A dual-arm nursing robot can gently lift patients and transfer them between a bed and a wheelchair.With its lightweight design,high load-bearing capacity,and smooth surface,the coupled-drive joint is particularly well...A dual-arm nursing robot can gently lift patients and transfer them between a bed and a wheelchair.With its lightweight design,high load-bearing capacity,and smooth surface,the coupled-drive joint is particularly well suited for these robots.However,the coupled nature of the joint disrupts the direct linear relationship between the input and output torques,posing challenges for dynamic modeling and practical applications.This study investigated the transmission mechanism of this joint and employed the Lagrangian method to construct a dynamic model of its internal dynamics.Building on this foundation,the Newton-Euler method was used to develop a dynamic model for the entire robotic arm.A continuously differentiable friction model was incorporated to reduce the vibrations caused by speed transitions to zero.An experimental method was designed to compensate for gravity,inertia,and modeling errors to identify the parameters of the friction model.This method establishes a mapping relationship between the friction force and motor current.In addition,a Fourier series-based excitation trajectory was developed to facilitate the identification of the dynamic model parameters of the robotic arm.Trajectory tracking experiments were conducted during the experimental validation phase,demonstrating the high accuracy of the dynamic model and the parameter identification method for the robotic arm.This study presents a dynamic modeling and parameter identification method for coupled-drive joint robotic arms,thereby establishing a foundation for motion control in humanoid nursing robots.展开更多
A hybrid identification model based on multilayer artificial neural networks(ANNs) and particle swarm optimization(PSO) algorithm is developed to improve the simultaneous identification efficiency of thermal conductiv...A hybrid identification model based on multilayer artificial neural networks(ANNs) and particle swarm optimization(PSO) algorithm is developed to improve the simultaneous identification efficiency of thermal conductivity and effective absorption coefficient of semitransparent materials.For the direct model,the spherical harmonic method and the finite volume method are used to solve the coupled conduction-radiation heat transfer problem in an absorbing,emitting,and non-scattering 2D axisymmetric gray medium in the background of laser flash method.For the identification part,firstly,the temperature field and the incident radiation field in different positions are chosen as observables.Then,a traditional identification model based on PSO algorithm is established.Finally,multilayer ANNs are built to fit and replace the direct model in the traditional identification model to speed up the identification process.The results show that compared with the traditional identification model,the time cost of the hybrid identification model is reduced by about 1 000 times.Besides,the hybrid identification model remains a high level of accuracy even with measurement errors.展开更多
[Objectives]This study was conducted to clarify the difference of millet from different producing areas in near-infrared spectroscopy(NIRS)modeling.[Methods]Millet samples from six different regions were collected for...[Objectives]This study was conducted to clarify the difference of millet from different producing areas in near-infrared spectroscopy(NIRS)modeling.[Methods]Millet samples from six different regions were collected for NIRS analysis,and an origin identification model based on BP neural network was established.The competitive adaptive reweighted sampling(CARS)algorithm was used to extract characteristic wavelength variables,and a CARS-BP model was established on this basis.Finally,the CARS-BP model was compared with support vector machine(SVM),partial least squares discriminant analysis(PLS)and KNN models.[Results]The characteristic wavelengths were extracted by CARS,and the number of variables was reduced from 1845 to 130.The discrimination accuracy of the CARS-BP model for the samples from six producing areas reached 98.1%,which was better than SVM,PSL and KNN models.[Conclusions]NIRS can quickly and accurately identify the origin of millet,providing a new method and way for the origin identification and quality evaluation of millet.展开更多
Groundwater is an important source of drinking water.Groundwater pollution severely endangers drinking water safety and sustainable social development.In the case of groundwater pollution,the top priority is to identi...Groundwater is an important source of drinking water.Groundwater pollution severely endangers drinking water safety and sustainable social development.In the case of groundwater pollution,the top priority is to identify pollution sources,and accurate information on pollution sources is the premise of efficient remediation.Then,an appropriate pollution remediation scheme should be developed according to information on pollution sources,site conditions,and economic costs.The methods for identifying pollution sources mainly include geophysical exploration,geochemistry,isotopic tracing,and numerical modeling.Among these identification methods,only the numerical modeling can recognize various information on pollution sources,while other methods can only identify a certain aspect of pollution sources.The remediation technologies of groundwater can be divided into in-situ and ex-situ remediation technologies according to the remediation location.The in-situ remediation technologies enjoy low costs and a wide remediation range,but their remediation performance is prone to be affected by environmental conditions and cause secondary pollution.The ex-situ remediation technologies boast high remediation efficiency,high processing capacity,and high treatment concentration but suffer high costs.Different methods for pollution source identification and remediation technologies are applicable to different conditions.To achieve the expected identification and remediation results,it is feasible to combine several methods and technologies according to the actual hydrogeological conditions of contaminated sites and the nature of pollutants.Additionally,detailed knowledge about the hydrogeological conditions and stratigraphic structure of the contaminated site is the basis of all work regardless of the adopted identification methods or remediation technologies.展开更多
Diseases in tea trees can result in significant losses in both the quality and quantity of tea production.Regular monitoring can help to prevent the occurrence of large-scale diseases in tea plantations.However,existi...Diseases in tea trees can result in significant losses in both the quality and quantity of tea production.Regular monitoring can help to prevent the occurrence of large-scale diseases in tea plantations.However,existingmethods face challenges such as a high number of parameters and low recognition accuracy,which hinders their application in tea plantation monitoring equipment.This paper presents a lightweight I-MobileNetV2 model for identifying diseases in tea leaves,to address these challenges.The proposed method first embeds a Coordinate Attention(CA)module into the originalMobileNetV2 network,enabling the model to locate disease regions accurately.Secondly,a Multi-branch Parallel Convolution(MPC)module is employed to extract disease features across multiple scales,improving themodel’s adaptability to different disease scales.Finally,the AutoML for Model Compression(AMC)is used to compress themodel and reduce computational complexity.Experimental results indicate that our proposed algorithm attains an average accuracy of 96.12%on our self-built tea leaf disease dataset,surpassing the original MobileNetV2 by 1.91%.Furthermore,the number of model parameters have been reduced by 40%,making itmore suitable for practical application in tea plantation environments.展开更多
As modern communication technology advances apace,the digital communication signals identification plays an important role in cognitive radio networks,the communication monitoring and management systems.AI has become ...As modern communication technology advances apace,the digital communication signals identification plays an important role in cognitive radio networks,the communication monitoring and management systems.AI has become a promising solution to this problem due to its powerful modeling capability,which has become a consensus in academia and industry.However,because of the data-dependence and inexplicability of AI models and the openness of electromagnetic space,the physical layer digital communication signals identification model is threatened by adversarial attacks.Adversarial examples pose a common threat to AI models,where well-designed and slight perturbations added to input data can cause wrong results.Therefore,the security of AI models for the digital communication signals identification is the premise of its efficient and credible applications.In this paper,we first launch adversarial attacks on the end-to-end AI model for automatic modulation classifi-cation,and then we explain and present three defense mechanisms based on the adversarial principle.Next we present more detailed adversarial indicators to evaluate attack and defense behavior.Finally,a demonstration verification system is developed to show that the adversarial attack is a real threat to the digital communication signals identification model,which should be paid more attention in future research.展开更多
Accurate and efficient online parameter identification and state estimation are crucial for leveraging digital twin simulations to optimize the operation of near-carbon-free nuclear energy systems.In previous studies,...Accurate and efficient online parameter identification and state estimation are crucial for leveraging digital twin simulations to optimize the operation of near-carbon-free nuclear energy systems.In previous studies,we developed a reactor operation digital twin(RODT).However,non-differentiabilities and discontinuities arise when employing machine learning-based surrogate forward models,challenging traditional gradient-based inverse methods and their variants.This study investigated deterministic and metaheuristic algorithms and developed hybrid algorithms to address these issues.An efficient modular RODT software framework that incorporates these methods into its post-evaluation module is presented for comprehensive comparison.The methods were rigorously assessed based on convergence profiles,stability with respect to noise,and computational performance.The numerical results show that the hybrid KNNLHS algorithm excels in real-time online applications,balancing accuracy and efficiency with a prediction error rate of only 1%and processing times of less than 0.1 s.Contrastingly,algorithms such as FSA,DE,and ADE,although slightly slower(approximately 1 s),demonstrated higher accuracy with a 0.3%relative L_2 error,which advances RODT methodologies to harness machine learning and system modeling for improved reactor monitoring,systematic diagnosis of off-normal events,and lifetime management strategies.The developed modular software and novel optimization methods presented offer pathways to realize the full potential of RODT for transforming energy engineering practices.展开更多
The iron oxide(FeO)content had a significant impact on both the metallurgical properties of sintered ores and the economic indicators of the sintering process.Precisely predicting FeO content possessed substantial pot...The iron oxide(FeO)content had a significant impact on both the metallurgical properties of sintered ores and the economic indicators of the sintering process.Precisely predicting FeO content possessed substantial potential for enhancing the quality of sintered ore and optimizing the sintering process.A multi-model integrated prediction framework for FeO content during the iron ore sintering process was presented.By applying the affinity propagation clustering algorithm,different working conditions were efficiently classified and the support vector machine algorithm was utilized to identify these conditions.Comparison of several models under different working conditions was carried out.The regression prediction model characterized by high precision and robust stability was selected.The model was integrated into the comprehensive multi-model framework.The precision,reliability and credibility of the model were validated through actual production data,yielding an impressive accuracy of 94.57%and a minimal absolute error of 0.13 in FeO content prediction.The real-time prediction of FeO content provided excellent guidance for on-site sinter production.展开更多
Considering the fractional-order and nonlinear characteristics of proton exchange membrane fuel cells(PEMFC),a fractional-order subspace identification method based on the ADE-BH optimization algorithm is proposed to ...Considering the fractional-order and nonlinear characteristics of proton exchange membrane fuel cells(PEMFC),a fractional-order subspace identification method based on the ADE-BH optimization algorithm is proposed to establish a fractional-order Hammerstein state-space model of PEMFCs.Herein,a Hammerstein model is constructed by connecting a linear module and a nonlinear module in series to precisely depict the nonlinear property of the PEMFC.During the modeling process,fractional-order theory is combined with subspace identification,and a Poisson filter is adopted to enable multi-order derivability of the data.A variable memory method is introduced to reduce computation time without losing precision.Additionally,to improve the optimization accuracy and avoid obtaining locally optimum solutions,a novel ADEBH algorithm is employed to optimize the unknown parameters in the identification method.In this algorithm,the Euclidean distance serves as the theoretical basis for updating the target vector in the absorption-generation operation of the black hole(BH)algorithm.Finally,simulations demonstrate that the proposed model has small output error and high accuracy,indicating that the model can accurately describe the electrical characteristics of the PEMFC process.展开更多
The mathematical model that approximates the dynamics of the industrial process is essential for the efficient synthesis of control algorithms in industrial applications. The model of the process can be obtained accor...The mathematical model that approximates the dynamics of the industrial process is essential for the efficient synthesis of control algorithms in industrial applications. The model of the process can be obtained according to the identification procedures in the open-loop, or in the closed-loop. In the open-loop, the identification methods are well known and offer good process approximation, which is not valid for the closed-loop identification, when the system provides the feedback output and doesn’t permit it to be identified in the open-loop. This paper offers an approach for experimental identification in the closed-loop, which supposes the approximation of the process with inertial models, with or without time delay and astatism. The coefficients are calculated based on the values of the critical transfer coefficient and period of the underdamped response of the closed-loop system with P controller, when system achieves the limit of stability. Finally, the closed-loop identification was verified by the computer simulation and the obtained results demonstrated, that the identification procedure in the closed-loop offers good results in process of estimation of the model of the process.展开更多
Objective Body fluid mixtures are complex biological samples that frequently occur in crime scenes,and can provide important clues for criminal case analysis.DNA methylation assay has been applied in the identificatio...Objective Body fluid mixtures are complex biological samples that frequently occur in crime scenes,and can provide important clues for criminal case analysis.DNA methylation assay has been applied in the identification of human body fluids,and has exhibited excellent performance in predicting single-source body fluids.The present study aims to develop a methylation SNaPshot multiplex system for body fluid identification,and accurately predict the mixture samples.In addition,the value of DNA methylation in the prediction of body fluid mixtures was further explored.Methods In the present study,420 samples of body fluid mixtures and 250 samples of single body fluids were tested using an optimized multiplex methylation system.Each kind of body fluid sample presented the specific methylation profiles of the 10 markers.Results Significant differences in methylation levels were observed between the mixtures and single body fluids.For all kinds of mixtures,the Spearman’s correlation analysis revealed a significantly strong correlation between the methylation levels and component proportions(1:20,1:10,1:5,1:1,5:1,10:1 and 20:1).Two random forest classification models were trained for the prediction of mixture types and the prediction of the mixture proportion of 2 components,based on the methylation levels of 10 markers.For the mixture prediction,Model-1 presented outstanding prediction accuracy,which reached up to 99.3%in 427 training samples,and had a remarkable accuracy of 100%in 243 independent test samples.For the mixture proportion prediction,Model-2 demonstrated an excellent accuracy of 98.8%in 252 training samples,and 98.2%in 168 independent test samples.The total prediction accuracy reached 99.3%for body fluid mixtures and 98.6%for the mixture proportions.Conclusion These results indicate the excellent capability and powerful value of the multiplex methylation system in the identification of forensic body fluid mixtures.展开更多
Nowadays,wood identification is made by experts using hand lenses,wood atlases,and field manuals which take a lot of cost and time for the training process.The quantity and species must be strictly set up,and accurate...Nowadays,wood identification is made by experts using hand lenses,wood atlases,and field manuals which take a lot of cost and time for the training process.The quantity and species must be strictly set up,and accurate identification of the wood species must be made during exploitation to monitor trade and enforce regulations to stop illegal logging.With the development of science,wood identification should be supported with technology to enhance the perception of fairness of trade.An automatic wood identification system and a dataset of 50 commercial wood species from Asia are established,namely,wood anatomical images collected and used to train for the proposed model.In the convolutional neural network(CNN),the last layers are usually soft-max functions with dense layers.These layers contain the most parameters that affect the speed model.To reduce the number of parameters in the last layers of the CNN model and enhance the accuracy,the structure of the model should be optimized and developed.Therefore,a hybrid of convolutional neural network and random forest model(CNN-RF model)is introduced to wood identification.The accuracy’s hybrid model is more than 98%,and the processing speed is 3 times higher than the CNN model.The highest accuracy is 1.00 in some species,and the lowest is 0.92.These results show the excellent adaptability of the hybrid model in wood identification based on anatomical images.It also facilitates further investigations of wood cells and has implications for wood science.展开更多
With the penetration of the Internet, virtual groups have become more and more popular. The reliability and accuracy of interpersonal perception in the virtual environment is an intriguing issue. Using the Social rela...With the penetration of the Internet, virtual groups have become more and more popular. The reliability and accuracy of interpersonal perception in the virtual environment is an intriguing issue. Using the Social relations model (SRM) [1], this paper investigates interpersonal perception in virtual groups from a multilevel perspective. In particular, it examines the following three areas: homophily, identification, and individual attraction, and explores how much of these directional and dyadic relational evaluations can be attributed to the effect of the actor, the partner, and the relationship.展开更多
In the synthesis of the control algorithm for complex systems, we are often faced with imprecise or unknown mathematical models of the dynamical systems, or even with problems in finding a mathematical model of the sy...In the synthesis of the control algorithm for complex systems, we are often faced with imprecise or unknown mathematical models of the dynamical systems, or even with problems in finding a mathematical model of the system in the open loop. To tackle these difficulties, an approach of data-driven model identification and control algorithm design based on the maximum stability degree criterion is proposed in this paper. The data-driven model identification procedure supposes the finding of the mathematical model of the system based on the undamped transient response of the closed-loop system. The system is approximated with the inertial model, where the coefficients are calculated based on the values of the critical transfer coefficient, oscillation amplitude and period of the underdamped response of the closed-loop system. The data driven control design supposes that the tuning parameters of the controller are calculated based on the parameters obtained from the previous step of system identification and there are presented the expressions for the calculation of the tuning parameters. The obtained results of data-driven model identification and algorithm for synthesis the controller were verified by computer simulation.展开更多
The material of nickel aluminum bronze (NAB) presents superior properties such as high strength, excellent wear resistance and stress corrosion resistance and is extensively used for marine propellers. In order to est...The material of nickel aluminum bronze (NAB) presents superior properties such as high strength, excellent wear resistance and stress corrosion resistance and is extensively used for marine propellers. In order to establish the constitutive relation of NAB under high strain rate condition, a new methodology was proposed to accurately identify the constitutive parameters of Johnson?Cook model in machining, combining SHPB tests, predictive cutting force model and orthogonal cutting experiment. Firstly, SHPB tests were carried out to obtain the true stress?strain curves at various temperatures and strain rates. Then, an objective function of the predictive and experimental flow stresses was set up, which put the identified parameters of SHPB tests as the initial value, and utilized the PSO algorithm to identify the constitutive parameters of NAB in machining. Finally, the identified parameters were verified to be sufficiently accurate by comparing the values of cutting forces calculated from the predictive model and FEM simulation.展开更多
By combining the distributed Kalman filter (DKF) with the back propagation neural network (BPNN),a novel method is proposed to identify the bias of electrostatic suspended gyroscope (ESG). Firstly,the data sets ...By combining the distributed Kalman filter (DKF) with the back propagation neural network (BPNN),a novel method is proposed to identify the bias of electrostatic suspended gyroscope (ESG). Firstly,the data sets of multi-measurements of the same ESG in different noise environments are "mapped" into a sensor network,and DKF with embedded consensus filters is then used to preprocess the data sets. After transforming the preprocessed results into the trained input and the desired output of neural network,BPNN with the learning rate and the momentum term is further utilized to identify the ESG bias. As demonstrated in the experiment,the proposed approach is effective for the model identification of the ESG bias.展开更多
The identification problem of Hammerstein model with extension to the multi input multi output (MIMO) case is studied. The proposed identification method uses a hybrid neural network (HNN) which consists of a mult...The identification problem of Hammerstein model with extension to the multi input multi output (MIMO) case is studied. The proposed identification method uses a hybrid neural network (HNN) which consists of a multi layer feed forward neural network (MFNN) in cascade with a linear neural network (LNN). A unified back propagation (BP) algorithm is proposed to estimate the weights and the biases of the MFNN and the LNN simultaneously. Numerical examples are provided to show the efficiency of the proposed method.展开更多
Video-based action recognition is becoming a vital tool in clinical research and neuroscientific study for disorder detection and prediction.However,action recognition currently used in non-human primate(NHP)research ...Video-based action recognition is becoming a vital tool in clinical research and neuroscientific study for disorder detection and prediction.However,action recognition currently used in non-human primate(NHP)research relies heavily on intense manual labor and lacks standardized assessment.In this work,we established two standard benchmark datasets of NHPs in the laboratory:Monkeyin Lab(Mi L),which includes 13 categories of actions and postures,and MiL2D,which includes sequences of two-dimensional(2D)skeleton features.Furthermore,based on recent methodological advances in deep learning and skeleton visualization,we introduced the Monkey Monitor Kit(Mon Kit)toolbox for automatic action recognition,posture estimation,and identification of fine motor activity in monkeys.Using the datasets and Mon Kit,we evaluated the daily behaviors of wild-type cynomolgus monkeys within their home cages and experimental environments and compared these observations with the behaviors exhibited by cynomolgus monkeys possessing mutations in the MECP2 gene as a disease model of Rett syndrome(RTT).Mon Kit was used to assess motor function,stereotyped behaviors,and depressive phenotypes,with the outcomes compared with human manual detection.Mon Kit established consistent criteria for identifying behavior in NHPs with high accuracy and efficiency,thus providing a novel and comprehensive tool for assessing phenotypic behavior in monkeys.展开更多
In order to evaluate the nonlinear performance and the possible damage to rubber-bearings (RBs) during their normal operation or under strong earthquakes, a simplified Bouc-Wen model is used to describe the nonlinea...In order to evaluate the nonlinear performance and the possible damage to rubber-bearings (RBs) during their normal operation or under strong earthquakes, a simplified Bouc-Wen model is used to describe the nonlinear hysteretic behavior of RBs in this paper, which has the advantages of being smooth-varying and physically motivated. Further, based on the results from experimental tests performed by using a particular type of RB (GZN 110) under different excitation scenarios, including white noise and several earthquakes, a new system identification method, referred to as the sequential nonlinear least- square estimation (SNLSE), is introduced to identify the model parameters. It is shown that the proposed simplified Bouc- Wen model is capable of describing the nonlinear hysteretic behavior of RBs, and that the SNLSE approach is very effective in identifying the model parameters of RBs.展开更多
Parameter identification, model calibration, and uncertainty quantification are important steps in the model-building process, and are necessary for obtaining credible results and valuable information. Sensitivity ana...Parameter identification, model calibration, and uncertainty quantification are important steps in the model-building process, and are necessary for obtaining credible results and valuable information. Sensitivity analysis of hydrological model is a key step in model uncertainty quantification, which can identify the dominant parameters, reduce the model calibration uncertainty, and enhance the model optimization efficiency. There are, however, some shortcomings in classical approaches, including the long duration of time and high computation cost required to quantitatively assess the sensitivity of a multiple-parameter hydrological model. For this reason, a two-step statistical evaluation framework using global techniques is presented. It is based on (1) a screening method (Morris) for qualitative ranking of parameters, and (2) a variance-based method integrated with a meta-model for quantitative sensitivity analysis, i.e., the Sobol method integrated with the response surface model (RSMSobol). First, the Morris screening method was used to qualitatively identify the parameters' sensitivity, and then ten parameters were selected to quantify the sensitivity indices. Subsequently, the RSMSobol method was used to quantify the sensitivity, i.e., the first-order and total sensitivity indices based on the response surface model (RSM) were calculated. The RSMSobol method can not only quantify the sensitivity, but also reduce the computational cost, with good accuracy compared to the classical approaches. This approach will be effective and reliable in the global sensitivity analysis of a complex large-scale distributed hydrological model.展开更多
基金Supported by Shanghai Municipal Science and Technology Program (Grant No.21511101701)National Key Research and Development Program of China (Grant No.2021YFC0122704)。
文摘A dual-arm nursing robot can gently lift patients and transfer them between a bed and a wheelchair.With its lightweight design,high load-bearing capacity,and smooth surface,the coupled-drive joint is particularly well suited for these robots.However,the coupled nature of the joint disrupts the direct linear relationship between the input and output torques,posing challenges for dynamic modeling and practical applications.This study investigated the transmission mechanism of this joint and employed the Lagrangian method to construct a dynamic model of its internal dynamics.Building on this foundation,the Newton-Euler method was used to develop a dynamic model for the entire robotic arm.A continuously differentiable friction model was incorporated to reduce the vibrations caused by speed transitions to zero.An experimental method was designed to compensate for gravity,inertia,and modeling errors to identify the parameters of the friction model.This method establishes a mapping relationship between the friction force and motor current.In addition,a Fourier series-based excitation trajectory was developed to facilitate the identification of the dynamic model parameters of the robotic arm.Trajectory tracking experiments were conducted during the experimental validation phase,demonstrating the high accuracy of the dynamic model and the parameter identification method for the robotic arm.This study presents a dynamic modeling and parameter identification method for coupled-drive joint robotic arms,thereby establishing a foundation for motion control in humanoid nursing robots.
基金supported by the Fundamental Research Funds for the Central Universities (No.3122020072)the Multi-investment Project of Tianjin Applied Basic Research(No.23JCQNJC00250)。
文摘A hybrid identification model based on multilayer artificial neural networks(ANNs) and particle swarm optimization(PSO) algorithm is developed to improve the simultaneous identification efficiency of thermal conductivity and effective absorption coefficient of semitransparent materials.For the direct model,the spherical harmonic method and the finite volume method are used to solve the coupled conduction-radiation heat transfer problem in an absorbing,emitting,and non-scattering 2D axisymmetric gray medium in the background of laser flash method.For the identification part,firstly,the temperature field and the incident radiation field in different positions are chosen as observables.Then,a traditional identification model based on PSO algorithm is established.Finally,multilayer ANNs are built to fit and replace the direct model in the traditional identification model to speed up the identification process.The results show that compared with the traditional identification model,the time cost of the hybrid identification model is reduced by about 1 000 times.Besides,the hybrid identification model remains a high level of accuracy even with measurement errors.
文摘[Objectives]This study was conducted to clarify the difference of millet from different producing areas in near-infrared spectroscopy(NIRS)modeling.[Methods]Millet samples from six different regions were collected for NIRS analysis,and an origin identification model based on BP neural network was established.The competitive adaptive reweighted sampling(CARS)algorithm was used to extract characteristic wavelength variables,and a CARS-BP model was established on this basis.Finally,the CARS-BP model was compared with support vector machine(SVM),partial least squares discriminant analysis(PLS)and KNN models.[Results]The characteristic wavelengths were extracted by CARS,and the number of variables was reduced from 1845 to 130.The discrimination accuracy of the CARS-BP model for the samples from six producing areas reached 98.1%,which was better than SVM,PSL and KNN models.[Conclusions]NIRS can quickly and accurately identify the origin of millet,providing a new method and way for the origin identification and quality evaluation of millet.
基金funded by the National Natural Science Foundation of China(41907175)the Open Fund of Key Laboratory(WSRCR-2023-01)the project of the China Geological Survey(DD20230459).
文摘Groundwater is an important source of drinking water.Groundwater pollution severely endangers drinking water safety and sustainable social development.In the case of groundwater pollution,the top priority is to identify pollution sources,and accurate information on pollution sources is the premise of efficient remediation.Then,an appropriate pollution remediation scheme should be developed according to information on pollution sources,site conditions,and economic costs.The methods for identifying pollution sources mainly include geophysical exploration,geochemistry,isotopic tracing,and numerical modeling.Among these identification methods,only the numerical modeling can recognize various information on pollution sources,while other methods can only identify a certain aspect of pollution sources.The remediation technologies of groundwater can be divided into in-situ and ex-situ remediation technologies according to the remediation location.The in-situ remediation technologies enjoy low costs and a wide remediation range,but their remediation performance is prone to be affected by environmental conditions and cause secondary pollution.The ex-situ remediation technologies boast high remediation efficiency,high processing capacity,and high treatment concentration but suffer high costs.Different methods for pollution source identification and remediation technologies are applicable to different conditions.To achieve the expected identification and remediation results,it is feasible to combine several methods and technologies according to the actual hydrogeological conditions of contaminated sites and the nature of pollutants.Additionally,detailed knowledge about the hydrogeological conditions and stratigraphic structure of the contaminated site is the basis of all work regardless of the adopted identification methods or remediation technologies.
基金supported by National Key Research and Development Program(No.2016YFD0201305-07)Guizhou Provincial Basic Research Program(Natural Science)(No.ZK[2023]060)Open Fund Project in Semiconductor Power Device Reliability Engineering Center of Ministry of Education(No.ERCMEKFJJ2019-06).
文摘Diseases in tea trees can result in significant losses in both the quality and quantity of tea production.Regular monitoring can help to prevent the occurrence of large-scale diseases in tea plantations.However,existingmethods face challenges such as a high number of parameters and low recognition accuracy,which hinders their application in tea plantation monitoring equipment.This paper presents a lightweight I-MobileNetV2 model for identifying diseases in tea leaves,to address these challenges.The proposed method first embeds a Coordinate Attention(CA)module into the originalMobileNetV2 network,enabling the model to locate disease regions accurately.Secondly,a Multi-branch Parallel Convolution(MPC)module is employed to extract disease features across multiple scales,improving themodel’s adaptability to different disease scales.Finally,the AutoML for Model Compression(AMC)is used to compress themodel and reduce computational complexity.Experimental results indicate that our proposed algorithm attains an average accuracy of 96.12%on our self-built tea leaf disease dataset,surpassing the original MobileNetV2 by 1.91%.Furthermore,the number of model parameters have been reduced by 40%,making itmore suitable for practical application in tea plantation environments.
基金supported by the National Natural Science Foundation of China(61771154)the Fundamental Research Funds for the Central Universities(3072022CF0601)supported by Key Laboratory of Advanced Marine Communication and Information Technology,Ministry of Industry and Information Technology,Harbin Engineering University,Harbin,China.
文摘As modern communication technology advances apace,the digital communication signals identification plays an important role in cognitive radio networks,the communication monitoring and management systems.AI has become a promising solution to this problem due to its powerful modeling capability,which has become a consensus in academia and industry.However,because of the data-dependence and inexplicability of AI models and the openness of electromagnetic space,the physical layer digital communication signals identification model is threatened by adversarial attacks.Adversarial examples pose a common threat to AI models,where well-designed and slight perturbations added to input data can cause wrong results.Therefore,the security of AI models for the digital communication signals identification is the premise of its efficient and credible applications.In this paper,we first launch adversarial attacks on the end-to-end AI model for automatic modulation classifi-cation,and then we explain and present three defense mechanisms based on the adversarial principle.Next we present more detailed adversarial indicators to evaluate attack and defense behavior.Finally,a demonstration verification system is developed to show that the adversarial attack is a real threat to the digital communication signals identification model,which should be paid more attention in future research.
基金supported by the Natural Science Foundation of Shanghai(No.23ZR1429300)Innovation Funds of CNNC(Lingchuang Fund,Contract No.CNNC-LCKY-202234)the Project of the Nuclear Power Technology Innovation Center of Science Technology and Industry(No.HDLCXZX-2023-HD-039-02)。
文摘Accurate and efficient online parameter identification and state estimation are crucial for leveraging digital twin simulations to optimize the operation of near-carbon-free nuclear energy systems.In previous studies,we developed a reactor operation digital twin(RODT).However,non-differentiabilities and discontinuities arise when employing machine learning-based surrogate forward models,challenging traditional gradient-based inverse methods and their variants.This study investigated deterministic and metaheuristic algorithms and developed hybrid algorithms to address these issues.An efficient modular RODT software framework that incorporates these methods into its post-evaluation module is presented for comprehensive comparison.The methods were rigorously assessed based on convergence profiles,stability with respect to noise,and computational performance.The numerical results show that the hybrid KNNLHS algorithm excels in real-time online applications,balancing accuracy and efficiency with a prediction error rate of only 1%and processing times of less than 0.1 s.Contrastingly,algorithms such as FSA,DE,and ADE,although slightly slower(approximately 1 s),demonstrated higher accuracy with a 0.3%relative L_2 error,which advances RODT methodologies to harness machine learning and system modeling for improved reactor monitoring,systematic diagnosis of off-normal events,and lifetime management strategies.The developed modular software and novel optimization methods presented offer pathways to realize the full potential of RODT for transforming energy engineering practices.
基金the National Natural Science Foundation of China(52174325)the Key Research and Development Program of Shaanxi(Grant Nos.2020GY-166 and 2020GY-247)the Shaanxi Provincial Innovation Capacity Support Plan(Grant No.2023-CX-TD-53).
文摘The iron oxide(FeO)content had a significant impact on both the metallurgical properties of sintered ores and the economic indicators of the sintering process.Precisely predicting FeO content possessed substantial potential for enhancing the quality of sintered ore and optimizing the sintering process.A multi-model integrated prediction framework for FeO content during the iron ore sintering process was presented.By applying the affinity propagation clustering algorithm,different working conditions were efficiently classified and the support vector machine algorithm was utilized to identify these conditions.Comparison of several models under different working conditions was carried out.The regression prediction model characterized by high precision and robust stability was selected.The model was integrated into the comprehensive multi-model framework.The precision,reliability and credibility of the model were validated through actual production data,yielding an impressive accuracy of 94.57%and a minimal absolute error of 0.13 in FeO content prediction.The real-time prediction of FeO content provided excellent guidance for on-site sinter production.
基金This project is supported by the Postgraduate Research&Practice Innovation Program of Jiangsu Province(SJCX22_0124)the National Natural Science Foundation of China(NO.61374153).
文摘Considering the fractional-order and nonlinear characteristics of proton exchange membrane fuel cells(PEMFC),a fractional-order subspace identification method based on the ADE-BH optimization algorithm is proposed to establish a fractional-order Hammerstein state-space model of PEMFCs.Herein,a Hammerstein model is constructed by connecting a linear module and a nonlinear module in series to precisely depict the nonlinear property of the PEMFC.During the modeling process,fractional-order theory is combined with subspace identification,and a Poisson filter is adopted to enable multi-order derivability of the data.A variable memory method is introduced to reduce computation time without losing precision.Additionally,to improve the optimization accuracy and avoid obtaining locally optimum solutions,a novel ADEBH algorithm is employed to optimize the unknown parameters in the identification method.In this algorithm,the Euclidean distance serves as the theoretical basis for updating the target vector in the absorption-generation operation of the black hole(BH)algorithm.Finally,simulations demonstrate that the proposed model has small output error and high accuracy,indicating that the model can accurately describe the electrical characteristics of the PEMFC process.
文摘The mathematical model that approximates the dynamics of the industrial process is essential for the efficient synthesis of control algorithms in industrial applications. The model of the process can be obtained according to the identification procedures in the open-loop, or in the closed-loop. In the open-loop, the identification methods are well known and offer good process approximation, which is not valid for the closed-loop identification, when the system provides the feedback output and doesn’t permit it to be identified in the open-loop. This paper offers an approach for experimental identification in the closed-loop, which supposes the approximation of the process with inertial models, with or without time delay and astatism. The coefficients are calculated based on the values of the critical transfer coefficient and period of the underdamped response of the closed-loop system with P controller, when system achieves the limit of stability. Finally, the closed-loop identification was verified by the computer simulation and the obtained results demonstrated, that the identification procedure in the closed-loop offers good results in process of estimation of the model of the process.
基金supported by the grants from the Natural Science Foundation of Hubei Province(No.2020CFB780)the Fundamental Research Funds for the Central Universities(No.2017KFYXJJ020).
文摘Objective Body fluid mixtures are complex biological samples that frequently occur in crime scenes,and can provide important clues for criminal case analysis.DNA methylation assay has been applied in the identification of human body fluids,and has exhibited excellent performance in predicting single-source body fluids.The present study aims to develop a methylation SNaPshot multiplex system for body fluid identification,and accurately predict the mixture samples.In addition,the value of DNA methylation in the prediction of body fluid mixtures was further explored.Methods In the present study,420 samples of body fluid mixtures and 250 samples of single body fluids were tested using an optimized multiplex methylation system.Each kind of body fluid sample presented the specific methylation profiles of the 10 markers.Results Significant differences in methylation levels were observed between the mixtures and single body fluids.For all kinds of mixtures,the Spearman’s correlation analysis revealed a significantly strong correlation between the methylation levels and component proportions(1:20,1:10,1:5,1:1,5:1,10:1 and 20:1).Two random forest classification models were trained for the prediction of mixture types and the prediction of the mixture proportion of 2 components,based on the methylation levels of 10 markers.For the mixture prediction,Model-1 presented outstanding prediction accuracy,which reached up to 99.3%in 427 training samples,and had a remarkable accuracy of 100%in 243 independent test samples.For the mixture proportion prediction,Model-2 demonstrated an excellent accuracy of 98.8%in 252 training samples,and 98.2%in 168 independent test samples.The total prediction accuracy reached 99.3%for body fluid mixtures and 98.6%for the mixture proportions.Conclusion These results indicate the excellent capability and powerful value of the multiplex methylation system in the identification of forensic body fluid mixtures.
文摘Nowadays,wood identification is made by experts using hand lenses,wood atlases,and field manuals which take a lot of cost and time for the training process.The quantity and species must be strictly set up,and accurate identification of the wood species must be made during exploitation to monitor trade and enforce regulations to stop illegal logging.With the development of science,wood identification should be supported with technology to enhance the perception of fairness of trade.An automatic wood identification system and a dataset of 50 commercial wood species from Asia are established,namely,wood anatomical images collected and used to train for the proposed model.In the convolutional neural network(CNN),the last layers are usually soft-max functions with dense layers.These layers contain the most parameters that affect the speed model.To reduce the number of parameters in the last layers of the CNN model and enhance the accuracy,the structure of the model should be optimized and developed.Therefore,a hybrid of convolutional neural network and random forest model(CNN-RF model)is introduced to wood identification.The accuracy’s hybrid model is more than 98%,and the processing speed is 3 times higher than the CNN model.The highest accuracy is 1.00 in some species,and the lowest is 0.92.These results show the excellent adaptability of the hybrid model in wood identification based on anatomical images.It also facilitates further investigations of wood cells and has implications for wood science.
文摘With the penetration of the Internet, virtual groups have become more and more popular. The reliability and accuracy of interpersonal perception in the virtual environment is an intriguing issue. Using the Social relations model (SRM) [1], this paper investigates interpersonal perception in virtual groups from a multilevel perspective. In particular, it examines the following three areas: homophily, identification, and individual attraction, and explores how much of these directional and dyadic relational evaluations can be attributed to the effect of the actor, the partner, and the relationship.
文摘In the synthesis of the control algorithm for complex systems, we are often faced with imprecise or unknown mathematical models of the dynamical systems, or even with problems in finding a mathematical model of the system in the open loop. To tackle these difficulties, an approach of data-driven model identification and control algorithm design based on the maximum stability degree criterion is proposed in this paper. The data-driven model identification procedure supposes the finding of the mathematical model of the system based on the undamped transient response of the closed-loop system. The system is approximated with the inertial model, where the coefficients are calculated based on the values of the critical transfer coefficient, oscillation amplitude and period of the underdamped response of the closed-loop system. The data driven control design supposes that the tuning parameters of the controller are calculated based on the parameters obtained from the previous step of system identification and there are presented the expressions for the calculation of the tuning parameters. The obtained results of data-driven model identification and algorithm for synthesis the controller were verified by computer simulation.
基金Project(2014CB046704)supported by the National Basic Research Program of ChinaProject(2014BAB13B01)supported by the National Science and Technology Pillar Program of China
文摘The material of nickel aluminum bronze (NAB) presents superior properties such as high strength, excellent wear resistance and stress corrosion resistance and is extensively used for marine propellers. In order to establish the constitutive relation of NAB under high strain rate condition, a new methodology was proposed to accurately identify the constitutive parameters of Johnson?Cook model in machining, combining SHPB tests, predictive cutting force model and orthogonal cutting experiment. Firstly, SHPB tests were carried out to obtain the true stress?strain curves at various temperatures and strain rates. Then, an objective function of the predictive and experimental flow stresses was set up, which put the identified parameters of SHPB tests as the initial value, and utilized the PSO algorithm to identify the constitutive parameters of NAB in machining. Finally, the identified parameters were verified to be sufficiently accurate by comparing the values of cutting forces calculated from the predictive model and FEM simulation.
文摘By combining the distributed Kalman filter (DKF) with the back propagation neural network (BPNN),a novel method is proposed to identify the bias of electrostatic suspended gyroscope (ESG). Firstly,the data sets of multi-measurements of the same ESG in different noise environments are "mapped" into a sensor network,and DKF with embedded consensus filters is then used to preprocess the data sets. After transforming the preprocessed results into the trained input and the desired output of neural network,BPNN with the learning rate and the momentum term is further utilized to identify the ESG bias. As demonstrated in the experiment,the proposed approach is effective for the model identification of the ESG bias.
文摘The identification problem of Hammerstein model with extension to the multi input multi output (MIMO) case is studied. The proposed identification method uses a hybrid neural network (HNN) which consists of a multi layer feed forward neural network (MFNN) in cascade with a linear neural network (LNN). A unified back propagation (BP) algorithm is proposed to estimate the weights and the biases of the MFNN and the LNN simultaneously. Numerical examples are provided to show the efficiency of the proposed method.
基金supported by the National Key R&D Program of China (2021ZD0202805,2019YFA0709504,2021ZD0200900)National Defense Science and Technology Innovation Special Zone Spark Project (20-163-00-TS-009-152-01)+4 种基金National Natural Science Foundation of China (31900719,U20A20227,82125008)Innovative Research Team of High-level Local Universities in Shanghai,Science and Technology Committee Rising-Star Program (19QA1401400)111 Project (B18015)Shanghai Municipal Science and Technology Major Project (2018SHZDZX01)Shanghai Center for Brain Science and Brain-Inspired Technology。
文摘Video-based action recognition is becoming a vital tool in clinical research and neuroscientific study for disorder detection and prediction.However,action recognition currently used in non-human primate(NHP)research relies heavily on intense manual labor and lacks standardized assessment.In this work,we established two standard benchmark datasets of NHPs in the laboratory:Monkeyin Lab(Mi L),which includes 13 categories of actions and postures,and MiL2D,which includes sequences of two-dimensional(2D)skeleton features.Furthermore,based on recent methodological advances in deep learning and skeleton visualization,we introduced the Monkey Monitor Kit(Mon Kit)toolbox for automatic action recognition,posture estimation,and identification of fine motor activity in monkeys.Using the datasets and Mon Kit,we evaluated the daily behaviors of wild-type cynomolgus monkeys within their home cages and experimental environments and compared these observations with the behaviors exhibited by cynomolgus monkeys possessing mutations in the MECP2 gene as a disease model of Rett syndrome(RTT).Mon Kit was used to assess motor function,stereotyped behaviors,and depressive phenotypes,with the outcomes compared with human manual detection.Mon Kit established consistent criteria for identifying behavior in NHPs with high accuracy and efficiency,thus providing a novel and comprehensive tool for assessing phenotypic behavior in monkeys.
基金National Natural Science Foundation of China Under Grant No.10572058the Science Foundation of Aeronautics of China Under Grant No.2008ZA52012
文摘In order to evaluate the nonlinear performance and the possible damage to rubber-bearings (RBs) during their normal operation or under strong earthquakes, a simplified Bouc-Wen model is used to describe the nonlinear hysteretic behavior of RBs in this paper, which has the advantages of being smooth-varying and physically motivated. Further, based on the results from experimental tests performed by using a particular type of RB (GZN 110) under different excitation scenarios, including white noise and several earthquakes, a new system identification method, referred to as the sequential nonlinear least- square estimation (SNLSE), is introduced to identify the model parameters. It is shown that the proposed simplified Bouc- Wen model is capable of describing the nonlinear hysteretic behavior of RBs, and that the SNLSE approach is very effective in identifying the model parameters of RBs.
基金supported by the National Natural Science Foundation of China (Grant No. 41271003)the National Basic Research Program of China (Grants No. 2010CB428403 and 2010CB951103)
文摘Parameter identification, model calibration, and uncertainty quantification are important steps in the model-building process, and are necessary for obtaining credible results and valuable information. Sensitivity analysis of hydrological model is a key step in model uncertainty quantification, which can identify the dominant parameters, reduce the model calibration uncertainty, and enhance the model optimization efficiency. There are, however, some shortcomings in classical approaches, including the long duration of time and high computation cost required to quantitatively assess the sensitivity of a multiple-parameter hydrological model. For this reason, a two-step statistical evaluation framework using global techniques is presented. It is based on (1) a screening method (Morris) for qualitative ranking of parameters, and (2) a variance-based method integrated with a meta-model for quantitative sensitivity analysis, i.e., the Sobol method integrated with the response surface model (RSMSobol). First, the Morris screening method was used to qualitatively identify the parameters' sensitivity, and then ten parameters were selected to quantify the sensitivity indices. Subsequently, the RSMSobol method was used to quantify the sensitivity, i.e., the first-order and total sensitivity indices based on the response surface model (RSM) were calculated. The RSMSobol method can not only quantify the sensitivity, but also reduce the computational cost, with good accuracy compared to the classical approaches. This approach will be effective and reliable in the global sensitivity analysis of a complex large-scale distributed hydrological model.