期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
Optimizing Grey Wolf Optimization: A Novel Agents’ Positions Updating Technique for Enhanced Efficiency and Performance
1
作者 Mahmoud Khatab Mohamed El-Gamel +2 位作者 Ahmed I. Saleh Asmaa H. Rabie Atallah El-Shenawy 《Open Journal of Optimization》 2024年第1期21-30,共10页
Grey Wolf Optimization (GWO) is a nature-inspired metaheuristic algorithm that has gained popularity for solving optimization problems. In GWO, the success of the algorithm heavily relies on the efficient updating of ... Grey Wolf Optimization (GWO) is a nature-inspired metaheuristic algorithm that has gained popularity for solving optimization problems. In GWO, the success of the algorithm heavily relies on the efficient updating of the agents’ positions relative to the leader wolves. In this paper, we provide a brief overview of the Grey Wolf Optimization technique and its significance in solving complex optimization problems. Building upon the foundation of GWO, we introduce a novel technique for updating agents’ positions, which aims to enhance the algorithm’s effectiveness and efficiency. To evaluate the performance of our proposed approach, we conduct comprehensive experiments and compare the results with the original Grey Wolf Optimization technique. Our comparative analysis demonstrates that the proposed technique achieves superior optimization outcomes. These findings underscore the potential of our approach in addressing optimization challenges effectively and efficiently, making it a valuable contribution to the field of optimization algorithms. 展开更多
关键词 Grey Wolf optimization (gwo) Metaheuristic Algorithm optimization Problems Agents’ Positions Leader wolves Optimal Fitness Values optimization Challenges
下载PDF
双收敛因子策略下的改进灰狼优化算法 被引量:4
2
作者 欧云 周恺卿 +1 位作者 尹鹏飞 刘雪薇 《计算机应用》 CSCD 北大核心 2023年第9期2679-2685,共7页
针对标准灰狼优化算法(GWO)的收敛速度慢、易陷入局部最优等缺点,提出一种在非线性双收敛因子策略下基于双头狼引领的改进灰狼优化(GWO-THW)算法。首先,利用混沌Cubic映射初始化种群,提升种群分布的均匀性和多样性,并通过平均适应度值... 针对标准灰狼优化算法(GWO)的收敛速度慢、易陷入局部最优等缺点,提出一种在非线性双收敛因子策略下基于双头狼引领的改进灰狼优化(GWO-THW)算法。首先,利用混沌Cubic映射初始化种群,提升种群分布的均匀性和多样性,并通过平均适应度值将狼群分为捕猎狼和侦察狼,两类狼群采用不同的收敛因子,在各自的头狼带领下寻找和围捕猎物;其次,为提升搜索速度和精度,设计了一种位置更新的自适应权重因子;同时,为跳出局部最优,当一定时间内未发现猎物时,狼群采用莱维(Levy)飞行策略随机更新位置。在10个常用的基准测试函数上验证GWO-THW的有效性。实验结果表明,与标准GWO及相关变体相比,GWO-THW在8个基准测试函数上都取得了较高的寻优精度和收敛速度,尤其在多峰函数上,200次迭代内就能收敛到理想最优值,从而验证了GWO-THW具有更好的寻优性能。 展开更多
关键词 灰狼优化算法 双收敛因子策略 莱维飞行 自适应权重因子 双头狼引领
下载PDF
基于改进灰狼优化算法的积分计算实验 被引量:1
3
作者 黄基诞 《实验室研究与探索》 CAS 北大核心 2020年第11期16-19,66,共5页
针对求解数值积分的计算实验,提出了一种混沌映射和单纯形扰动的改进灰狼优化算法。该方法的基本思想是在积分区域随机选取一定数量的节点,利用改进灰狼优化算法对这些节点进行优化,并将函数变化快的区间分割较细,函数变化慢的区间分割... 针对求解数值积分的计算实验,提出了一种混沌映射和单纯形扰动的改进灰狼优化算法。该方法的基本思想是在积分区域随机选取一定数量的节点,利用改进灰狼优化算法对这些节点进行优化,并将函数变化快的区间分割较细,函数变化慢的区间分割较粗,最后结合Simpson 3/8积分公式算得较为准确的数值积分。数值实验表明,该算法得到的积分值不但精确度高,而且收敛速度快,在工程计算领域中具有一定的应用价值。 展开更多
关键词 数值积分 灰狼优化算法 不等距点分割 单纯形法
下载PDF
Hybrid gray wolf optimization-cuckoo search algorithm for RFID network planning
4
作者 Quan Yixuan Zheng Jiali +2 位作者 Xie Xiaode Lin Zihan Luo Wencong 《The Journal of China Universities of Posts and Telecommunications》 EI CSCD 2021年第6期91-102,共12页
In recent years,with the rapid development of Internet of things(IoT)technology,radio frequency identification(RFID)technology as the core of IoT technology has been paid more and more attention,and RFID network plann... In recent years,with the rapid development of Internet of things(IoT)technology,radio frequency identification(RFID)technology as the core of IoT technology has been paid more and more attention,and RFID network planning(RNP)has become the primary concern.Compared with the traditional methods,meta-heuristic method is widely used in RNP.Aiming at the target requirements of RFID,such as fewer readers,covering more tags,reducing the interference between readers and saving costs,this paper proposes a hybrid gray wolf optimization-cuckoo search(GWO-CS)algorithm.This method uses the input representation based on random gray wolf search and evaluates the tag density and location to determine the combination performance of the reader's propagation area.Compared with particle swarm optimization(PSO)algorithm,cuckoo search(CS)algorithm and gray wolf optimization(GWO)algorithm under the same experimental conditions,the coverage of GWO-CS is 9.306%higher than that of PSO algorithm,6.963%higher than that of CS algorithm,and 3.488%higher than that of GWO algorithm.The results show that the GWO-CS algorithm cannot only improve the global search range,but also improve the local search depth. 展开更多
关键词 radio frequency identification(RFID) gray wolf optimization(gwo)algorithm cuckoo search(CS)algorithm dynamic adjustment of discovery probability directional mutation
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部