期刊文献+
共找到740篇文章
< 1 2 37 >
每页显示 20 50 100
RBF neural network regression model based on fuzzy observations 被引量:1
1
作者 朱红霞 沈炯 苏志刚 《Journal of Southeast University(English Edition)》 EI CAS 2013年第4期400-406,共7页
A fuzzy observations-based radial basis function neural network (FORBFNN) is presented for modeling nonlinear systems in which the observations of response are imprecise but can be represented as fuzzy membership fu... A fuzzy observations-based radial basis function neural network (FORBFNN) is presented for modeling nonlinear systems in which the observations of response are imprecise but can be represented as fuzzy membership functions. In the FORBFNN model, the weight coefficients of nodes in the hidden layer are identified by using the fuzzy expectation-maximization ( EM ) algorithm, whereas the optimal number of these nodes as well as the centers and widths of radial basis functions are automatically constructed by using a data-driven method. Namely, the method starts with an initial node, and then a new node is added in a hidden layer according to some rules. This procedure is not terminated until the model meets the preset requirements. The method considers both the accuracy and complexity of the model. Numerical simulation results show that the modeling method is effective, and the established model has high prediction accuracy. 展开更多
关键词 radial basis function neural network (RBFNN) fuzzy membership function imprecise observation regression model
下载PDF
Predicting the growth performance of growing-finishing pigs based on net energy and digestible lysine intake using multiple regression and artificial neural networks models 被引量:9
2
作者 Li Wang Qile Hu +3 位作者 Lu Wang Huangwei Shi Changhua Lai Shuai Zhang 《Journal of Animal Science and Biotechnology》 SCIE CAS CSCD 2022年第6期1932-1944,共13页
Backgrounds:Evaluating the growth performance of pigs in real-time is laborious and expensive,thus mathematical models based on easily accessible variables are developed.Multiple regression(MR)is the most widely used ... Backgrounds:Evaluating the growth performance of pigs in real-time is laborious and expensive,thus mathematical models based on easily accessible variables are developed.Multiple regression(MR)is the most widely used tool to build prediction models in swine nutrition,while the artificial neural networks(ANN)model is reported to be more accurate than MR model in prediction performance.Therefore,the potential of ANN models in predicting the growth performance of pigs was evaluated and compared with MR models in this study.Results:Body weight(BW),net energy(NE)intake,standardized ileal digestible lysine(SID Lys)intake,and their quadratic terms were selected as input variables to predict ADG and F/G among 10 candidate variables.In the training phase,MR models showed high accuracy in both ADG and F/G prediction(R^(2)_(ADG)=0.929,R^(2)_(F/G)=0.886)while ANN models with 4,6 neurons and radial basis activation function yielded the best performance in ADG and F/G prediction(R^(2)_(ADG)=0.964,R^(2)_(F/G)=0.932).In the testing phase,these ANN models showed better accuracy in ADG prediction(CCC:0.976 vs.0.861,R^(2):0.951 vs.0.584),and F/G prediction(CCC:0.952 vs.0.900,R^(2):0.905 vs.0.821)compared with the MR models.Meanwhile,the“over-fitting”occurred in MR models but not in ANN models.On validation data from the animal trial,ANN models exhibited superiority over MR models in both ADG and F/G prediction(P<0.01).Moreover,the growth stages have a significant effect on the prediction accuracy of the models.Conclusion:Body weight,NE intake and SID Lys intake can be used as input variables to predict the growth performance of growing-finishing pigs,with trained ANN models are more flexible and accurate than MR models.Therefore,it is promising to use ANN models in related swine nutrition studies in the future. 展开更多
关键词 Multiple regression model neural networks PIG PREDICTION
下载PDF
A Predictive Modeling Based on Regression and Artificial Neural Network Analysis of Laser Transformation Hardening for Cylindrical Steel Workpieces
3
作者 Ahmed Ghazi Jerniti Abderazzak El Ouafi Noureddine Barka 《Journal of Surface Engineered Materials and Advanced Technology》 2016年第4期149-163,共15页
Laser surface hardening is a very promising hardening process for ferrous alloys where transformations occur during cooling after laser heating in the solid state. The characteristics of the hardened surface depend on... Laser surface hardening is a very promising hardening process for ferrous alloys where transformations occur during cooling after laser heating in the solid state. The characteristics of the hardened surface depend on the physicochemical properties of the material as well as the heating system parameters. To exploit the benefits presented by the laser hardening process, it is necessary to develop an integrated strategy to control the process parameters in order to produce desired hardened surface attributes without being forced to use the traditional and fastidious trial and error procedures. This study presents a comprehensive modelling approach for predicting the hardened surface physical and geometrical attributes. The laser surface transformation hardening of cylindrical AISI 4340 steel workpieces is modeled using the conventional regression equation method as well as artificial neural network method. The process parameters included in the study are laser power, beam scanning speed, and the workpiece rotational speed. The upper and the lower limits for each parameter are chosen considering the start of the transformation hardening and the maximum hardened zone without surface melting. The resulting models are able to predict the depths representing the maximum hardness zone, the hardness drop zone, and the overheated zone without martensite transformation. Because of its ability to model highly nonlinear problems, the ANN based model presents the best modelling results and can predict the hardness profile with good accuracy. 展开更多
关键词 Heat Treatment Laser Surface Hardening Hardness Predictive modeling regression Analysis Artificial neural network Cylindrical Steel Workpieces AISI 4340 Steel Nd:Yag Laser System
下载PDF
Prediction of Water Table Based on General Regression Neural Network
4
作者 GUAN Shuai QIAN Cheng 《科技视界》 2017年第35期56-57,共2页
Traditional methods for water table prediction have such defects as extensive calculation and reliance on the presupposition of a homogeneous and regular aquifer.Based on the fundamentals of the general regression neu... Traditional methods for water table prediction have such defects as extensive calculation and reliance on the presupposition of a homogeneous and regular aquifer.Based on the fundamentals of the general regression neural network(GRNN),this article sets up a GRNN model for water level prediction.Case study indicates that this model,even with limited information,has satisfactory prediction accuracy,which,coupled with a simple model structure and relatively high calculation efficiency,mean a vast application prospect for the model. 展开更多
关键词 GENERAL regression neural network Water TABLE PREDICTION INDEX model LINEAR regression
下载PDF
Artificial neural network models predicting the leaf area index:a case study in pure even-aged Crimean pine forests from Turkey 被引量:4
5
作者 ilker Ercanli Alkan Gunlu +1 位作者 Muammer Senyurt Sedat Keles 《Forest Ecosystems》 SCIE CSCD 2018年第4期400-411,共12页
Background: Leaf Area Index(LAI) is an important parameter used in monitoring and modeling of forest ecosystems. The aim of this study was to evaluate performance of the artificial neural network(ANN) models to predic... Background: Leaf Area Index(LAI) is an important parameter used in monitoring and modeling of forest ecosystems. The aim of this study was to evaluate performance of the artificial neural network(ANN) models to predict the LAI by comparing the regression analysis models as the classical method in these pure and even-aged Crimean pine forest stands.Methods: One hundred eight temporary sample plots were collected from Crimean pine forest stands to estimate stand parameters. Each sample plot was imaged with hemispherical photographs to detect the LAI. The partial correlation analysis was used to assess the relationships between the stand LAI values and stand parameters, and the multivariate linear regression analysis was used to predict the LAI from stand parameters. Different artificial neural network models comprising different number of neuron and transfer functions were trained and used to predict the LAI of forest stands.Results: The correlation coefficients between LAI and stand parameters(stand number of trees, basal area, the quadratic mean diameter, stand density and stand age) were significant at the level of 0.01. The stand age, number of trees, site index, and basal area were independent parameters in the most successful regression model predicted LAI values using stand parameters(R_(adj)~2=0.5431). As corresponding method to predict the interactions between the stand LAI values and stand parameters, the neural network architecture based on the RBF 4-19-1 with Gaussian activation function in hidden layer and the identity activation function in output layer performed better in predicting LAI(SSE(12.1040), MSE(0.1223), RMSE(0.3497), AIC(0.1040), BIC(-77.7310) and R^2(0.6392)) compared to the other studied techniques.Conclusion: The ANN outperformed the multivariate regression techniques in predicting LAI from stand parameters. The ANN models, developed in this study, may aid in making forest management planning in study forest stands. 展开更多
关键词 Leaf area index Multivariate linear regression model Artificial neural network modeling Crimean pine Stand parameters
下载PDF
Application of Grey Model and Neural Network in Financial Revenue Forecast 被引量:2
6
作者 Yifu Sheng Jianjun Zhang +4 位作者 Wenwu Tan Jiang Wu Haijun Lin Guang Sun Peng Guo 《Computers, Materials & Continua》 SCIE EI 2021年第12期4043-4059,共17页
There are many influencing factors of fiscal revenue,and traditional forecasting methods cannot handle the feature dimensions well,which leads to serious over-fitting of the forecast results and unable to make a good ... There are many influencing factors of fiscal revenue,and traditional forecasting methods cannot handle the feature dimensions well,which leads to serious over-fitting of the forecast results and unable to make a good estimate of the true future trend.The grey neural network model fused with Lasso regression is a comprehensive prediction model that combines the grey prediction model and the BP neural network model after dimensionality reduction using Lasso.It can reduce the dimensionality of the original data,make separate predictions for each explanatory variable,and then use neural networks to make multivariate predictions,thereby making up for the shortcomings of traditional methods of insufficient prediction accuracy.In this paper,we took the financial revenue data of China’s Hunan Province from 2005 to 2019 as the object of analysis.Firstly,we used Lasso regression to reduce the dimensionality of the data.Because the grey prediction model has the excellent predictive performance for small data volumes,then we chose the grey prediction model to obtain the predicted values of all explanatory variables in 2020,2021 by using the data of 2005–2019.Finally,considering that fiscal revenue is affected by many factors,we applied the BP neural network,which has a good effect on multiple inputs,to make the final forecast of fiscal revenue.The experimental results show that the combined model has a good effect in financial revenue forecasting. 展开更多
关键词 Fiscal revenue lasso regression gray prediction model BP neural network
下载PDF
An Early Warning Model of Financial Distress Prediction Based on Logistic-AHP-BP Neural Network Model 被引量:1
7
作者 Yifan Wu 《经济管理学刊(中英文版)》 2018年第2期184-194,共11页
Ever since the appearance of"Implementation Measures for Suspending and Terminating the Listing of Loss-making Companies"in 2001,the delisting system has emerged.However,the proportion of delisted companies ... Ever since the appearance of"Implementation Measures for Suspending and Terminating the Listing of Loss-making Companies"in 2001,the delisting system has emerged.However,the proportion of delisted companies in China has never exceeded 1% each year.The number of delisted companies in the security market is far less than the number of companies with financial distress.The capital market lacks a good delisting system and investors lack risk identification capabilities.Financial risk is directly related to delisting risk.Therefore,an early warning model of financial distress prediction for China.s stock market can provide guidance to stakeholders such as listed companies and capital markets.This paper first explains the immature delisting system of China.s capital market and the overall high risk of listed companies.financial distress.Then,the paper further elaborates previous research on financial distress prediction model of listed companies and analyzes the advantages and disadvantages of different models.This paper chooses the Analytic Hierarchy Process(AHP)to screen out the main factors that affect the risk of financial distress.The main factors are included in Logistic regression model and BP neural network model for predicting financial distress of listed companies.The overall effect of two models are assessed and compared.Finally,this paper proposes policy implications according to empirical results. 展开更多
关键词 FINANCIAL DISTRESS Risk of Delisting LOGISTIC regression BP neural network model
下载PDF
A Novel Self-Supervised Learning Network for Binocular Disparity Estimation
8
作者 Jiawei Tian Yu Zhou +5 位作者 Xiaobing Chen Salman A.AlQahtani Hongrong Chen Bo Yang Siyu Lu Wenfeng Zheng 《Computer Modeling in Engineering & Sciences》 SCIE EI 2025年第1期209-229,共21页
Two-dimensional endoscopic images are susceptible to interferences such as specular reflections and monotonous texture illumination,hindering accurate three-dimensional lesion reconstruction by surgical robots.This st... Two-dimensional endoscopic images are susceptible to interferences such as specular reflections and monotonous texture illumination,hindering accurate three-dimensional lesion reconstruction by surgical robots.This study proposes a novel end-to-end disparity estimation model to address these challenges.Our approach combines a Pseudo-Siamese neural network architecture with pyramid dilated convolutions,integrating multi-scale image information to enhance robustness against lighting interferences.This study introduces a Pseudo-Siamese structure-based disparity regression model that simplifies left-right image comparison,improving accuracy and efficiency.The model was evaluated using a dataset of stereo endoscopic videos captured by the Da Vinci surgical robot,comprising simulated silicone heart sequences and real heart video data.Experimental results demonstrate significant improvement in the network’s resistance to lighting interference without substantially increasing parameters.Moreover,the model exhibited faster convergence during training,contributing to overall performance enhancement.This study advances endoscopic image processing accuracy and has potential implications for surgical robot applications in complex environments. 展开更多
关键词 Parallax estimation parallax regression model self-supervised learning Pseudo-Siamese neural network pyramid dilated convolution binocular disparity estimation
下载PDF
Responses of River Runoff to Climate Change Based on Nonlinear Mixed Regression Model in Chaohe River Basin of Hebei Province, China
9
作者 JIANG Yan LIU Changming +2 位作者 ZHENG Hongxing LI Xuyong WU Xianing 《Chinese Geographical Science》 SCIE CSCD 2010年第2期152-158,共7页
Taking the nonlinear nature of runoff system into account,and combining auto-regression method and multi-regression method,a Nonlinear Mixed Regression Model (NMR) was established to analyze the impact of temperature ... Taking the nonlinear nature of runoff system into account,and combining auto-regression method and multi-regression method,a Nonlinear Mixed Regression Model (NMR) was established to analyze the impact of temperature and precipitation changes on annual river runoff process. The model was calibrated and verified by using BP neural network with observed meteorological and runoff data from Daiying Hydrological Station in the Chaohe River of Hebei Province in 1956–2000. Compared with auto-regression model,linear multi-regression model and linear mixed regression model,NMR can improve forecasting precision remarkably. Therefore,the simulation of climate change scenarios was carried out by NMR. The results show that the nonlinear mixed regression model can simulate annual river runoff well. 展开更多
关键词 river runoff runoff forecast nonlinear mixed regression model linear multi-regression model linear mixed regression model BP neural network
下载PDF
Nitrogen Content Inversion of Corn Leaf Data Based on Deep Neural Network Model
10
作者 Yulin Li Mengmeng Zhang +2 位作者 Maofang Gao Xiaoming Xie Wei Li 《Journal of Beijing Institute of Technology》 EI CAS 2023年第5期619-630,共12页
To obtain excellent regression results under the condition of small sample hyperspectral data,a deep neural network with simulated annealing(SA-DNN)is proposed.According to the characteristics of data,the attention me... To obtain excellent regression results under the condition of small sample hyperspectral data,a deep neural network with simulated annealing(SA-DNN)is proposed.According to the characteristics of data,the attention mechanism was applied to make the network pay more attention to effective features,thereby improving the operating efficiency.By introducing an improved activation function,the data correlation was reduced based on increasing the operation rate,and the problem of over-fitting was alleviated.By introducing simulated annealing,the network chose the optimal learning rate by itself,which avoided falling into the local optimum to the greatest extent.To evaluate the performance of the SA-DNN,the coefficient of determination(R^(2)),root mean square error(RMSE),and other metrics were used to evaluate the model.The results show that the performance of the SA-DNN is significantly better than other traditional methods. 展开更多
关键词 precision agriculture deep neural network nitrogen content detection regression model
下载PDF
Analysis of the Mass Appraisal Model by Using Artificial Neural Network in Kaohsiung City
11
作者 Lai Pi-ying (Peddy) 《Journal of Modern Accounting and Auditing》 2011年第10期1080-1089,共10页
An accurate assessment of the property value is very important to make a deal, property tax, and mortgage for loan. The mass appraisal system has been developed in some foreign countries, especially in American for a ... An accurate assessment of the property value is very important to make a deal, property tax, and mortgage for loan. The mass appraisal system has been developed in some foreign countries, especially in American for a long time. In Taiwan, we still have few experiences in using computer-assisted mass appraisal system, especially using artificial neural network (ANN). This article has two objectives: (1) to illustrate application of ANN to the Kaohsiung property market by the method of back-propagation. The study is based on the properties data of sales price, we also use multiple regressions in the same data; (2) to evaluate the performance of two models by using the mean absolute percentage error (MAPE) and hit ratio (HR). This paper finds that using artificial neural network (ANN) is able to overcome multiple regressions' methodological problems and also get better performance than multiple regression model (MRA). These results are useful in helping local government to assess their assessment value. 展开更多
关键词 artificial neural network (ANN) multiple regression model (MRA) computer assisted mass appraisal housing price
下载PDF
Application of artificial neural networks for operating speed prediction at horizontal curves: a case study in Egypt 被引量:5
12
作者 Ahmed Mohamed Semeida 《Journal of Modern Transportation》 2014年第1期20-29,共10页
Horizontal alignment greatly affects the speedof vehicles at rural roads. Therefore, it is necessary toanalyze and predict vehicles speed on curve sections.Numerous studies took rural two-lane as research subjectsand ... Horizontal alignment greatly affects the speedof vehicles at rural roads. Therefore, it is necessary toanalyze and predict vehicles speed on curve sections.Numerous studies took rural two-lane as research subjectsand provided models for predicting operating speeds.However, less attention has been paid to multi-lane highwaysespecially in Egypt. In this research, field operatingspeed data of both cars and trucks on 78 curve sections offour multi-lane highways is collected. With the data, correlationbetween operating speed (V85) and alignment isanalyzed. The paper includes two separate relevant analyses.The first analysis uses the regression models toinvestigate the relationships between V85 as dependentvariable, and horizontal alignment and roadway factors asindependent variables. This analysis proposes two predictingmodels for cars and trucks. The second analysisuses the artificial neural networks (ANNs) to explore theprevious relationships. It is found that the ANN modelinggives the best prediction model. The most influential variableon V85 for cars is the radius of curve. Also, for V85 fortrucks, the most influential variable is the median width.Finally, the derived models have statistics within theacceptable regions and they are conceptually reasonable. 展开更多
关键词 Artificial neural networks Horizontal curve Multi-lane highways Operating speed Prediction models regression models Roadway factors
下载PDF
Application of artificial neural networks in optimal tuning of tuned mass dampers implemented in high-rise buildings subjected to wind load 被引量:8
13
作者 Meysam Ramezani Akbar Bathaei Amir K.Ghorbani-Tanha 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2018年第4期903-915,共13页
High-rise buildings are usually considered as flexible structures with low inherent damping. Therefore, these kinds of buildings are susceptible to wind-induced vibration. Tuned Mass Damper(TMD) can be used as an ef... High-rise buildings are usually considered as flexible structures with low inherent damping. Therefore, these kinds of buildings are susceptible to wind-induced vibration. Tuned Mass Damper(TMD) can be used as an effective device to mitigate excessive vibrations. In this study, Artificial Neural Networks is used to find optimal mechanical properties of TMD for high-rise buildings subjected to wind load. The patterns obtained from structural analysis of different multi degree of freedom(MDF) systems are used for training neural networks. In order to obtain these patterns, structural models of some systems with 10 to 80 degrees-of-freedoms are built in MATLAB/SIMULINK program. Finally, the optimal properties of TMD are determined based on the objective of maximum displacement response reduction. The Auto-Regressive model is used to simulate the wind load. In this way, the uncertainties related to wind loading can be taken into account in neural network’s outputs. After training the neural network, it becomes possible to set the frequency and TMD mass ratio as inputs and get the optimal TMD frequency and damping ratio as outputs. As a case study, a benchmark 76-story office building is considered and the presented procedure is used to obtain optimal characteristics of the TMD for the building. 展开更多
关键词 artificial neural networks tuned mass damper wind load auto-regressive model optimal frequency anddamping
下载PDF
Application of Neural Networks for Predictive Variables in Engineering
14
作者 Ana Martinez Arcadio Sotto Angel Castellanos 《Journal of Mathematics and System Science》 2011年第1期12-22,共11页
This paper proposes a method in order to detect the importance of the input variables in multivariate analysis problems. When there is correlation among predictor variables, the importance of each input variable, when... This paper proposes a method in order to detect the importance of the input variables in multivariate analysis problems. When there is correlation among predictor variables, the importance of each input variable, when adding variables in the model, can be detected from the knowledge stored in Artificial Neural Network (NN) and it must be taken into account. Neural networks models have been used with the analysis of sensibility, these models predict more accurately the relationship between variables, and it is the way to find a set of forecasting variables in order to be included in the new prediction model. The obtained results have been applied in a system to forecast the volume of wood for a tree, and to detect relationships between input and output variables. 展开更多
关键词 Artificial neural networks rule extraction linear regression model.
下载PDF
Neural Network for Estimating Daily Global Solar Radiation Using Temperature, Humidity and Pressure as Unique Climatic Input Variables
15
作者 Victor Adrian Jimenez Amelia Barrionuevo +3 位作者 Adrian Will Sebastiá n Rodrí guez 《Smart Grid and Renewable Energy》 2016年第3期94-103,共10页
Solar radiation is one of the most important parameters for applications, development and research related to renewable energy. However, solar radiation measurements are not a simple task for several reasons. In the c... Solar radiation is one of the most important parameters for applications, development and research related to renewable energy. However, solar radiation measurements are not a simple task for several reasons. In the cases where data are not available, it is very common the use of computational models to estimate the missing data, which are based mainly on the search for relationships between weather variables, such as temperature, humidity, precipitation, cloudiness, sunshine hours, etc. But, many of these are subjective and difficult to measure, and thus they are not always available. In this paper, we propose a method for estimating daily global solar radiation, combining empirical models and artificial neural networks. The model uses temperature, relative humidity and atmospheric pressure as the only climatic input variables. Also, this method is compared with linear regression to verify that the data have nonlinear components. The models are adjusted and validated using data from five meteorological stations in the province of Tucumán, Argentina. Results show that neural networks have better accuracy than empirical models and linear regression, obtaining on average, an error of 2.83 [MJ/m<sup>2</sup>] in the validation dataset. 展开更多
关键词 Daily Solar Radiation Estimation Empirical Solar Radiation model Feedforward Backpropagation neural network regression Analysis
下载PDF
Predicting carbon storage of mixed broadleaf forests based on the finite mixture model incorporating stand factors,site quality,and aridity index
16
作者 Yanlin Wang Dongzhi Wang +2 位作者 Dongyan Zhang Qiang Liu Yongning Li 《Forest Ecosystems》 SCIE CSCD 2024年第3期276-286,共11页
The diameter distribution function(DDF)is a crucial tool for accurately predicting stand carbon storage(CS).The current key issue,however,is how to construct a high-precision DDF based on stand factors,site quality,an... The diameter distribution function(DDF)is a crucial tool for accurately predicting stand carbon storage(CS).The current key issue,however,is how to construct a high-precision DDF based on stand factors,site quality,and aridity index to predict stand CS in multi-species mixed forests with complex structures.This study used data from70 survey plots for mixed broadleaf Populus davidiana and Betula platyphylla forests in the Mulan Rangeland State Forest,Hebei Province,China,to construct the DDF based on maximum likelihood estimation and finite mixture model(FMM).Ordinary least squares(OLS),linear seemingly unrelated regression(LSUR),and back propagation neural network(BPNN)were used to investigate the influences of stand factors,site quality,and aridity index on the shape and scale parameters of DDF and predicted stand CS of mixed broadleaf forests.The results showed that FMM accurately described the stand-level diameter distribution of the mixed P.davidiana and B.platyphylla forests;whereas the Weibull function constructed by MLE was more accurate in describing species-level diameter distribution.The combined variable of quadratic mean diameter(Dq),stand basal area(BA),and site quality improved the accuracy of the shape parameter models of FMM;the combined variable of Dq,BA,and De Martonne aridity index improved the accuracy of the scale parameter models.Compared to OLS and LSUR,the BPNN had higher accuracy in the re-parameterization process of FMM.OLS,LSUR,and BPNN overestimated the CS of P.davidiana but underestimated the CS of B.platyphylla in the large diameter classes(DBH≥18 cm).BPNN accurately estimated stand-and species-level CS,but it was more suitable for estimating stand-level CS compared to species-level CS,thereby providing a scientific basis for the optimization of stand structure and assessment of carbon sequestration capacity in mixed broadleaf forests. 展开更多
关键词 Weibull function Finite mixture model Linear seemingly unrelated regression Back propagation neural network Carbon storage
下载PDF
Two-phase early prediction method for remaining useful life of lithium-ion batteries based on a neural network and Gaussian process regression
17
作者 Zhiyuan WEI Changying LIU +2 位作者 Xiaowen SUN Yiduo LI Haiyan LU 《Frontiers in Energy》 SCIE EI CSCD 2024年第4期447-462,共16页
Lithium-ion batteries(LIBs)are widely used in transportation,energy storage,and other fields.The prediction of the remaining useful life(RUL)of lithium batteries not only provides a reference for health management but... Lithium-ion batteries(LIBs)are widely used in transportation,energy storage,and other fields.The prediction of the remaining useful life(RUL)of lithium batteries not only provides a reference for health management but also serves as a basis for assessing the residual value of the battery.In order to improve the prediction accuracy of the RUL of LIBs,a two-phase RUL early prediction method combining neural network and Gaussian process regression(GPR)is proposed.In the initial phase,the features related to the capacity degradation of LIBs are utilized to train the neural network model,which is used to predict the initial cycle lifetime of 124 LIBs.The Pearson coefficient’s two most significant characteristic factors and the predicted normalized lifetime form a 3D space.The Euclidean distance between the test dataset and each cell in the training dataset and validation dataset is calculated,and the shortest distance is considered to have a similar degradation pattern,which is used to determine the initial Dual Exponential Model(DEM).In the second phase,GPR uses the DEM as the initial parameter to predict each test set’s early RUL(ERUL).By testing four batteries under different working conditions,the RMSE of all capacity estimation is less than 1.2%,and the accuracy percentage(AP)of remaining life prediction is more than 98%.Experiments show that the method does not need human intervention and has high prediction accuracy. 展开更多
关键词 lithium-ion batteries RUL prediction double exponential model neural network Gaussian process regression(GPR)
原文传递
Prediction of cyanotic and acyanotic congenital heart disease using machine learning models
18
作者 Sana Shahid Haris Khurram +2 位作者 Apiradee Lim Muhammad Farhan Shabbir Baki Billah 《World Journal of Clinical Pediatrics》 2024年第4期15-24,共10页
BACKGROUND Congenital heart disease is most commonly seen in neonates and it is a major cause of pediatric illness and childhood morbidity and mortality.AIM To identify and build the best predictive model for predicti... BACKGROUND Congenital heart disease is most commonly seen in neonates and it is a major cause of pediatric illness and childhood morbidity and mortality.AIM To identify and build the best predictive model for predicting cyanotic and acyanotic congenital heart disease in children during pregnancy and identify their potential risk factors.METHODS The data were collected from the Pediatric Cardiology Department at Chaudhry Pervaiz Elahi Institute of Cardiology Multan,Pakistan from December 2017 to October 2019.A sample of 3900 mothers whose children were diagnosed with identify the potential outliers.Different machine learning models were compared,and the best-fitted model was selected using the area under the curve,sensitivity,and specificity of the models.RESULTS Out of 3900 patients included,about 69.5%had acyanotic and 30.5%had cyanotic congenital heart disease.Males had more cases of acyanotic(53.6%)and cyanotic(54.5%)congenital heart disease as compared to females.The odds of having cyanotic was 1.28 times higher for children whose mothers used more fast food frequently during pregnancy.The artificial neural network model was selected as the best predictive model with an area under the curve of 0.9012,sensitivity of 65.76%,and specificity of 97.23%.CONCLUSION Children having a positive family history are at very high risk of having cyanotic and acyanotic congenital heart disease.Males are more at risk and their mothers need more care,good food,and physical activity during pregnancy.The best-fitted model for predicting cyanotic and acyanotic congenital heart disease is the artificial neural network.The results obtained and the best model identified will be useful for medical practitioners and public health scientists for an informed decision-making process about the earlier diagnosis and improve the health condition of children in Pakistan. 展开更多
关键词 Congenital heart disease Cyanotic heart disease Acyanotic heart disease Logistic regression model Artificial neural network
下载PDF
Modeling oblique load carrying capacity of batter pile groups using neural network,random forest regression and M5 model tree 被引量:3
19
作者 Tanvi SINGH Mahesh PAL V.K.ARORA 《Frontiers of Structural and Civil Engineering》 SCIE EI CSCD 2019年第3期674-685,共12页
M5 model tree,random forest regression(RF)and neural network(NN)based modelling approaches were used to predict oblique load carrying capacity of batter pile groups using 247 laboratory experiments with smooth and rou... M5 model tree,random forest regression(RF)and neural network(NN)based modelling approaches were used to predict oblique load carrying capacity of batter pile groups using 247 laboratory experiments with smooth and rough pile groups.Pile length(L),angle of oblique load(a),sand density(ρ),number of batter piles(B),and number of vertical piles(V)as input and oblique load(Q)as output was used.Results suggest improved performance by RF regression for both pile groups.M5 model tree provides simple linear relation which can be used for the prediction of oblique load for field data also.Model developed using RF regression approach with smooth pile group data was found to be in good agreement for rough piles data.NN based approach was found performing equally well with both smooth and rough piles.Sensitivity analysis using all three modelling approaches suggest angle of oblique load(a)and number of batter pile(B)affect the oblique load capacity for both smooth and rough pile groups. 展开更多
关键词 BATTER PILES OBLIQUE load test neural network M5 model TREE random FOREST regression ANOVA
原文传递
Short-term Load Forecasting of Regional Distribution Network Based on Generalized Regression Neural Network Optimized by Grey Wolf Optimization Algorithm 被引量:12
20
作者 Leijiao Ge Yiming Xian +3 位作者 Zhongguan Wang Bo Gao Fujian Chi Kuo Sun 《CSEE Journal of Power and Energy Systems》 SCIE CSCD 2021年第5期1093-1101,共9页
Short-term load forecasting of regional distribution network is the key to the economic operation of smart distribution systems,which not only requires high accuracy and fast calculation speed,but also has a diversity... Short-term load forecasting of regional distribution network is the key to the economic operation of smart distribution systems,which not only requires high accuracy and fast calculation speed,but also has a diversity of influential factors and strong randomness.This paper proposes a short-term load forecasting model for regional distribution network combining the maximum information coefficient,factor analysis,gray wolf optimization,and generalized regression neural network(MIC-FA-GWO-GRNN).To screen and decrease the dimension of the multiple-input features of the short-term load forecasting model,MIC is first used to quantify the non-linear correlation between the load and input features,and to eliminate the ineffective features,and then FA is used to reduce the dimension of the screened input features on the premise of preserving the main information of input features.After that the high-precision short-term丨oad forecasting based on GWO-GRNN model is realized.GRNN is used to regressively analyze the input features after screening and dimension reduction,and the parameter of GRNN is optimized by using the GWO,which has strong global searching ability and fast convergence.Finally a case study of a regional distribution network in Tianjin,China verifies the accuracy and applicability of the proposed forecasting model. 展开更多
关键词 Factor analysis generalized regression neural network gray wolf optimization maximum information coefficient short-term load forecasting
原文传递
上一页 1 2 37 下一页 到第
使用帮助 返回顶部