This paper investigates a wireless powered and backscattering enabled sensor network based on the non-linear energy harvesting model, where the power beacon(PB) delivers energy signals to wireless sensors to enable th...This paper investigates a wireless powered and backscattering enabled sensor network based on the non-linear energy harvesting model, where the power beacon(PB) delivers energy signals to wireless sensors to enable their passive backscattering and active transmission to the access point(AP). We propose an efficient time scheduling scheme for network performance enhancement, based on which each sensor can always harvest energy from the PB over the entire block except its time slots allocated for passive and active information delivery. Considering the PB and wireless sensors are from two selfish service providers, we use the Stackelberg game to model the energy interaction among them. To address the non-convexity of the leader-level problem, we propose to decompose the original problem into two subproblems and solve them iteratively in an alternating manner. Specifically, the successive convex approximation, semi-definite relaxation(SDR) and variable substitution techniques are applied to find a nearoptimal solution. To evaluate the performance loss caused by the interaction between two providers, we further investigate the social welfare maximization problem. Numerical results demonstrate that compared to the benchmark schemes, the proposed scheme can achieve up to 35.4% and 38.7% utility gain for the leader and the follower, respectively.展开更多
A quantitative approach to the national geopolitical influence is helpful to provide a reference for national sustainable development on the international stage, based on describing national diplomatic capacity and ov...A quantitative approach to the national geopolitical influence is helpful to provide a reference for national sustainable development on the international stage, based on describing national diplomatic capacity and overseas influence. Herein, this study proposes a complex geopolitical influence model, considering the affected nations' response. The geopolitical influences of great power in the affected nation are correlated with overall strength, the acceptance degree of the affected nation to the great power and the distance between both sides. Then, the geopolitical influences of China and the US in Southeast Asia countries are empirically analyzed from 2005 to 2015. The geopolitical influence of China in Southeast Asia has been largely growing for the past decades, accompanying with a constant trend of the US' effects. It is believed that China and the US can coexist peacefully in Southeast Asia to promote the regional development, and jointly create an open, inclusive and balanced regional cooperation architecture that benefits all nations in this region and great powers, through mutual political trust and economic beneficial cooperation. This study may contribute to advancing the policy debate and determining the optimal cooperation in pledging commitment to a new and sustainable model of great power relationship among the various regional geopolitical options.展开更多
The current electricity market fails to consider the energy consumption characteristics of transaction subjects such as virtual power plants.Besides,the game relationship between transaction subjects needs to be furth...The current electricity market fails to consider the energy consumption characteristics of transaction subjects such as virtual power plants.Besides,the game relationship between transaction subjects needs to be further explored.This paper proposes a Peer-to-Peer energy trading method for multi-virtual power plants based on a non-cooperative game.Firstly,a coordinated control model of public buildings is incorporated into the scheduling framework of the virtual power plant,considering the energy consumption characteristics of users.Secondly,the utility functions of multiple virtual power plants are analyzed,and a non-cooperative game model is established to explore the game relationship between electricity sellers in the Peer-to-Peer transaction process.Finally,the influence of user energy consumption characteristics on the virtual power plant operation and the Peer-to-Peer transaction process is analyzed by case studies.Furthermore,the effect of different parameters on the Nash equilibrium point is explored,and the influence factors of Peer-to-Peer transactions between virtual power plants are summarized.According to the obtained results,compared with the central air conditioning set as constant temperature control strategy,the flexible control strategy proposed in this paper improves the market power of each VPP and the overall revenue of the VPPs.In addition,the upper limit of the service quotation of the market operator have a great impact on the transaction mode of VPPs.When the service quotation decreases gradually,the P2P transaction between VPPs is more likely to occur.展开更多
Energy saving is the most important issue in research and development for wireless sensor networks. A power control mechanism can reduce the power consumption of the whole network. Because the character of wireless se...Energy saving is the most important issue in research and development for wireless sensor networks. A power control mechanism can reduce the power consumption of the whole network. Because the character of wireless sensor networks is restrictive energy, this paper proposes a distributed power control algorithm based on game theory for wireless sensor networks which objects of which are reducing power consumption and decreasing overhead and increasing network lifetime. The game theory and OPNET simulation shows that the power control algorithm converges to a Nash Equilibrium when decisions are updated according to a better response dynamic.展开更多
To solve the problem of dynamic power resource allocation for cooperative penetration combat,the continuous game theory is introduced and a two-person general-sum continuous-game-based model is put forward with a comm...To solve the problem of dynamic power resource allocation for cooperative penetration combat,the continuous game theory is introduced and a two-person general-sum continuous-game-based model is put forward with a common payoff function named collaborative detection probability of netted radar countermeasures.Comparing with traditional optimization methods,an obvious advantage of game-based model is an adequate consideration of the opposite potential strategy.This model guarantees a more effective allocation of the both sides′power resource and a higher combat efficiency during a combat.Furthermore,an analysis of the complexity of the proposed model is given and a hierarchical processing method is presented to simplify the calculating process.Simulation results show the validity of the proposed scheme.展开更多
Power efficiency and link reliability are of great impor- tance in hierarchical wireless sensor networks (HWSNs), espe- cially at the key level, which consists of sensor nodes located only one hop away from the sink...Power efficiency and link reliability are of great impor- tance in hierarchical wireless sensor networks (HWSNs), espe- cially at the key level, which consists of sensor nodes located only one hop away from the sink node called OHS. The power and admission control problem in HWSNs is comsidered to improve its power efficiency and link reliability. This problem is modeled as a non-cooperative game in which the active OHSs are con- sidered as players. By applying a double-pricing scheme in the definition of OHSs' utility function, a Nash Equilibrium solution with network properties is derived. Besides, a distributed algorithm is also proposed to show the dynamic processes to achieve Nash Equilibrium. Finally, the simulation results demonstrate the effec- tiveness of the proposed algorithm.展开更多
This paper addresses the power con- trol problems of Cognitive Radio (CR) trader transmission power and interference tempera- ture constraints. First, we propose the interfer- ence constraint which ensures that the ...This paper addresses the power con- trol problems of Cognitive Radio (CR) trader transmission power and interference tempera- ture constraints. First, we propose the interfer- ence constraint which ensures that the Quality of Service (QoS) standards for primary users is considered and a non-cooperative game power control model. Based on the proposed model, we developed a logical utility function based on the Signal-to-Interference-Noise Ratio (S/NR) and a novel algorithm network power control. that is suitable for CR Then, the existence and uniqueness of the Nash Equilibrium (NE) in our utility function are proved by the principle of game theory and the corresponding optimi- zations. Compared to traditional algorithms, the proposed one could converge to an NE in 3-5 iterative operations by setting an appropriate pricing factor. Finally, simulation results ver- ified the stability and superiority of the novel algorithm in flat-fading channel environments.展开更多
Wireless cooperative communications require appropriate power allocation (PA) between the source and relay nodes. In selfish cooperative communication networks, two partner user nodes could help relaying information...Wireless cooperative communications require appropriate power allocation (PA) between the source and relay nodes. In selfish cooperative communication networks, two partner user nodes could help relaying information for each other, but each user node has the incentive to consume his power solely to decrease its own symbol error rate (SER) at the receiver. In this paper, we propose a fair and efficient PA scheme for the decode-and-forward cooperation protocol in selfish cooperative relay networks. We formulate this PA problem as a two-user cooperative bargaining game, and use Nash bargaining solution (NBS) to achieve a win-win strategy for both partner users. Simulation results indicate that the NBS is fair in that the degree of cooperation of a user only depends on how much contribution its partner can make to decrease its SER at the receiver, and efficient in the sense that the SER performance of both users could be improved through the game.展开更多
This paper investigates a power control problem in a jamming system,where a separate smart jammer is deployed to ensure the communication security of the legal user.However,due to power leakage,the smart jammer may in...This paper investigates a power control problem in a jamming system,where a separate smart jammer is deployed to ensure the communication security of the legal user.However,due to power leakage,the smart jammer may incur unintentional interference to legal users.The key is how to suppress illegal communication while limit the negative impact on legal user.A jamming counter measure Stackelberg game is formulated to model the jamming power control dynamic of the system.The smart jammer acts as a leader to sense and interfere illegal communications of the illegal user,while the illegal user acts as a follower.In the game,the impact of uncertain channel information is taken into account.According to whether illegal user considers the uncertain channel information,we investigate two scenarios,namely,illegal user can obtain statistical distribution and accurate information of interference channel gain and its own cost,respectively.This work not only proposes a jamming counter measure iterative algorithm to update parameters,but also gives two solutions to obtain the Stackelberg equilibrium(SE).The power convergence behaviours under two scenarios are analyzed and compared.Additionally,brute force is used to verify the accuracy of the SE value further.展开更多
To compensate the service providers who have paid billions of dollars to use spectrum and to satisfy secondary users' requirements in cognitive radios, a Non-cooperative Power Control Game and Pricing algorithm (N...To compensate the service providers who have paid billions of dollars to use spectrum and to satisfy secondary users' requirements in cognitive radios, a Non-cooperative Power Control Game and Pricing algorithm (NPGP) is proposed. Simulation results show that the proposed algorithm can regulate the secondary users' transmitter powers, optimally allocate radio resource and increase the total throughput effectively.展开更多
Since the end of the Cold War,major powers have avoided direct military confrontation,wary of the devastating consequences of nuclear warfare.Yet the arms race and regional conflicts remain important forms of power co...Since the end of the Cold War,major powers have avoided direct military confrontation,wary of the devastating consequences of nuclear warfare.Yet the arms race and regional conflicts remain important forms of power competition.Nonetheless,in the era of globalization,rapid advancements in new technologies and industries have eclipsed the utility of geopolitical maneuvers and military competition.In today’s world,the great power competition goes beyond the arms race and GDP aggregates.What matters more is the race to innovate and apply new technologies through a complete range of industrial sectors.In a world where technology has a controlling influence,industrial security has become the linchpin of national security.As globalization reshapes the world’s industrial landscape,a country’s economic influence,military might and national security depend increasingly on its industrial structure.National security is contingent upon industrial strength.In the era of globalization,industrial policy,cutting-edge technologies and market size are dominant factors influencing a country’s competitive position.The essence of the great power competition are industrial policies that fully unlock a country’s industrial potential and implementation of the policies.展开更多
In order to better accommodate heterogeneous quality of service (QoS) in wireless networks, an algorithm called QoS-aware power and admission controls (QAPAC) is proposed. The system is modeled as a non-cooperative ga...In order to better accommodate heterogeneous quality of service (QoS) in wireless networks, an algorithm called QoS-aware power and admission controls (QAPAC) is proposed. The system is modeled as a non-cooperative game where the users adjust their transmit powers to maximize the utility, thus restraining the interferences. By using adaptive utility functions and tunable pricing parameters according to QoS levels, this algorithm can well meet different QoS requirements and improve system capacity compared with those that ignore the QoS differences.展开更多
The series of unilateral foreign policies taken by US President Donald Trump has worsened relations between the US and other powers including China, Russia, the EU and Japan, prompting their officials to turn to seeki...The series of unilateral foreign policies taken by US President Donald Trump has worsened relations between the US and other powers including China, Russia, the EU and Japan, prompting their officials to turn to seeking bilateral arrangements when need arises. Though among these countries there is willingness to cooperate, the US seeks to consolidate hegemony. The US focus is to contain China and sanction Russia in economic and trade fields. In geopolitics and security, the EU and Japan are heavily dependent on the US and follow the US lead.展开更多
Spectrum sharing is an essential enabling functionality to allow the coexistence between primary user (PU) and cognitive users (CUs) in the same frequency band. In this paper, we consider joint rate and power allocati...Spectrum sharing is an essential enabling functionality to allow the coexistence between primary user (PU) and cognitive users (CUs) in the same frequency band. In this paper, we consider joint rate and power allocation in cognitive radio networks by using game theory. The optimum rates and powers are obtained by iteratively maximizing each CU’s utility function, which is designed to guarantee the protection of primary user (PU) as well as the quality of service (QoS) of CUs. In addition, transmission rates of some CUs should be adjusted if corresponding actual signal-to-interference-plus-noise ratio (SINR) falls below the target SINR. Based on the modified transmission rate for each CU, distributed power allocation is introduced to further reduce the total power consumption. Simulation results are provided to demonstrate that the proposed algorithm achieves a significant gain in power saving.展开更多
Wang: Speaking of Sino-U. S. relations, actually it touches upon great power relationship. The current Iraqi crisis became a focus in UN. There is a clear demarcation line between those countries supporting a war and ...Wang: Speaking of Sino-U. S. relations, actually it touches upon great power relationship. The current Iraqi crisis became a focus in UN. There is a clear demarcation line between those countries supporting a war and those countries in favor of weapons inspections within展开更多
In this study, aiming at the characteristics of randomness and dynamics in Wearable Audiooriented BodyNets (WA-BodyNets), stochastic differential game theory is applied to the investigation of the problem of transm...In this study, aiming at the characteristics of randomness and dynamics in Wearable Audiooriented BodyNets (WA-BodyNets), stochastic differential game theory is applied to the investigation of the problem of transmitted power control inconsumer electronic devices. First, astochastic differential game model is proposed for non-cooperative decentralized uplink power control with a wisdom regulation factor over WA-BodyNets with a onehop star topology.This model aims to minimize the cost associated with the novel payoff function of a player, for which two cost functions are defined: functions of inherent power radiation and accumulated power radiation darmge. Second, the feedback Nash equilibrium solution of the proposed model and the constraint of the Quality of Service (QoS) requirement of the player based on the SIR threshold are derived by solving the Fleming-Bellman-Isaacs partial differential equations. Furthermore, the Markov property of the optimal feedback strategies in this model is verified.The simulation results show that the proposed game model is effective and feasible for controlling the transmitted power of WA-BodyNets.展开更多
Over the past two years, India's Modi government has demonstrated the following features: focusing on the goals of becoming a great power and shaping India's South Asian dominance, expanding the scope of diplo...Over the past two years, India's Modi government has demonstrated the following features: focusing on the goals of becoming a great power and shaping India's South Asian dominance, expanding the scope of diplomatic strategy, emphasizing the role of soft power and focusing on self-development as well as external environment. Modi's great power strategy is deeply influenced by the Indian realistic international political outlook and, to a certain extent, reflects the governing philosophy of the Bharatiya Janata Party. The great power strategy is Modi's governing foundation and governing style, embedding Modi distinctive personal style. Under the influence of the great power strategy, China and India have increased their economic cooperation scope, widening the forms of public diplomacy, with an obvious geopolitical collision; India is taking more measures to check China.展开更多
基金supported by National Natural Science Foundation of China(No.61901229 and No.62071242)the Project of Jiangsu Engineering Research Center of Novel Optical Fiber Technology and Communication Network(No.SDGC2234)+1 种基金the Open Research Project of Jiangsu Provincial Key Laboratory of Photonic and Electronic Materials Sciences and Technology(No.NJUZDS2022-008)the Post-Doctoral Research Supporting Program of Jiangsu Province(No.SBH20).
文摘This paper investigates a wireless powered and backscattering enabled sensor network based on the non-linear energy harvesting model, where the power beacon(PB) delivers energy signals to wireless sensors to enable their passive backscattering and active transmission to the access point(AP). We propose an efficient time scheduling scheme for network performance enhancement, based on which each sensor can always harvest energy from the PB over the entire block except its time slots allocated for passive and active information delivery. Considering the PB and wireless sensors are from two selfish service providers, we use the Stackelberg game to model the energy interaction among them. To address the non-convexity of the leader-level problem, we propose to decompose the original problem into two subproblems and solve them iteratively in an alternating manner. Specifically, the successive convex approximation, semi-definite relaxation(SDR) and variable substitution techniques are applied to find a nearoptimal solution. To evaluate the performance loss caused by the interaction between two providers, we further investigate the social welfare maximization problem. Numerical results demonstrate that compared to the benchmark schemes, the proposed scheme can achieve up to 35.4% and 38.7% utility gain for the leader and the follower, respectively.
基金Under the auspices of the Special Research Fund of China-ASEAN Collaborative Innovation Center for Regional Development and Development Program of Ministry of Education for Changjiang Scholars and Innovative Teams(No.CW201501)
文摘A quantitative approach to the national geopolitical influence is helpful to provide a reference for national sustainable development on the international stage, based on describing national diplomatic capacity and overseas influence. Herein, this study proposes a complex geopolitical influence model, considering the affected nations' response. The geopolitical influences of great power in the affected nation are correlated with overall strength, the acceptance degree of the affected nation to the great power and the distance between both sides. Then, the geopolitical influences of China and the US in Southeast Asia countries are empirically analyzed from 2005 to 2015. The geopolitical influence of China in Southeast Asia has been largely growing for the past decades, accompanying with a constant trend of the US' effects. It is believed that China and the US can coexist peacefully in Southeast Asia to promote the regional development, and jointly create an open, inclusive and balanced regional cooperation architecture that benefits all nations in this region and great powers, through mutual political trust and economic beneficial cooperation. This study may contribute to advancing the policy debate and determining the optimal cooperation in pledging commitment to a new and sustainable model of great power relationship among the various regional geopolitical options.
基金supported by the Technology Project of State Grid Jiangsu Electric Power Co.,Ltd.,China,under Grant 2021200.
文摘The current electricity market fails to consider the energy consumption characteristics of transaction subjects such as virtual power plants.Besides,the game relationship between transaction subjects needs to be further explored.This paper proposes a Peer-to-Peer energy trading method for multi-virtual power plants based on a non-cooperative game.Firstly,a coordinated control model of public buildings is incorporated into the scheduling framework of the virtual power plant,considering the energy consumption characteristics of users.Secondly,the utility functions of multiple virtual power plants are analyzed,and a non-cooperative game model is established to explore the game relationship between electricity sellers in the Peer-to-Peer transaction process.Finally,the influence of user energy consumption characteristics on the virtual power plant operation and the Peer-to-Peer transaction process is analyzed by case studies.Furthermore,the effect of different parameters on the Nash equilibrium point is explored,and the influence factors of Peer-to-Peer transactions between virtual power plants are summarized.According to the obtained results,compared with the central air conditioning set as constant temperature control strategy,the flexible control strategy proposed in this paper improves the market power of each VPP and the overall revenue of the VPPs.In addition,the upper limit of the service quotation of the market operator have a great impact on the transaction mode of VPPs.When the service quotation decreases gradually,the P2P transaction between VPPs is more likely to occur.
文摘Energy saving is the most important issue in research and development for wireless sensor networks. A power control mechanism can reduce the power consumption of the whole network. Because the character of wireless sensor networks is restrictive energy, this paper proposes a distributed power control algorithm based on game theory for wireless sensor networks which objects of which are reducing power consumption and decreasing overhead and increasing network lifetime. The game theory and OPNET simulation shows that the power control algorithm converges to a Nash Equilibrium when decisions are updated according to a better response dynamic.
基金Supported by the National Natural Science Foundation of China(60774064,61305133)the National Research Foundation for the Doctoral Program of Higher Education of China(20116102110026)+1 种基金the Aerospace Technology Support Foundation(2013-HT-XGD)the Aeronautical Science Foundation of China(2013zc53037)
文摘To solve the problem of dynamic power resource allocation for cooperative penetration combat,the continuous game theory is introduced and a two-person general-sum continuous-game-based model is put forward with a common payoff function named collaborative detection probability of netted radar countermeasures.Comparing with traditional optimization methods,an obvious advantage of game-based model is an adequate consideration of the opposite potential strategy.This model guarantees a more effective allocation of the both sides′power resource and a higher combat efficiency during a combat.Furthermore,an analysis of the complexity of the proposed model is given and a hierarchical processing method is presented to simplify the calculating process.Simulation results show the validity of the proposed scheme.
基金supported by the National Natural Science Foundation of China (7070102571071105)+2 种基金the Program for New Century Excellent Talents in Universities of China (NCET-08-0396)the National Science Fund for Distinguished Young Scholars of China (70925005)the Program for Changjiang Scholars and Innovative Research Team in University (IRT/028)
文摘Power efficiency and link reliability are of great impor- tance in hierarchical wireless sensor networks (HWSNs), espe- cially at the key level, which consists of sensor nodes located only one hop away from the sink node called OHS. The power and admission control problem in HWSNs is comsidered to improve its power efficiency and link reliability. This problem is modeled as a non-cooperative game in which the active OHSs are con- sidered as players. By applying a double-pricing scheme in the definition of OHSs' utility function, a Nash Equilibrium solution with network properties is derived. Besides, a distributed algorithm is also proposed to show the dynamic processes to achieve Nash Equilibrium. Finally, the simulation results demonstrate the effec- tiveness of the proposed algorithm.
基金partially supported by the National Natural Science Foundation of China under Grant No.61172073the Open Research Fund of National Mobile Communications Research Laboratory,Southeast University under Grant No.2012D19+1 种基金the Fundamental Research Funds for the Central Universities,Beijing Jiaotong University under Grant No.2013JBZ01the Program for New Century Excellent Talents in University of Ministry of Education of China under Grant No.NCET-12-0766
文摘This paper addresses the power con- trol problems of Cognitive Radio (CR) trader transmission power and interference tempera- ture constraints. First, we propose the interfer- ence constraint which ensures that the Quality of Service (QoS) standards for primary users is considered and a non-cooperative game power control model. Based on the proposed model, we developed a logical utility function based on the Signal-to-Interference-Noise Ratio (S/NR) and a novel algorithm network power control. that is suitable for CR Then, the existence and uniqueness of the Nash Equilibrium (NE) in our utility function are proved by the principle of game theory and the corresponding optimi- zations. Compared to traditional algorithms, the proposed one could converge to an NE in 3-5 iterative operations by setting an appropriate pricing factor. Finally, simulation results ver- ified the stability and superiority of the novel algorithm in flat-fading channel environments.
基金supported by National Natural Science Foundation of China (No. 60972059)Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD)+3 种基金Fundamental Research Funds for the Central Universities of China (Nos. 2010QNA27 and 2011QNB26)China Postdoctoral Science Foundation (No. 20100481185)the Ph. D. Programs Foundation of Ministry of Education of China (Nos. 20090095120013 and 20110095120006)Talent Introduction Program, and Young Teacher Sailing Program of China University of Mining and Technology
文摘Wireless cooperative communications require appropriate power allocation (PA) between the source and relay nodes. In selfish cooperative communication networks, two partner user nodes could help relaying information for each other, but each user node has the incentive to consume his power solely to decrease its own symbol error rate (SER) at the receiver. In this paper, we propose a fair and efficient PA scheme for the decode-and-forward cooperation protocol in selfish cooperative relay networks. We formulate this PA problem as a two-user cooperative bargaining game, and use Nash bargaining solution (NBS) to achieve a win-win strategy for both partner users. Simulation results indicate that the NBS is fair in that the degree of cooperation of a user only depends on how much contribution its partner can make to decrease its SER at the receiver, and efficient in the sense that the SER performance of both users could be improved through the game.
基金supported in part by National Key R&D Program of China under Grant 2018YFB1800800by National NSF of China under Grant 61601490,61801218,61827801,61631020+3 种基金by the open research fund of Key Laboratory of Dynamic Cognitive System of Electromagnetic Spectrum Space(Nanjing Univ.Aeronaut.Astronaut.)(No.KF20181913)in part by State Key Laboratory of Air Traffic Management System and Technology under SKLATM201808in part by the Natural Science Foundation of Jiangsu Province under Grant BK20180420,BK20180424by the Open Foundation for Graduate Innovation of NUAA(Grant NO.kfjj20190417)。
文摘This paper investigates a power control problem in a jamming system,where a separate smart jammer is deployed to ensure the communication security of the legal user.However,due to power leakage,the smart jammer may incur unintentional interference to legal users.The key is how to suppress illegal communication while limit the negative impact on legal user.A jamming counter measure Stackelberg game is formulated to model the jamming power control dynamic of the system.The smart jammer acts as a leader to sense and interfere illegal communications of the illegal user,while the illegal user acts as a follower.In the game,the impact of uncertain channel information is taken into account.According to whether illegal user considers the uncertain channel information,we investigate two scenarios,namely,illegal user can obtain statistical distribution and accurate information of interference channel gain and its own cost,respectively.This work not only proposes a jamming counter measure iterative algorithm to update parameters,but also gives two solutions to obtain the Stackelberg equilibrium(SE).The power convergence behaviours under two scenarios are analyzed and compared.Additionally,brute force is used to verify the accuracy of the SE value further.
基金National Natural Science Foundation of China (No.60772062)the Key Projects for Science and Technology of MOE (No.206055)the Key Basic Re-search Projects for the Natural Science of Jiangsu Colleges (No.06KJA51001).
文摘To compensate the service providers who have paid billions of dollars to use spectrum and to satisfy secondary users' requirements in cognitive radios, a Non-cooperative Power Control Game and Pricing algorithm (NPGP) is proposed. Simulation results show that the proposed algorithm can regulate the secondary users' transmitter powers, optimally allocate radio resource and increase the total throughput effectively.
文摘Since the end of the Cold War,major powers have avoided direct military confrontation,wary of the devastating consequences of nuclear warfare.Yet the arms race and regional conflicts remain important forms of power competition.Nonetheless,in the era of globalization,rapid advancements in new technologies and industries have eclipsed the utility of geopolitical maneuvers and military competition.In today’s world,the great power competition goes beyond the arms race and GDP aggregates.What matters more is the race to innovate and apply new technologies through a complete range of industrial sectors.In a world where technology has a controlling influence,industrial security has become the linchpin of national security.As globalization reshapes the world’s industrial landscape,a country’s economic influence,military might and national security depend increasingly on its industrial structure.National security is contingent upon industrial strength.In the era of globalization,industrial policy,cutting-edge technologies and market size are dominant factors influencing a country’s competitive position.The essence of the great power competition are industrial policies that fully unlock a country’s industrial potential and implementation of the policies.
基金the National Natural Science Foundation of China (No.60372055)the National Doctoral Foundation of China (No.20030698027)
文摘In order to better accommodate heterogeneous quality of service (QoS) in wireless networks, an algorithm called QoS-aware power and admission controls (QAPAC) is proposed. The system is modeled as a non-cooperative game where the users adjust their transmit powers to maximize the utility, thus restraining the interferences. By using adaptive utility functions and tunable pricing parameters according to QoS levels, this algorithm can well meet different QoS requirements and improve system capacity compared with those that ignore the QoS differences.
文摘The series of unilateral foreign policies taken by US President Donald Trump has worsened relations between the US and other powers including China, Russia, the EU and Japan, prompting their officials to turn to seeking bilateral arrangements when need arises. Though among these countries there is willingness to cooperate, the US seeks to consolidate hegemony. The US focus is to contain China and sanction Russia in economic and trade fields. In geopolitics and security, the EU and Japan are heavily dependent on the US and follow the US lead.
文摘Spectrum sharing is an essential enabling functionality to allow the coexistence between primary user (PU) and cognitive users (CUs) in the same frequency band. In this paper, we consider joint rate and power allocation in cognitive radio networks by using game theory. The optimum rates and powers are obtained by iteratively maximizing each CU’s utility function, which is designed to guarantee the protection of primary user (PU) as well as the quality of service (QoS) of CUs. In addition, transmission rates of some CUs should be adjusted if corresponding actual signal-to-interference-plus-noise ratio (SINR) falls below the target SINR. Based on the modified transmission rate for each CU, distributed power allocation is introduced to further reduce the total power consumption. Simulation results are provided to demonstrate that the proposed algorithm achieves a significant gain in power saving.
文摘Wang: Speaking of Sino-U. S. relations, actually it touches upon great power relationship. The current Iraqi crisis became a focus in UN. There is a clear demarcation line between those countries supporting a war and those countries in favor of weapons inspections within
基金the National Natural Science Foundation of China under Grants No.61272506,No.61170014,the Foundation of Key Program of MOE of China under Grant No.311007,the Natural Science Foundation of Beijing under Grant No.4102041
文摘In this study, aiming at the characteristics of randomness and dynamics in Wearable Audiooriented BodyNets (WA-BodyNets), stochastic differential game theory is applied to the investigation of the problem of transmitted power control inconsumer electronic devices. First, astochastic differential game model is proposed for non-cooperative decentralized uplink power control with a wisdom regulation factor over WA-BodyNets with a onehop star topology.This model aims to minimize the cost associated with the novel payoff function of a player, for which two cost functions are defined: functions of inherent power radiation and accumulated power radiation darmge. Second, the feedback Nash equilibrium solution of the proposed model and the constraint of the Quality of Service (QoS) requirement of the player based on the SIR threshold are derived by solving the Fleming-Bellman-Isaacs partial differential equations. Furthermore, the Markov property of the optimal feedback strategies in this model is verified.The simulation results show that the proposed game model is effective and feasible for controlling the transmitted power of WA-BodyNets.
基金the initial results for the National Social Science Fund West Project entitled“The strategic risks and systematic solutions for The Belt and Road Initiative”(16XGJ010)scientific research project for Beijing Language and Culture University(central-government-sponsored universities basic scientific research special funds 16YJ010013)
文摘Over the past two years, India's Modi government has demonstrated the following features: focusing on the goals of becoming a great power and shaping India's South Asian dominance, expanding the scope of diplomatic strategy, emphasizing the role of soft power and focusing on self-development as well as external environment. Modi's great power strategy is deeply influenced by the Indian realistic international political outlook and, to a certain extent, reflects the governing philosophy of the Bharatiya Janata Party. The great power strategy is Modi's governing foundation and governing style, embedding Modi distinctive personal style. Under the influence of the great power strategy, China and India have increased their economic cooperation scope, widening the forms of public diplomacy, with an obvious geopolitical collision; India is taking more measures to check China.