The development of more environment-friendly ways to dispose of oil sludge is currently regarded as a hot topic.In this context,gasification technologies are generally seen as a promising way to combine oil sludge wit...The development of more environment-friendly ways to dispose of oil sludge is currently regarded as a hot topic.In this context,gasification technologies are generally seen as a promising way to combine oil sludge with coal–water slurry(CWS)and generate resourceful fuel.In this study,a novel five-nozzle gasifier reactor was analyzed by means of a CFD(Computational fluid dynamic)method.Among several influential factors,special attention was paid to the height-to-diameter ratio of the gasifier and the mixing ratio of oil sludge,which are known to have a significant impact on the flow field,temperature distribution and gasifier performances.According to the numerical results,the optimal height-to-diameter ratio and oil mixing ratio are about 2.4:1 and 20%,respectively.Furthermore,the carbon conversion rate can become as high as 98.55%with the hydrolysis rate reaching a value of 53.88%.The consumption of raw coal and oxygen is generally reduced,while the effective gas production is increased to 50.93 mol/%.展开更多
The stability and activity of alkaline carbonate catalysts in supercritical water coal gasification has been investigated using density functional theory method. Our calculations present that the adsorption of Na2CO3 ...The stability and activity of alkaline carbonate catalysts in supercritical water coal gasification has been investigated using density functional theory method. Our calculations present that the adsorption of Na2CO3 on coal are more stable than that of K2CO3, but the stability of Na2CO3 is strongly reduced as the cluster gets larger. In supercritical water system, the dispersion and stability of Na2CO3 catalyst on coal support is strongly improved. During coal gasification process, Na2CO3 transforms with supercritical water into NaOH and NaHCO3, which is beneficial for hydrogen production. The transformation process has been studied via thermodynamics and kinetics ways. The selectively catalytic mechanism of NaOH and the intermediate form of sodium-based catalyst in water-gas shift reaction for higher hydrogen production has also been investigated. Furthermore, NaOH can transform back to Na2CO3 after catalyzing the water-gas shift reaction. Thus, the cooperative effects between supercritical water and Na2CO3 catalyst form a benignant circle which greatly enhances the reaction rate of coal gasification and promotes the production of hydrogen.展开更多
Aspen plus software was employed to simulate process. The system concludes gasification scrubbing system the opposed multi-burner gasifier (OMB) methanol production and purification shift system. The distributions o...Aspen plus software was employed to simulate process. The system concludes gasification scrubbing system the opposed multi-burner gasifier (OMB) methanol production and purification shift system. The distributions of ammonia con- centration in streams were obtained. The study demonstrates that ammonium crystallization problem caused by ammonia ac- cumulation, and if the process has ammonia exports its concentration will greatly reduced and the ammonia salt problem will effectively alleviate. Aspen plus simulation is a useful tool strengthening the ammonia recycling use and reducing pollutant for improving water quality, maintaining stable production, emissions.展开更多
Sour water contains ammonia,carbon dioxide,and hydrogen sulfides,producing from oil refining,coking,and coal gasification.To reduce the energy consumption in sour water stripping,a novel process is proposed which inte...Sour water contains ammonia,carbon dioxide,and hydrogen sulfides,producing from oil refining,coking,and coal gasification.To reduce the energy consumption in sour water stripping,a novel process is proposed which integrates with the bottom flashing mechanical vapor recompression heat pump(MVRHP)for treating such wastewater.Here,Aspen PlusTM as a powerful set of chemical process simulation software is utilized to investigate the economy and feasibility of the novel process.Comparison of the results of two process simulations,it can be seen that it is possible to reduce the total annual cost by nearly 45%to adopt the novel process,despite the capital investment increase 45%more than the conventional process.Thus,the provided conceptual design will play a guiding role in the industrialization of the process.展开更多
The double fire two stage method of underground coal gasification was suggested. On the basis of material balance, the ideal gasification parameters were calculated, and the field test process was briefly introduced. ...The double fire two stage method of underground coal gasification was suggested. On the basis of material balance, the ideal gasification parameters were calculated, and the field test process was briefly introduced. In addition, the cause for a middle to a high heat value of water gas was described. And the reasonableness and feasiblity of the method was proved, showing that the double fire two stage gasification is an important technique for commercialized production.展开更多
A 72-h ex situ hard coal gasification test in one large block of coal was carried out.The gasifying agent was oxygen with a constant flow rate of 4.5 m^(3)/h.The surroundings of coal were simulated with wet sand with ...A 72-h ex situ hard coal gasification test in one large block of coal was carried out.The gasifying agent was oxygen with a constant flow rate of 4.5 m^(3)/h.The surroundings of coal were simulated with wet sand with 11%moisture content.A 2-cm interlayer of siderite was placed in the horizontal cut of the coal block.As a result of this process,gas with an average flow rate of 12.46 m^(3)/h was produced.No direct influence of siderite on the gasification process was observed;however,measurements of CO_(2)content in the siderite interlayer before and after the process allow to determine the location of high-temperature zones in the reactor.The greatest influence on the efficiency of the gasification process was exerted by water contained in wet sand.At the high temperature that prevailed in the reactor,this water evaporated and reacted with the incandescent coal,producing hydrogen and carbon monoxide.This reaction contributes to the relatively high calorific value of the resulting process gas,averaging 9.41 MJ/kmol,and to the high energy efficiency of the whole gasification process,which amounts to approximately 70%.展开更多
Based on the present situation and trend of underground coal gasification in China and overseas, this article puts forward the basic concept, mechanism and mode of underground coal gasification, and presents the chall...Based on the present situation and trend of underground coal gasification in China and overseas, this article puts forward the basic concept, mechanism and mode of underground coal gasification, and presents the challenges, development potential and development path now faced. In China, underground coal gasification which is in accord with the clean utilization of coal can produce "artificial gas", which provides a new strategic approach to supply methane and hydrogen with Chinese characteristics before new energy sources offer large-scale supply. Coal measure strata in oil-bearing basins are developed in China, with 3.77 trillion tons coal reserves for the buried depth of 1000-3 000 m. It is initially expected that the amount of natural gas resources from underground coal gasification to be 272-332 trillion cubic meters, which are about triple the sum of conventional natural gas, or equivalent to the total unconventional natural gas resources. According to the differences of coal reaction mechanism and product composition of underground coal gasification, the underground coal gasification can be divided into three development modes, hydrogen-rich in shallow, methane-rich in medium and deep,supercritical hydrogen-rich in deep. Beyond the scope of underground mining of coal enterprises, petroleum and petrochemical enterprises can take their own integration advantages of technologies, pipeline, market and so on, to develop underground coal gasification business based on their different needs and technical maturity, to effectively exploit a large amount of coal resources cleanly and to alleviate the tight supply of natural gas. It can also be combined with using the produced hydrogen in nearby area and the CO_2 flooding and storage in adjacent oil areas to create a demonstration zone for net zero emissions of petroleum and petrochemical recycling economy. It is significant for reserving resources and technologies for the coming "hydrogen economy" era, and opening up a new path for China's "clean, low carbon, safe and efficient" modern energy system construction.展开更多
A new cleaner power generation system(IPGS) is proposed and investigated in this paper. Integrating combined cycle with supercritical water gasification of coal, the thermodynamic energy of the produced syngas is casc...A new cleaner power generation system(IPGS) is proposed and investigated in this paper. Integrating combined cycle with supercritical water gasification of coal, the thermodynamic energy of the produced syngas is cascade utilized according to its temperature and pressure, both sensible and latent heat of the syngas can be recycled into the system, and thereby the net power efficiency can be about 6.4 percentage points higher than that of the traditional GE gasification based power plant(GEPP). The exergy analysis results show that the exergy efficiency of the proposed system reaches 52.45%, which is 13.94% higher than that of the GEPP, and the improvement in exergy efficiency of the proposed system mainly comes from the exergy destruction decline in the syngas energy recovery process, the condensation process and the syngas purification process. The syngas combustion process is the highest exergy destruction process with a value of 157.84 MW in the proposed system. Further performance improvement of the proposed system lies in the utilization process of syngas. Furthermore, system operation parameters have been examined on the coal mass fraction in the supercritical water gasifier(GF), the gasification temperature, and the gasification pressure. The parametric analysis shows that changes in coal concentration in the GF exert more influence on the exergy efficiency of the system compared with the other two parameters.展开更多
The QDB-5 sulfur tolerant CO shift catalyst, with anti-methanation property by supported compositing alkali promoters, has been proved to effectively reduce the outlet methane content in the condition of a low water g...The QDB-5 sulfur tolerant CO shift catalyst, with anti-methanation property by supported compositing alkali promoters, has been proved to effectively reduce the outlet methane content in the condition of a low water gas ratio. Thus, a new technology based on a lower water/gas ratio than before has been developed with the new catalyst. The CO conversion at lower temperatures and catalyst stability were confirmed by long term industrial application. The high temperature catalyst performance also showed a better result than the conventional commercial catalyst, with higher CO conversion and well controlled methane outlet. Our research and the industrial application of catalyst have shown the importance of alkali metals as core promoters for such kind of catalysts.展开更多
基金Enterprise Horizontal Project(Project Contract No.2021K2450)Postgraduate Research&Practice Innovation Program of Jiangsu Province,China(SJCX22_1437).
文摘The development of more environment-friendly ways to dispose of oil sludge is currently regarded as a hot topic.In this context,gasification technologies are generally seen as a promising way to combine oil sludge with coal–water slurry(CWS)and generate resourceful fuel.In this study,a novel five-nozzle gasifier reactor was analyzed by means of a CFD(Computational fluid dynamic)method.Among several influential factors,special attention was paid to the height-to-diameter ratio of the gasifier and the mixing ratio of oil sludge,which are known to have a significant impact on the flow field,temperature distribution and gasifier performances.According to the numerical results,the optimal height-to-diameter ratio and oil mixing ratio are about 2.4:1 and 20%,respectively.Furthermore,the carbon conversion rate can become as high as 98.55%with the hydrolysis rate reaching a value of 53.88%.The consumption of raw coal and oxygen is generally reduced,while the effective gas production is increased to 50.93 mol/%.
基金supported by the National High-Tech Research and Development Program of China(2011AA05A201)the National Natural Science Foundation of China(21106094)Tianjin Science Foundation for Youths,China(12JCQNJC03100)
文摘The stability and activity of alkaline carbonate catalysts in supercritical water coal gasification has been investigated using density functional theory method. Our calculations present that the adsorption of Na2CO3 on coal are more stable than that of K2CO3, but the stability of Na2CO3 is strongly reduced as the cluster gets larger. In supercritical water system, the dispersion and stability of Na2CO3 catalyst on coal support is strongly improved. During coal gasification process, Na2CO3 transforms with supercritical water into NaOH and NaHCO3, which is beneficial for hydrogen production. The transformation process has been studied via thermodynamics and kinetics ways. The selectively catalytic mechanism of NaOH and the intermediate form of sodium-based catalyst in water-gas shift reaction for higher hydrogen production has also been investigated. Furthermore, NaOH can transform back to Na2CO3 after catalyzing the water-gas shift reaction. Thus, the cooperative effects between supercritical water and Na2CO3 catalyst form a benignant circle which greatly enhances the reaction rate of coal gasification and promotes the production of hydrogen.
文摘Aspen plus software was employed to simulate process. The system concludes gasification scrubbing system the opposed multi-burner gasifier (OMB) methanol production and purification shift system. The distributions of ammonia con- centration in streams were obtained. The study demonstrates that ammonium crystallization problem caused by ammonia ac- cumulation, and if the process has ammonia exports its concentration will greatly reduced and the ammonia salt problem will effectively alleviate. Aspen plus simulation is a useful tool strengthening the ammonia recycling use and reducing pollutant for improving water quality, maintaining stable production, emissions.
基金the support provided by the National Key R&D Program of China(No.2017YFB0602804)the National Natural Science Foundation of China(No.21878164)。
文摘Sour water contains ammonia,carbon dioxide,and hydrogen sulfides,producing from oil refining,coking,and coal gasification.To reduce the energy consumption in sour water stripping,a novel process is proposed which integrates with the bottom flashing mechanical vapor recompression heat pump(MVRHP)for treating such wastewater.Here,Aspen PlusTM as a powerful set of chemical process simulation software is utilized to investigate the economy and feasibility of the novel process.Comparison of the results of two process simulations,it can be seen that it is possible to reduce the total annual cost by nearly 45%to adopt the novel process,despite the capital investment increase 45%more than the conventional process.Thus,the provided conceptual design will play a guiding role in the industrialization of the process.
基金Supported by National Natural Science Foundation of China(5 990 60 14 )
文摘The double fire two stage method of underground coal gasification was suggested. On the basis of material balance, the ideal gasification parameters were calculated, and the field test process was briefly introduced. In addition, the cause for a middle to a high heat value of water gas was described. And the reasonableness and feasiblity of the method was proved, showing that the double fire two stage gasification is an important technique for commercialized production.
基金The research presented in this article was performed within the work"Conducting an exsitu experiment of underground coal gasification with a mineral interlayer"commissioned and funded by the Silesian University of Technology in Gliwice,Department of Applied Geology,by order sign ZP/018521/18/ZZ/01987/18.
文摘A 72-h ex situ hard coal gasification test in one large block of coal was carried out.The gasifying agent was oxygen with a constant flow rate of 4.5 m^(3)/h.The surroundings of coal were simulated with wet sand with 11%moisture content.A 2-cm interlayer of siderite was placed in the horizontal cut of the coal block.As a result of this process,gas with an average flow rate of 12.46 m^(3)/h was produced.No direct influence of siderite on the gasification process was observed;however,measurements of CO_(2)content in the siderite interlayer before and after the process allow to determine the location of high-temperature zones in the reactor.The greatest influence on the efficiency of the gasification process was exerted by water contained in wet sand.At the high temperature that prevailed in the reactor,this water evaporated and reacted with the incandescent coal,producing hydrogen and carbon monoxide.This reaction contributes to the relatively high calorific value of the resulting process gas,averaging 9.41 MJ/kmol,and to the high energy efficiency of the whole gasification process,which amounts to approximately 70%.
基金Supported by the PetroChina Science and Technology Major Project(2019E-25)
文摘Based on the present situation and trend of underground coal gasification in China and overseas, this article puts forward the basic concept, mechanism and mode of underground coal gasification, and presents the challenges, development potential and development path now faced. In China, underground coal gasification which is in accord with the clean utilization of coal can produce "artificial gas", which provides a new strategic approach to supply methane and hydrogen with Chinese characteristics before new energy sources offer large-scale supply. Coal measure strata in oil-bearing basins are developed in China, with 3.77 trillion tons coal reserves for the buried depth of 1000-3 000 m. It is initially expected that the amount of natural gas resources from underground coal gasification to be 272-332 trillion cubic meters, which are about triple the sum of conventional natural gas, or equivalent to the total unconventional natural gas resources. According to the differences of coal reaction mechanism and product composition of underground coal gasification, the underground coal gasification can be divided into three development modes, hydrogen-rich in shallow, methane-rich in medium and deep,supercritical hydrogen-rich in deep. Beyond the scope of underground mining of coal enterprises, petroleum and petrochemical enterprises can take their own integration advantages of technologies, pipeline, market and so on, to develop underground coal gasification business based on their different needs and technical maturity, to effectively exploit a large amount of coal resources cleanly and to alleviate the tight supply of natural gas. It can also be combined with using the produced hydrogen in nearby area and the CO_2 flooding and storage in adjacent oil areas to create a demonstration zone for net zero emissions of petroleum and petrochemical recycling economy. It is significant for reserving resources and technologies for the coming "hydrogen economy" era, and opening up a new path for China's "clean, low carbon, safe and efficient" modern energy system construction.
基金the financial support of the National Key Research and Development Program of China(Grant No.2016YFB0600105)。
文摘A new cleaner power generation system(IPGS) is proposed and investigated in this paper. Integrating combined cycle with supercritical water gasification of coal, the thermodynamic energy of the produced syngas is cascade utilized according to its temperature and pressure, both sensible and latent heat of the syngas can be recycled into the system, and thereby the net power efficiency can be about 6.4 percentage points higher than that of the traditional GE gasification based power plant(GEPP). The exergy analysis results show that the exergy efficiency of the proposed system reaches 52.45%, which is 13.94% higher than that of the GEPP, and the improvement in exergy efficiency of the proposed system mainly comes from the exergy destruction decline in the syngas energy recovery process, the condensation process and the syngas purification process. The syngas combustion process is the highest exergy destruction process with a value of 157.84 MW in the proposed system. Further performance improvement of the proposed system lies in the utilization process of syngas. Furthermore, system operation parameters have been examined on the coal mass fraction in the supercritical water gasifier(GF), the gasification temperature, and the gasification pressure. The parametric analysis shows that changes in coal concentration in the GF exert more influence on the exergy efficiency of the system compared with the other two parameters.
文摘The QDB-5 sulfur tolerant CO shift catalyst, with anti-methanation property by supported compositing alkali promoters, has been proved to effectively reduce the outlet methane content in the condition of a low water gas ratio. Thus, a new technology based on a lower water/gas ratio than before has been developed with the new catalyst. The CO conversion at lower temperatures and catalyst stability were confirmed by long term industrial application. The high temperature catalyst performance also showed a better result than the conventional commercial catalyst, with higher CO conversion and well controlled methane outlet. Our research and the industrial application of catalyst have shown the importance of alkali metals as core promoters for such kind of catalysts.