verified the correctness of the numerical model.Based on this numerical model,the navigation characteristics of the amphibious unmanned vehicle were studied when the center of gravity was located at different positions,and the orthogonal experimental design method was used to optimize the parameters of the angle of the anti-wave plate and the position of the center of gravity.The results show that through the parameter optimization analysis based on the orthogonal experimental method,the combination of the optimal angle of the anti-wave plate and the position of the center of gravity is obtained.And the numerical simulation result of resistance is consistent with the predicted optimal solution.Compared with the maximum navigational resistance,the parameter optimization reduces the navigational resistance of the amphibious unmanned vehicle by 24%. 展开更多
关键词 Amphibious unmanned vehicle orthogonal experimental design anti-wave plate center of gravity resistance characteristic
下载PDF
A New Perspective on Time and Gravity
4
作者 Ittipat Roopkom Wirote Jongchanachavawat +4 位作者 Chermdhong Prattanaruk Kwanchai Nanan Pichet Wisartpong Thawatchai Mayteevarunyoo Paramote Wardkein 《Journal of High Energy Physics, Gravitation and Cosmology》 CAS 2024年第1期346-362,共17页
This paper presents a hypothesis regarding the existence of time fused in spacetime, assuming that time possesses the properties of both a particle and a field. This duality is referred to as the field-particle of tim... This paper presents a hypothesis regarding the existence of time fused in spacetime, assuming that time possesses the properties of both a particle and a field. This duality is referred to as the field-particle of time (FPT). The analysis shows that when the FPT moves through matter, it causes time dilation. The FPT is also a significant element that appears in relativistic kinetic energy (KE = (γ - 1) · mc<sup>2</sup>). Accelerating matter to near the speed of light requires relativistic energy approaching infinity, which corresponds to the relativistic kinetic energy. Meanwhile, the potential energy (PE = mc<sup>2</sup>) from the rest mass remains constant. Then, the mass-energy equation can be rearranged in terms of PE and KE, as shown in E = (1 + (γ - 1)) · mc<sup>2</sup>. The relativistic energy of the FPT also directly affects the gravitational attraction of matter. It transfers energy to each other through spacetime. The analysis demonstrates that the gravitational force is inversely proportional to the distance squared, following Newton’s law of gravity, and it varies with the relative velocity of matter. The relationship equation between relative time and the gravitational constant indicates that a higher intensity of the gravitational field leads to a slower reference time for matter, in accordance with the general theory of relativity. A thought experiment presents a comparison of two atomic clocks placed in different locations. The first one is placed in a room temperature, around 25°C, on the surface of the Earth, and the second one is placed in high-density areas. The analysis, considering the presence of the FPT, shows that the reference time slows down in high-density areas. Therefore, the second clock must be noticeably slower than the first one, indicating the existence of the FPT passing through both atomic clocks at different speeds. 展开更多
关键词 Field-Particle of Time (FPT) Reference Time Relativistic Mass and Energy of FPT gravity
下载PDF
Theories and applications of earthquake-induced gravity variation:Advances and perspectives 被引量:1
5
作者 He Tang Wenke Sun 《Earthquake Science》 2023年第5期376-415,共40页
Earthquake-induced gravity variation refers to changes in the earth’s gravity field associated with seismic activities.In recent years,development in the theories has greatly promoted seismic deformation research,lay... Earthquake-induced gravity variation refers to changes in the earth’s gravity field associated with seismic activities.In recent years,development in the theories has greatly promoted seismic deformation research,laying a solid theoretical foundation for the interpretation and application of seismological gravity monitoring.Traditional terrestrial gravity measurements continue to play a significant role in studies of interseismic,co-seismic,and post-seismic gravity field variations.For instance,superconducting gravimeter networks can detect co-seismic gravity change at the sub-micro Gal level.At the same time,the successful launch of satellite gravity missions(e.g.,the Gravity Recovery and Climate Experiment or GRACE)has also facilitated applied studies of the gravity variation associated with large earthquakes,and several remarkable breakthroughs have been achieved.The progress in gravity observation technologies(e.g.,GRACE and superconducting gravimetry)and advances in the theories have jointly promoted seismic deformation studies and raised many new research topics.For example,superconducting gravimetry has played an important role in analyses of episodic tremor,slow-slip events,and interseismic strain patterns;the monitoring of transient gravity signals and related theories have provided a new perspective on earthquake early warning systems;the mass transport detected by the GRACE satellites several months before an earthquake has brought new insights into earthquake prediction methods;the use of artificial intelligence to automatically identify tiny gravity change signals is a new approach to accurate and rapid determination of earthquake magnitude and location.Overall,many significant breakthroughs have been made in recent years,in terms of the theory,application,and observation measures.This article summarizes the progress,with the aim of providing a reference for seismologists and geodetic researchers studying the phenomenon of gravity variation,advances in related theories and applications,and future research directions in this discipline. 展开更多
关键词 earthquake-induced gravity variation seismic dislocation theory time-varying gravity satellite gravity missions pre-P gravity signals superconducting gravimetry
下载PDF
Characteristics and control factors of feldspar dissolution in gravity flow sandstone of Chang 7 Member,Triassic Yanchang Formation,Ordos Basin,NW China 被引量:1
6
作者 ZHU Haihua ZHANG Qiuxia +4 位作者 DONG Guodong SHANG Fei ZHANG Fuyuan ZHAO Xiaoming ZHANG Xi 《Petroleum Exploration and Development》 SCIE 2024年第1期114-126,共13页
To clarify the formation and distribution of feldspar dissolution pores and predict the distribution of high-quality reservoir in gravity flow sandstone of the 7^(th) member of Triassic Yanchang Formation(Chang 7 Memb... To clarify the formation and distribution of feldspar dissolution pores and predict the distribution of high-quality reservoir in gravity flow sandstone of the 7^(th) member of Triassic Yanchang Formation(Chang 7 Member)in the Ordos Basin,thin sections,scanning electron microscopy,energy spectrum analysis,X-ray diffraction whole rock analysis,and dissolution experiments are employed in this study to investigate the characteristics and control factors of feldspar dissolution pores.The results show that:(1)Three types of diagenetic processes are observed in the feldspar of Chang 7 sandstone in the study area:secondary overgrowth of feldspar,replacement by clay and calcite,and dissolution of detrital feldspar.(2)The feldspar dissolution of Chang 7 tight sandstone is caused by organic acid,and is further affected by the type of feldspar,the degree of early feldspar alteration,and the buffering effect of mica debris on organic acid.(3)Feldspars have varying degrees of dissolution.Potassium feldspar is more susceptible to dissolution than plagioclase.Among potassium feldspar,orthoclase is more soluble than microcline,and unaltered feldspar is more soluble than early kaolinized or sericitized feldspar.(4)The dissolution experiment demonstrated that the presence of mica can hinder the dissolution of feldspar.Mica of the same mass has a significantly stronger capacity to consume organic acids than feldspar.(5)Dissolution pores in feldspar of Chang 7 Member are more abundant in areas with low mica content,and they improve the reservoir physical properties,while in areas with high mica content,the number of feldspar dissolution pores decreases significantly. 展开更多
关键词 gravity flow sandstone differential feldspar dissolution mica-feldspar dissolution experiment Chang 7 Member of Triassic Yanchang Formation Ordos Basin
下载PDF
Probing signals of atmospheric gravity waves excited by the July 29,2021 M_(W)8.2 Alaska earthquake
7
作者 Geng Zhang Jianqiao Xu +2 位作者 Xiaodong Chen Heping Sun Lizhuo Gong 《Geodesy and Geodynamics》 EI CSCD 2024年第3期219-229,共11页
It is commonly believed that the atmosphere is decoupled from the solid Earth.Thus,it is difficult for the seismic wave energy inside the Earth to propagate into the atmosphere,and atmospheric pressure wave signals ex... It is commonly believed that the atmosphere is decoupled from the solid Earth.Thus,it is difficult for the seismic wave energy inside the Earth to propagate into the atmosphere,and atmospheric pressure wave signals excited by earthquakes are unlikely to exist in atmospheric observations.An increasing number of studies have shown that earthquakes,volcanoes,and tsunamis can perturb the Earth's atmosphere due to various coupling effects.However,the observations mainly focus on acoustic waves with periods of less than 10 min and inertial gravity waves with periods of greater than 1 h.There are almost no clear observations of gravity waves that coincide with observations of low-frequency signals of the Earth's free oscillation frequency band within 1 h.This paper investigates atmospheric gravity wave signals within1 h of surface-atmosphere observations using the periodogram method based on seismometer and microbarometer observations from the global seismic network before and after the July 29,2021 M_(w)8.2 Alaska earthquake in the United States.The numerical results show that the atmospheric gravity wave signals with frequencies similar to those of the Earth's free oscillations _(0)S_(2) and _(0)T_(2) can be detected in the microbaro meter observations.The results con firm the existence of atmospheric gravity waves,indicating that the atmosphere and the solid Earth are not decoupled within this frequency band and that seismic wave energy excited by earthquakes can propagate from the interior of the Earth to the atmosphere and enhance the atmospheric gravity wave signals within 1 h. 展开更多
关键词 Atmospheric gravity modes Atmospheric gravity waves Alaska earthquake Normal modes Coupling of solid earth and atmosphere
下载PDF
Quintessence anisotropic stellar models in quadratic and Born-Infeld modified teleparallel Rastall gravity
8
作者 Allah Ditta 夏铁成 +1 位作者 Irfan Mahmood Asif Mahmood 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第3期179-189,共11页
This study aims to discuss anisotropic solutions that are spherically symmetric in the quintessence field,which describe compact stellar objects in the modified Rastall teleparallel theory of gravity.To achieve this g... This study aims to discuss anisotropic solutions that are spherically symmetric in the quintessence field,which describe compact stellar objects in the modified Rastall teleparallel theory of gravity.To achieve this goal,the Krori and Barua arrangement for spherically symmetric components of the line element is incorporated.We explore the field equations by selecting appropriate off-diagonal tetrad fields.Born-Infeld function of torsion f(T)=β√λT+1-1 and power law form h(T)=δTn are used.The Born-Infeld gravity was the first modified teleparallel gravity to discuss inflation.We use the linear equation of state pr=ξρto separate the quintessence density.After obtaining the field equations,we investigate different physical parameters that demonstrate the stability and physical acceptability of the stellar models.We use observational data,such as the mass and radius of the compact star candidates PSRJ 1416-2230,Cen X-3,&4U 1820-30,to ensure the physical plausibility of our findings. 展开更多
关键词 anisotropic spheres quintessence field modified Rastall teleparallel gravity equation of state(EoS) f(T)gravity
下载PDF
Predicting bathymetry based on vertical gravity gradient anomaly and analyses for various influential factors
9
作者 Huan Xu Jinhai Yu +3 位作者 Yanyan Zeng Qiuyu Wang Yuwei Tian Zhongmiao Sun 《Geodesy and Geodynamics》 EI CSCD 2024年第4期386-396,共11页
The prediction of bathymetry has advanced significantly with the development of satellite altimetry.However,the majority of its data originate from marine gravity anomaly.In this study,based on the expression of verti... The prediction of bathymetry has advanced significantly with the development of satellite altimetry.However,the majority of its data originate from marine gravity anomaly.In this study,based on the expression of vertical gravity gradient(VGG)of a rectangular prism,the governing equations for determining sea depths to invert bathymetry.The governing equation is solved by linearization through an iterative process,and numerical simulations verify its algorithm and its stability.We also study the processing methods of different interference errors.The regularization method improves the stability of the inversion process for errors.A piecewise bilinear interpolation function roughly replaces the low-frequency error,and numerical simulations show that the accuracy can be improved by 41.2%after this treatment.For variable ocean crust density,simulation simulations verify that the root-mean-square(RMS)error of prediction is approximately 5 m for the sea depth of 6 km if density is chosen as the average one.Finally,two test regions in the South China Sea are predicted and compared with ship soundings data,RMS errors of predictions are 71.1 m and 91.4 m,respectively. 展开更多
关键词 Rectangular prism Vertical gravity gradient BATHYMETRY Numerical simulation Prediction error
下载PDF
A method for extracting the preseismic gravity anomalies over the Tibetan Plateau based on the maximum shear strain using GRACE data
10
作者 Hui Wang DongMei Song +1 位作者 XinJian Shan Bin Wang 《Earth and Planetary Physics》 EI CAS CSCD 2024年第4期589-608,共20页
The occurrence of earthquakes is closely related to the crustal geotectonic movement and the migration of mass,which consequently cause changes in gravity.The Gravity Recovery And Climate Experiment(GRACE)satellite da... The occurrence of earthquakes is closely related to the crustal geotectonic movement and the migration of mass,which consequently cause changes in gravity.The Gravity Recovery And Climate Experiment(GRACE)satellite data can be used to detect gravity changes associated with large earthquakes.However,previous GRACE satellite-based seismic gravity-change studies have focused more on coseismic gravity changes than on preseismic gravity changes.Moreover,the noise of the north–south stripe in GRACE data is difficult to eliminate,thereby resulting in the loss of some gravity information related to tectonic activities.To explore the preseismic gravity anomalies in a more refined way,we first propose a method of characterizing gravity variation based on the maximum shear strain of gravity,inspired by the concept of crustal strain.The offset index method is then adopted to describe the gravity anomalies,and the spatial and temporal characteristics of gravity anomalies before earthquakes are analyzed at the scales of the fault zone and plate,respectively.In this work,experiments are carried out on the Tibetan Plateau and its surrounding areas,and the following findings are obtained:First,from the observation scale of the fault zone,we detect the occurrence of large-area gravity anomalies near the epicenter,oftentimes about half a year before an earthquake,and these anomalies were distributed along the fault zone.Second,from the observation scale of the plate,we find that when an earthquake occurred on the Tibetan Plateau,a large number of gravity anomalies also occurred at the boundary of the Tibetan Plateau and the Indian Plate.Moreover,the aforementioned experiments confirm that the proposed method can successfully capture the preseismic gravity anomalies of large earthquakes with a magnitude of less than 8,which suggests a new idea for the application of gravity satellite data to earthquake research. 展开更多
关键词 gravity Recovery And Climate Experiment(GRACE)data maximum shear strain offset index K preseismic gravity anomalies Tibetan Plateau fault zone
下载PDF
A VGGNet-based correction for satellite altimetry-derived gravity anomalies to improve the accuracy of bathymetry to depths of 6500 m
11
作者 Xiaolun Chen Xiaowen Luo +6 位作者 Ziyin Wu Xiaoming Qin Jihong Shang Huajun Xu Bin Li Mingwei Wang Hongyang Wan 《Acta Oceanologica Sinica》 SCIE CAS CSCD 2024年第1期112-122,共11页
Understanding the topographic patterns of the seafloor is a very important part of understanding our planet.Although the science involved in bathymetric surveying has advanced much over the decades,less than 20%of the... Understanding the topographic patterns of the seafloor is a very important part of understanding our planet.Although the science involved in bathymetric surveying has advanced much over the decades,less than 20%of the seafloor has been precisely modeled to date,and there is an urgent need to improve the accuracy and reduce the uncertainty of underwater survey data.In this study,we introduce a pretrained visual geometry group network(VGGNet)method based on deep learning.To apply this method,we input gravity anomaly data derived from ship measurements and satellite altimetry into the model and correct the latter,which has a larger spatial coverage,based on the former,which is considered the true value and is more accurate.After obtaining the corrected high-precision gravity model,it is inverted to the corresponding bathymetric model by applying the gravity-depth correlation.We choose four data pairs collected from different environments,i.e.,the Southern Ocean,Pacific Ocean,Atlantic Ocean and Caribbean Sea,to evaluate the topographic correction results of the model.The experiments show that the coefficient of determination(R~2)reaches 0.834 among the results of the four experimental groups,signifying a high correlation.The standard deviation and normalized root mean square error are also evaluated,and the accuracy of their performance improved by up to 24.2%compared with similar research done in recent years.The evaluation of the R^(2) values at different water depths shows that our model can achieve performance results above 0.90 at certain water depths and can also significantly improve results from mid-water depths when compared to previous research.Finally,the bathymetry corrected by our model is able to show an accuracy improvement level of more than 21%within 1%of the total water depths,which is sufficient to prove that the VGGNet-based method has the ability to perform a gravity-bathymetry correction and achieve outstanding results. 展开更多
关键词 gravity anomaly bathymetry inversion VGGNet multibeam sonar satellite altimetry
下载PDF
Transcriptional regulation of MdPIN7 by MdARF19 during gravityinduced formation of adventitious root GSA in self-rooted apple stock
12
作者 Zenghui Wang Xuemei Yang +5 位作者 Linyue Hu Wei Liu Lijuan Feng Xiang Shen Yanlei Yin Jialin Li 《Horticultural Plant Journal》 SCIE CAS CSCD 2024年第5期1073-1084,共12页
Self-rooted apple stock is widely used for apple production.However,the shallowness of the adventitious roots in self-rooted apple stock leads to poor performance in the barren orchards of China.This is because of the... Self-rooted apple stock is widely used for apple production.However,the shallowness of the adventitious roots in self-rooted apple stock leads to poor performance in the barren orchards of China.This is because of the considerable difference in the development of a gravitropic set-point angle(GSA)between self-rooted apple stock and seedling rootstock.Therefore,it is crucial to study the molecular mechanism of adventitious root GSA in self-rooted apple stock for breeding self-rooted and deep-rooted apple rootstock cultivars.An apple auxin response factor MdARF19 functioned to establish the adventitious root GSA of self-rooted apple stock in response to gravity and auxin signals.MdARF19 bound directly to the MdPIN7 promoter,activating its transcriptional expression and thus regulating the formation of the adventitious root GSA in 12-2 self-rooted apple stock.However,MdARF19 influenced the expression of auxin efflux carriers(MdPIN3 and MdPIN10)and the establishment of adventitious root GSA of self-rooted apple stock in response to gravity signals by direct activation of MdFLP.Our findings provide new information on the transcriptional regulation of MdPIN7 by auxin response factor MdARF19 in the regulation of the adventitious root GSA of self-rooted apple stock in response to gravity and auxin signals. 展开更多
关键词 APPLE Self-rooted stock gravity MdARF19 MdPIN7 Gravitropic set-point angle Transcriptional regulation
下载PDF
Investigation of gravity influence on EOR and CO_(2) geological storage based on pore-scale simulation
13
作者 Yong-Mao Hao Gui-Cheng Wu +6 位作者 Zong-Fa Li Zhong-Hui Wu Yong-Quan Sun Ran Liu Xing-Xing Li Bo-Xin Pang Nan Li 《Petroleum Science》 SCIE EI CAS CSCD 2024年第2期987-1001,共15页
Gravity assistance is a critical factor influencing CO_(2)-Oil mixing and miscible flow during EOR and CO_(2)geological storage.Based on the Navier-Stokes equation,component mass conservation equation,and fluid proper... Gravity assistance is a critical factor influencing CO_(2)-Oil mixing and miscible flow during EOR and CO_(2)geological storage.Based on the Navier-Stokes equation,component mass conservation equation,and fluid property-composition relationship,a mathematical model for pore-scale CO_(2) injection in oilsaturated porous media was developed in this study.The model can reflect the effects of gravity assistance,component diffusion,fluid density variation,and velocity change on EOR and CO_(2) storage.For nonhomogeneous porous media,the gravity influence and large density difference help to minimize the velocity difference between the main flow path and the surrounding area,thus improving the oil recovery and CO_(2) storage.Large CO_(2) injection angles and oil-CO_(2) density differences can increase the oil recovery by 22.6% and 4.2%,respectively,and increase CO_(2) storage by 37.9% and 4.7%,respectively.Component diffusion facilitates the transportation of the oil components from the low-velocity region to the main flow path,thereby reducing the oil/CO_(2) concentration difference within the porous media.Component diffusion can increase oil recovery and CO_(2) storage by 5.7% and 6.9%,respectively.In addition,combined with the component diffusion,a low CO_(2) injection rate creates a more uniform spatial distribution of the oil/CO_(2) component,resulting in increases of 9.5% oil recovery and 15.7% CO_(2) storage,respectively.This study provides theoretical support for improving the geological CO_(2) storage and EOR processes. 展开更多
关键词 gravity Flow simulation CO_(2)-oil mixing Enhanced oil recovery(EOR) Geological storage
下载PDF
Structural features in the mid-southern section of the Kyushu–Palau Ridge based on satellite altimetry gravity anomaly
14
作者 Feifei Zhang Dingding Wang +3 位作者 Xiaolin Ji Fanghui Hou Yuan Yang Wanyin Wang 《Acta Oceanologica Sinica》 SCIE CAS CSCD 2024年第4期50-60,共11页
The Kyushu–Palau Ridge(KPR),an anti-S-shaped submarine highland at the center of the Philippine Sea Plate(PSP),is considered the residual arc of the Izu–Bonin–Mariana Island Arc,which retains key information about ... The Kyushu–Palau Ridge(KPR),an anti-S-shaped submarine highland at the center of the Philippine Sea Plate(PSP),is considered the residual arc of the Izu–Bonin–Mariana Island Arc,which retains key information about the cessation of the Western Philippine Basin(WPB)expansion and the Parece Vela Basin(PVB)breakup.Herein,using the new generation of satellite altimetry gravity data,high-precision seafloor topography data,and newly acquired ship-borne gravity data,the topographic and gravity characteristics of the KPR mid-southern section and adjacent region are depicted.The distribution characteristics of the faults were delineated using the normalized vertical derivative–total horizontal derivative method(NVDR-THDR)and the minimum curvature potential field separation method.The Moho depth and crustal thickness were inverted using the rapid inversion method for a double-interface model with depth constraints.Based on these results,the crust structure features in the KPR mid-southern section,and the“triangular”structure geological significance where the KPR and Central Basin Rift(CBR)of the WPB intersect are interpreted.The KPR crustal thickness is approximately 6–16 km,with a distinct discontinuity that is slightly thicker than the normal oceanic crust.The KPR mid-southern section crust structure was divided into four segments(S1–S4)from north to south,formed by the CBR eastward extension joint action and clockwise rotation of the PVB expansion axis and the Mindanao fault zone blocking effect. 展开更多
关键词 structural features satellite altimetry gravity data Kyushu-Palau Ridge Central Basin Rift FAULTS Moho depth
下载PDF
Depositional process of hyperpycnal flow deposits:A case study on Lower Cretaceous Sangyuan outcrop in the Luanping Basin,Northeast China
15
作者 De-zhi Yan Ru-kai Zhu +8 位作者 Hao Shou Zhao-hui Xu Wei-hong Liu Si-cheng Zhu Zhi-cheng Lei Jing-ya Zhang Chang Liu Yi Cai Huai-min Xu 《China Geology》 CAS CSCD 2024年第3期505-516,共12页
Sedimentary process research is of great significance for understanding the distribution and characteristics of sediments.Through the detailed observation and measurement of the Sangyuan outcrop in Luanping Basin,this... Sedimentary process research is of great significance for understanding the distribution and characteristics of sediments.Through the detailed observation and measurement of the Sangyuan outcrop in Luanping Basin,this paper studies the depositional process of the hyperpycnal flow deposits,and divides their depositional process into three phases,namely,acceleration,erosion and deceleration.In the acceleration phase,hyperpycnal flow begins to enter the basin nearby,and then speeds up gradually.Deposits developed in the acceleration phase are reverse.In addition,the original deposits become unstable and are taken away by hyperpycnal flows under the eroding force.As a result,there are a lot of mixture of red mud pebbles outside the basin and gray mud pebbles within the basin.In the erosion phase,the reverse deposits are eroded and become thinner or even disappear.Therefore,no reverse grading characteristic is found in the proximal major channel that is closer to the source,but it is still preserved in the middle branch channel that is far from the source.After entering the deceleration phase,normally grading deposits appear and cover previous deposits.The final deposits in the basin are special.Some are reverse,and others are normal.They are superimposed with each other under the action of hyperpycnal flow.The analysis of the Sangyuan outcrop demonstrates the sedimentary process and distribution of hyperpycnites,and reasonably explain the sedimentary characteristics of hyperpycnites.It is helpful to the prediction of oil and gas exploration targets in gravity flow deposits. 展开更多
关键词 Hyperpycnal flow Sedimentary characteristics Depositional process gravity flow deposit Hyperpycnite Red mud pebble Gray mud pebble Oil and gas exploration engineering Luanping Basin
下载PDF
Research on internal gravity waves in the Martian atmosphere based on Tianwen-1 and Mars Global Surveyor occultation data
16
作者 Luo Xiao CunYing Xiao +2 位作者 Xiong Hu ZeWei Wang XiaoQi Wu 《Earth and Planetary Physics》 EI CAS CSCD 2024年第6期890-898,共9页
Internal gravity waves(IGWs)are critical in driving Martian atmospheric motion and phenomena.This study investigates Martian IGWs by using high-resolution data from China’s Tianwen-1 mission and the National Aeronaut... Internal gravity waves(IGWs)are critical in driving Martian atmospheric motion and phenomena.This study investigates Martian IGWs by using high-resolution data from China’s Tianwen-1 mission and the National Aeronautics and Space Administration’s Mars Global Surveyor(MGS)by the radio occultation(RO)technique.Key IGW parameters,such as vertical and horizontal wavelengths,intrinsic frequency,and energy density,are extracted based on vertical temperature profiles from the Martian surface to~50 km altitude.Data reveal that the Martian IGWs are predominantly small-scale waves,with vertical wavelengths between 6 and 13 km and horizontal wavelengths extending to thousands of kilometers.These waves propagate almost vertically and exhibit low intrinsic frequencies close to the inertial frequency,with the characteristic of low-frequency inertial IGWs.Tianwen-1 data indicate stronger IGW activity,higher energy density,and less dissipation than MGS data in the northern hemisphere.Moreover,MGS data in the southern hemisphere show higher buoyancy frequencies and lower vertical wavelengths,suggesting more stable atmospheric conditions conducive to IGW propagation.These extracted IGW characteristics can enhance our understanding of the atmospheric dynamics on Mars and contribute valuable information for parameterization in global circulation models. 展开更多
关键词 internal gravity waves MARS Tianwen-1 Mars Global Surveyor radio occultation
下载PDF
Structural characteristics and tectonic division of the Zambezi Delta basin in the offshore East Africa:evidences from gravity and seismic data
17
作者 Guozhang Fan Wen Li +8 位作者 Liangbo Ding Wanyin Wang Hongping Wang Dingding Wang Lin Li Hao Wang Chaofeng Wang Qingluan Wang Ying Zhang 《Acta Oceanologica Sinica》 SCIE CAS CSCD 2024年第4期105-118,共14页
The Zambezi Delta basin is a passive marginal basin located on the East African coast that has good oil and gas exploration potential.Due to the special geological evolutionary background of the Beira High in the Zamb... The Zambezi Delta basin is a passive marginal basin located on the East African coast that has good oil and gas exploration potential.Due to the special geological evolutionary background of the Beira High in the Zambezi Delta basin,it has a low gravity anomaly,and the existing seismic survey lines do not cover the whole basin;therefore,it is difficult to interpret the structural characteristics of the whole basin based solely on gravity or seismic data.Based on satellite altimetry gravity anomaly data,this study infers the distribution characteristics of faults in the Zambezi Delta basin by using the normalized vertical derivative of the total horizontal derivative(NVDR-THDR)technique.Then,constrained by seismic data,the gravity anomaly at the Moho interface is extracted by using the fast forward method of the double-interface model of the gravity anomaly,and this anomaly is then removed from the Bouguer gravity anomaly to obtain the sedimentary layer gravity anomaly.The thickness of the sedimentary strata is obtained by inversing the sedimentary basement depth of the whole basin.Then,uplifts and depressions are divided based on a sedimentary layer thickness of 3 km.This research demonstrates that the Zambezi Delta basin mainly features nearly SN-trending and NE-trending faults and that these faults exhibit east-west partitioning.The nearly SN-trending strike-slip faults controlled the sedimentary development of the basin,and the NE-trending tensile faults may have acted as migration channels for oil,gas and magma.The“overcompensation”effect of the Moho interface gravity anomaly on the gravity anomaly of the sedimentary layer is caused by the depression of the Moho interface beneath the Beira High,which results in a low gravity anomaly value for the Beira High.The pattern of uplifts and depressions trends NE and has the structural characteristics of east-west blocks. 展开更多
关键词 Zambezi Delta basin satellite altimetry gravity anomaly Beira High fault division uplift and depression pattern
下载PDF
Three-dimensional constrained gravity inversion of Moho depth and crustal structural characteristics at Mozambique continental margin
18
作者 Shihao Yang Zhaocai Wu +3 位作者 Yinxia Fang Mingju Xu Jialing Zhang Fanlin Yang 《Acta Oceanologica Sinica》 SCIE CAS CSCD 2024年第2期120-129,共10页
Mozambique's continental margin in East Africa was formed during the break-off stage of the east and west Gondwana lands. Studying the geological structure and division of continent-ocean boundary(COB) in Mozambiq... Mozambique's continental margin in East Africa was formed during the break-off stage of the east and west Gondwana lands. Studying the geological structure and division of continent-ocean boundary(COB) in Mozambique's continental margin is considered of great significance to rebuild Gondwana land and understand its movement mode. Along these lines, in this work, the initial Moho was fit using the known Moho depth from reflection seismic profiles, and a 3D multi-point constrained gravity inversion was carried out. Thus, highaccuracy Moho depth and crustal thickness in the study area were acquired. According to the crustal structure distribution based on the inversion results, the continental crust at the narrowest position of the Mozambique Channel was detected. According to the analysis of the crustal thickness, the Mozambique ridge is generally oceanic crust and the COB of the whole Mozambique continental margin is divided. 展开更多
关键词 3D constrained gravity inversion continent-ocean boundary Mozambique continental margin Moho depth
下载PDF
Data processing method for aerial testing of rotating accelerometer gravity gradiometer
19
作者 QIAN Xuewu TANG Hailiang 《中国惯性技术学报》 EI CSCD 北大核心 2024年第8期743-752,共10页
A novel method for noise removal from the rotating accelerometer gravity gradiometer(MAGG)is presented.It introduces a head-to-tail data expansion technique based on the zero-phase filtering principle.A scheme for det... A novel method for noise removal from the rotating accelerometer gravity gradiometer(MAGG)is presented.It introduces a head-to-tail data expansion technique based on the zero-phase filtering principle.A scheme for determining band-pass filter parameters based on signal-to-noise ratio gain,smoothness index,and cross-correlation coefficient is designed using the Chebyshev optimal consistent approximation theory.Additionally,a wavelet denoising evaluation function is constructed,with the dmey wavelet basis function identified as most effective for processing gravity gradient data.The results of hard-in-the-loop simulation and prototype experiments show that the proposed processing method has shown a 14%improvement in the measurement variance of gravity gradient signals,and the measurement accuracy has reached within 4E,compared to other commonly used methods,which verifies that the proposed method effectively removes noise from the gradient signals,improved gravity gradiometry accuracy,and has certain technical insights for high-precision airborne gravity gradiometry. 展开更多
关键词 airborne gravity gradiometer data processing band-passing filter evaluation function
下载PDF
Design and Research of Active Gravity Unloading Device for Large Aperture Optical Mirror
20
作者 Qiuyue Yu Zhaoming Wang +6 位作者 Qiushi Yang Wen Guo Chunlin Li Yonggang Wang Mengjuan Li Jianhua Zhang Chao Wang 《Optics and Photonics Journal》 2023年第7期167-177,共11页
The large aperture optical mirror for space is processed and tested in the gravity environment on the ground. After entering space, gravity disappears due to the change of environment, and the mirror surface that has ... The large aperture optical mirror for space is processed and tested in the gravity environment on the ground. After entering space, gravity disappears due to the change of environment, and the mirror surface that has met the engineering requirements on the ground will change, seriously affecting the imaging quality. In order to eliminate the influence of gravity and to ensure the consistency of space and ground, gravity unloading must be performed. In order to meet the requirements of processing and testing for the large aperture space mirror in the state of vertical optical axis, a universal gravity unloading device was proposed. It was an active support and used air cylinders to provide accurate unloading force. First, the design flow of gravity unloading was introduced;then the detailed design of the mechanical structure and control system was given;then the performance parameters of the two types of cylinders were tested and compared, including the force-pressure relationship curve and the force-position relationship curve;finally, the experimental verification of the gravity unloading device was carried out;for a mirror with an aperture of ?2100 mm, the gravity unloading device was designed and a vertical detection optical path was built. The test results showed that by using this gravity unloading device, the actual processing surface accuracy of the mirror was better than 1/50λ-RMS, which met the application requirement of the optical system. Thus, it can be seen that using this gravity unloading device can effectively unload the gravity of the mirror and realize the accurate processing and measurement of the mirror surface. . 展开更多
关键词 Optical Mirror Large Aperture Active Support gravity Unloading
下载PDF
上一页 1 2 96 下一页 到第
使用帮助 返回顶部