In line with the Industrial Policy of Motor Industry, Auto Tech PSE ’96 was held from June 2 to June 9 in Beijing. Following the two PSEs held in Beijing for Family Car and Auto Parts, this event focused on the Auto ...In line with the Industrial Policy of Motor Industry, Auto Tech PSE ’96 was held from June 2 to June 9 in Beijing. Following the two PSEs held in Beijing for Family Car and Auto Parts, this event focused on the Auto Tech, aiming to help the auto circles home and abroad to have a展开更多
The Neoarchaean to Palaeoproterozoic Transvaal Supergroup of the Kaapvaal Craton,southern Africa,is one of the best-preserved and most complete stratigraphic records across a critical in juncture in the Earth’s history.
The Great Luhuo Event ( M S=7 6) occurred on February 6, 1973 in Sichuan Province. There were a lot of aftershocks in the source area. The largest aftershock ( M S=6 3) occurred along a normal fault zone between the X...The Great Luhuo Event ( M S=7 6) occurred on February 6, 1973 in Sichuan Province. There were a lot of aftershocks in the source area. The largest aftershock ( M S=6 3) occurred along a normal fault zone between the Xianshuihe Fault and the Ganzi Yushu fault. Based on the focal mechanism solution, surface rupture, coseismic dislocation and seismo\|geological tectonics of the event, an elastic dislocation model of the Great Luhuo Event with a strike slip mechanism was designed and the Coulomb Failure Stress Change ( ΔCFS) in the slip direction on normal faults along and surrounding the source zone due to the event was calculated. The results showed that the largest aftershock occurred in an area with ΔCFS >0, and that ΔCFS =4 5MPa. Therefore, the largest aftershock was probably triggered by the Coulomb Failure Stress Change.展开更多
During Earth’s 4.6 billion-year history,its surface has experienced environmental changes that drastically impacted habitability.The changes have been mostly attributed to near-surface processes or astronomical event...During Earth’s 4.6 billion-year history,its surface has experienced environmental changes that drastically impacted habitability.The changes have been mostly attributed to near-surface processes or astronomical events with little consideration of Earth’s deep interior.Recent progresses in high-pressure geochemistry and geophysics,however,indicate that deep Earth processes may have played a dominant role in the surface(Mao and Mao,2020).展开更多
A robust stratigraphic framework and a coherent depositional ramp model for the Zitai,Dawan,Meitan and Ningkuo formations of Floian–Darriwilian age(Early–Middle Ordovician)in the Yangtze(Daoba,Xiangshuidong,Daling,G...A robust stratigraphic framework and a coherent depositional ramp model for the Zitai,Dawan,Meitan and Ningkuo formations of Floian–Darriwilian age(Early–Middle Ordovician)in the Yangtze(Daoba,Xiangshuidong,Daling,Gudongkou and Honghuayuan sections)and Jiangnan regions(Nanba section)was created based on lithofacies and major element analysis.Three siliciclastic(LF1–3)and six carbonate(LF4–9)lithofacies are recognized representing sediments that were deposited in mixed siliciclastic and carbonate ramp environment.The intensity of mixed sedimentation and terrigenous input were evaluated using the elemental proxies Intensity of Mixed sedimentation(IM)and Aluminum Accumulation Rate(Al AR),as well as their mean values during certain time intervals.Mixed sediments are most well-developed along the marginal Yangtze region,strongly impacted by recurrent influx of westerly derived terrigenous materials in response to global eustatic changes and regional tectonic movements,shaping the gently southeast-dipping morphology.Regular terrigenous influx resulted in periods of enhanced primary productivity on the Yangtze Ramp as evidenced by matching biodiversity peaks in planktonic organisms,i.e.,chitinozoans and acritarchs.Brachiopods and other shelly fauna were also able to proliferate as new niches developed along the gently dipping ramp floor with substrate changes.The biodiversification patterns suggest that terrigenous influx controlled in part by regional tectonics played a more important role than previously thought in the development of Great Ordovician Biodiversification Event in South China.展开更多
The carbon cycle is an important process that regulates Earth's evolution.We compare two typical periods,in the Paleoproterozoic and Neoproterozoic,in which many geological events occurred.It remains an open quest...The carbon cycle is an important process that regulates Earth's evolution.We compare two typical periods,in the Paleoproterozoic and Neoproterozoic,in which many geological events occurred.It remains an open question when modern plate tectonics started on Earth and how it has influenced the carbon cycle through time.In the Paleoproterozoic,intense weathering in a highly CO_(2)and CH_(4)rich atmosphere caused more nutritional elements to be carried into the ocean.Terrestrial input boosted high biological productivity,deposition of sediments and the formation of an altered oceanic crust,which may have promoted an increase in the oxygen content.Sediment lubrication and a decrease in mantle potential temperature made cold and deep subduction possible,which carried more carbon into the deep mantle.Carbon can be stored in the mantle as diamond and carbonated mantle rocks,being released by arc and mid-ocean ridge outgassing at widely different times.From the Paleoproterozoic through the Neoproterozoic to the Phanerozoic,the carbon cycle has promoted the evolution of a habitable Earth.展开更多
The Great Oxidation Event(GOE)during the early Paleoproterozoic represents the first significant buildup in Earth’s atmospheric oxygen and resulted in a series of significant changes in the Earth’s surface environme...The Great Oxidation Event(GOE)during the early Paleoproterozoic represents the first significant buildup in Earth’s atmospheric oxygen and resulted in a series of significant changes in the Earth’s surface environment.Among them is the 2.22(or 2.33)–2.06 Ga Lomagundi-Jatuli Event(LJE),which is globally,the largest magnitude and longest duration,marine carbonate positive carbon isotope excursion(δ^(13)C_(V-PDB)>10‰)known.This event has attracted the attention of scholars all over the world.However,except for a high positive carbon isotope excursion(δ^(13)C_(V-PDB)>10‰)recently identified from marine carbonate rocks within the Daposhan Formation in the lower Fanhe Group(or the Sanchazi Group)in the Longgang Block in the northeast North China Craton(NCC),Paleoproterozoic carbonates in the NCC are characterized by a low-amplitude positive carbon isotope excursion(δ^(13)C_(V-PDB)<5‰).This feature is significantly different from the high positive carbon isotope excursion characteristics of carbonates deposited during the LJE period in other cratons.To determine whether there are large-scale and reliable sedimentary records of the LJE in the NCC and the reasons for the low positive δ^(13)C excursion of the Paleoproterozoic carbonates obtained by the previous studies,we conducted field investigations,carbon-oxygen isotopes,and whole-rock major and trace element geochemical analyses of Liaohe Group carbonate rocks from the Anshan area in the northwestern margin of the Jiao-Liao-Ji Belt in the northeast NCC.Our results show that the Gaojiayu Formation of the Liaohe Group in the Anshan area has high positive δ^(13)C_(V-PDB) values from 8.6‰ to 12.4‰ and δ^(18)O_(V-SMOW) values of 17.9‰-27.4‰(δ^(18)O_(V-PDB) values ranging from−12.6‰to -3.4‰).This provides solid evidence for the preservation of reliable sedimentary records of the LJE in the northeastern NCC.Deposition of the high positive δ^(13)C excursion(>10‰)of marine carbonate rocks occurred at about 2.15 Ga.Lithological comparisons of different sections and whole-rock geochemical results show that the high positive δ^(13)C excursion is mainly controlled by the stratigraphic interval and depositional ages;the changes of sedimentary facies and diagenesis have no significant effects on reducing of the δ^(13)C values.The intrusion of mafic sills into carbonates has resulted in synchronous decrease of C-O isotopes near the contact zones,but the decreasing amplitude of δ^(13)C is less than 3‰.Therefore,our study firstly identified marine carbonates with high positive δ^(13)C excursion(>10‰)from the Gaojiayu Formation,which provides robust evidence for global correlation of the LJE,which has implications for its genesis and global significance.Moreover,due to global near-synchronization of the LJE,the carbon-oxygen isotope chemical stratigraphy of carbonate rocks deposited during the LJE period,combined with geochronological data,can provide new constraints on the stratigraphic subdivision and correlations of Paleoproterozoic sedimentary successions in the NCC.展开更多
文摘In line with the Industrial Policy of Motor Industry, Auto Tech PSE ’96 was held from June 2 to June 9 in Beijing. Following the two PSEs held in Beijing for Family Car and Auto Parts, this event focused on the Auto Tech, aiming to help the auto circles home and abroad to have a
文摘The Neoarchaean to Palaeoproterozoic Transvaal Supergroup of the Kaapvaal Craton,southern Africa,is one of the best-preserved and most complete stratigraphic records across a critical in juncture in the Earth’s history.
文摘The Great Luhuo Event ( M S=7 6) occurred on February 6, 1973 in Sichuan Province. There were a lot of aftershocks in the source area. The largest aftershock ( M S=6 3) occurred along a normal fault zone between the Xianshuihe Fault and the Ganzi Yushu fault. Based on the focal mechanism solution, surface rupture, coseismic dislocation and seismo\|geological tectonics of the event, an elastic dislocation model of the Great Luhuo Event with a strike slip mechanism was designed and the Coulomb Failure Stress Change ( ΔCFS) in the slip direction on normal faults along and surrounding the source zone due to the event was calculated. The results showed that the largest aftershock occurred in an area with ΔCFS >0, and that ΔCFS =4 5MPa. Therefore, the largest aftershock was probably triggered by the Coulomb Failure Stress Change.
基金support of National Science Foundation of China Grant No:U1930401
文摘During Earth’s 4.6 billion-year history,its surface has experienced environmental changes that drastically impacted habitability.The changes have been mostly attributed to near-surface processes or astronomical events with little consideration of Earth’s deep interior.Recent progresses in high-pressure geochemistry and geophysics,however,indicate that deep Earth processes may have played a dominant role in the surface(Mao and Mao,2020).
基金funded by National Natural Science Foundation of China(Grant Nos.42102130,41972011)Natural Science Foundation of Jiangsu Province(Grant No.BK20191101)+2 种基金Chinese Academy of Sciences(Grant No.XDB26000000)China Scholarship Council(Grant No.202004910207)State Key Laboratory of Palaeobiology and Stratigraphy。
文摘A robust stratigraphic framework and a coherent depositional ramp model for the Zitai,Dawan,Meitan and Ningkuo formations of Floian–Darriwilian age(Early–Middle Ordovician)in the Yangtze(Daoba,Xiangshuidong,Daling,Gudongkou and Honghuayuan sections)and Jiangnan regions(Nanba section)was created based on lithofacies and major element analysis.Three siliciclastic(LF1–3)and six carbonate(LF4–9)lithofacies are recognized representing sediments that were deposited in mixed siliciclastic and carbonate ramp environment.The intensity of mixed sedimentation and terrigenous input were evaluated using the elemental proxies Intensity of Mixed sedimentation(IM)and Aluminum Accumulation Rate(Al AR),as well as their mean values during certain time intervals.Mixed sediments are most well-developed along the marginal Yangtze region,strongly impacted by recurrent influx of westerly derived terrigenous materials in response to global eustatic changes and regional tectonic movements,shaping the gently southeast-dipping morphology.Regular terrigenous influx resulted in periods of enhanced primary productivity on the Yangtze Ramp as evidenced by matching biodiversity peaks in planktonic organisms,i.e.,chitinozoans and acritarchs.Brachiopods and other shelly fauna were also able to proliferate as new niches developed along the gently dipping ramp floor with substrate changes.The biodiversification patterns suggest that terrigenous influx controlled in part by regional tectonics played a more important role than previously thought in the development of Great Ordovician Biodiversification Event in South China.
基金funded by the National Key Research and Development Program of China(Grant No.2019YFA0708501)。
文摘The carbon cycle is an important process that regulates Earth's evolution.We compare two typical periods,in the Paleoproterozoic and Neoproterozoic,in which many geological events occurred.It remains an open question when modern plate tectonics started on Earth and how it has influenced the carbon cycle through time.In the Paleoproterozoic,intense weathering in a highly CO_(2)and CH_(4)rich atmosphere caused more nutritional elements to be carried into the ocean.Terrestrial input boosted high biological productivity,deposition of sediments and the formation of an altered oceanic crust,which may have promoted an increase in the oxygen content.Sediment lubrication and a decrease in mantle potential temperature made cold and deep subduction possible,which carried more carbon into the deep mantle.Carbon can be stored in the mantle as diamond and carbonated mantle rocks,being released by arc and mid-ocean ridge outgassing at widely different times.From the Paleoproterozoic through the Neoproterozoic to the Phanerozoic,the carbon cycle has promoted the evolution of a habitable Earth.
基金financially supported by the National Natural Science Foundation of China(Grant Nos.41920104004,U2244213,41725011)the Fundamental Research Fund of Chinese Academy of Geological Sciences(Grant No.JKYZD202320)。
文摘The Great Oxidation Event(GOE)during the early Paleoproterozoic represents the first significant buildup in Earth’s atmospheric oxygen and resulted in a series of significant changes in the Earth’s surface environment.Among them is the 2.22(or 2.33)–2.06 Ga Lomagundi-Jatuli Event(LJE),which is globally,the largest magnitude and longest duration,marine carbonate positive carbon isotope excursion(δ^(13)C_(V-PDB)>10‰)known.This event has attracted the attention of scholars all over the world.However,except for a high positive carbon isotope excursion(δ^(13)C_(V-PDB)>10‰)recently identified from marine carbonate rocks within the Daposhan Formation in the lower Fanhe Group(or the Sanchazi Group)in the Longgang Block in the northeast North China Craton(NCC),Paleoproterozoic carbonates in the NCC are characterized by a low-amplitude positive carbon isotope excursion(δ^(13)C_(V-PDB)<5‰).This feature is significantly different from the high positive carbon isotope excursion characteristics of carbonates deposited during the LJE period in other cratons.To determine whether there are large-scale and reliable sedimentary records of the LJE in the NCC and the reasons for the low positive δ^(13)C excursion of the Paleoproterozoic carbonates obtained by the previous studies,we conducted field investigations,carbon-oxygen isotopes,and whole-rock major and trace element geochemical analyses of Liaohe Group carbonate rocks from the Anshan area in the northwestern margin of the Jiao-Liao-Ji Belt in the northeast NCC.Our results show that the Gaojiayu Formation of the Liaohe Group in the Anshan area has high positive δ^(13)C_(V-PDB) values from 8.6‰ to 12.4‰ and δ^(18)O_(V-SMOW) values of 17.9‰-27.4‰(δ^(18)O_(V-PDB) values ranging from−12.6‰to -3.4‰).This provides solid evidence for the preservation of reliable sedimentary records of the LJE in the northeastern NCC.Deposition of the high positive δ^(13)C excursion(>10‰)of marine carbonate rocks occurred at about 2.15 Ga.Lithological comparisons of different sections and whole-rock geochemical results show that the high positive δ^(13)C excursion is mainly controlled by the stratigraphic interval and depositional ages;the changes of sedimentary facies and diagenesis have no significant effects on reducing of the δ^(13)C values.The intrusion of mafic sills into carbonates has resulted in synchronous decrease of C-O isotopes near the contact zones,but the decreasing amplitude of δ^(13)C is less than 3‰.Therefore,our study firstly identified marine carbonates with high positive δ^(13)C excursion(>10‰)from the Gaojiayu Formation,which provides robust evidence for global correlation of the LJE,which has implications for its genesis and global significance.Moreover,due to global near-synchronization of the LJE,the carbon-oxygen isotope chemical stratigraphy of carbonate rocks deposited during the LJE period,combined with geochronological data,can provide new constraints on the stratigraphic subdivision and correlations of Paleoproterozoic sedimentary successions in the NCC.