期刊文献+
共找到811篇文章
< 1 2 41 >
每页显示 20 50 100
Fermat and Pythagoras Divisors for a New Explicit Proof of Fermat’s Theorem:a4 + b4 = c4. Part I
1
作者 Prosper Kouadio Kimou François Emmanuel Tanoé Kouassi Vincent Kouakou 《Advances in Pure Mathematics》 2024年第4期303-319,共17页
In this paper we prove in a new way, the well known result, that Fermat’s equation a<sup>4</sup> + b<sup>4</sup> = c<sup>4</sup>, is not solvable in ℕ , when abc≠0 . To show this ... In this paper we prove in a new way, the well known result, that Fermat’s equation a<sup>4</sup> + b<sup>4</sup> = c<sup>4</sup>, is not solvable in ℕ , when abc≠0 . To show this result, it suffices to prove that: ( F 0 ): a 1 4 + ( 2 s b 1 ) 4 = c 1 4 , is not solvable in ℕ , (where a 1 , b 1 , c 1 ∈2ℕ+1 , pairwise primes, with necessarly 2≤s∈ℕ ). The key idea of our proof is to show that if (F<sub>0</sub>) holds, then there exist α 2 , β 2 , γ 2 ∈2ℕ+1 , such that ( F 1 ): α 2 4 + ( 2 s−1 β 2 ) 4 = γ 2 4 , holds too. From where, one conclude that it is not possible, because if we choose the quantity 2 ≤ s, as minimal in value among all the solutions of ( F 0 ) , then ( α 2 ,2 s−1 β 2 , γ 2 ) is also a solution of Fermat’s type, but with 2≤s−1<s , witch is absurd. To reach such a result, we suppose first that (F<sub>0</sub>) is solvable in ( a 1 ,2 s b 1 , c 1 ) , s ≥ 2 like above;afterwards, proceeding with “Pythagorician divisors”, we creat the notions of “Fermat’s b-absolute divisors”: ( d b , d ′ b ) which it uses hereafter. Then to conclude our proof, we establish the following main theorem: there is an equivalence between (i) and (ii): (i) (F<sub>0</sub>): a 1 4 + ( 2 s b 1 ) 4 = c 1 4 , is solvable in ℕ , with 2≤s∈ℕ , ( a 1 , b 1 , c 1 )∈ ( 2ℕ+1 ) 3 , coprime in pairs. (ii) ∃( a 1 , b 1 , c 1 )∈ ( 2ℕ+1 ) 3 , coprime in pairs, for wich: ∃( b ′ 2 , b 2 , b ″ 2 )∈ ( 2ℕ+1 ) 3 coprime in pairs, and 2≤s∈ℕ , checking b 1 = b ′ 2 b 2 b ″ 2 , and such that for notations: S=s−λ( s−1 ) , with λ∈{ 0,1 } defined by c 1 − a 1 2 ≡λ( mod2 ) , d b =gcd( 2 s b 1 , c 1 − a 1 )= 2 S b 2 and d ′ b = 2 s−S b ′ 2 = 2 s B 2 d b , where ( 2 s B 2 ) 2 =gcd( b 1 2 , c 1 2 − a 1 2 ) , the following system is checked: { c 1 − a 1 = d b 4 2 2+λ = 2 2−λ ( 2 S−1 b 2 ) 4 c 1 + a 1 = 2 1+λ d ′ b 4 = 2 1+λ ( 2 s−S b ′ 2 ) 4 c 1 2 + a 1 2 =2 b ″ 2 4;and this system implies: ( b 1−λ,2 4 ) 2 + ( 2 4s−3 b λ,2 4 ) 2 = ( b ″ 2 2 ) 2;where: ( b 1−λ,2 , b λ,2 , b ″ 2 )={ ( b ′ 2 , b 2 , b ″ 2 )  if λ=0 ( b 2 , b ′ 2 , b ″ 2 )  if λ=1;From where, it is quite easy to conclude, following the method explained above, and which thus closes, part I, of this article. . 展开更多
关键词 Factorisation in Greatest Common divisor Pythagoras Equation Pythagorician Triplets Fermat's Equations Pythagorician divisors Fermat's divisors Diophantine Equations of Degree 2 4-Integral Closure of in
下载PDF
Algorithm for Visualization of Zero Divisor Graphs of the Ring ℤn Using MAPLE Coding
2
作者 Nasir Ali 《Open Journal of Discrete Mathematics》 2024年第1期1-8,共8页
This research investigates the comparative efficacy of generating zero divisor graphs (ZDGs) of the ring of integers ℤ<sub>n</sub> modulo n using MAPLE algorithm. Zero divisor graphs, pivotal in the study ... This research investigates the comparative efficacy of generating zero divisor graphs (ZDGs) of the ring of integers ℤ<sub>n</sub> modulo n using MAPLE algorithm. Zero divisor graphs, pivotal in the study of ring theory, depict relationships between elements of a ring that multiply to zero. The paper explores the development and implementation of algorithms in MAPLE for constructing these ZDGs. The comparative study aims to discern the strengths, limitations, and computational efficiency of different MAPLE algorithms for creating zero divisor graphs offering insights for mathematicians, researchers, and computational enthusiasts involved in ring theory and mathematical computations. 展开更多
关键词 Zero divisor Graph Ring Theory Maple Algorithm n Modulo n Graph Theory Mathematical Computing
下载PDF
A New Proof for Congruent Number’s Problem via Pythagorician Divisors
3
作者 Léopold Dèkpassi Keuméan François Emmanuel Tanoé 《Advances in Pure Mathematics》 2024年第4期283-302,共20页
Considering Pythagorician divisors theory which leads to a new parameterization, for Pythagorician triplets ( a,b,c )∈ ℕ 3∗ , we give a new proof of the well-known problem of these particular squareless numbers n∈ ℕ... Considering Pythagorician divisors theory which leads to a new parameterization, for Pythagorician triplets ( a,b,c )∈ ℕ 3∗ , we give a new proof of the well-known problem of these particular squareless numbers n∈ ℕ ∗ , called congruent numbers, characterized by the fact that there exists a right-angled triangle with rational sides: ( A α ) 2 + ( B β ) 2 = ( C γ ) 2 , such that its area Δ= 1 2 A α B β =n;or in an equivalent way, to that of the existence of numbers U 2 , V 2 , W 2 ∈ ℚ 2∗ that are in an arithmetic progression of reason n;Problem equivalent to the existence of: ( a,b,c )∈ ℕ 3∗ prime in pairs, and f∈ ℕ ∗ , such that: ( a−b 2f ) 2 , ( c 2f ) 2 , ( a+b 2f ) 2 are in an arithmetic progression of reason n;And this problem is also equivalent to that of the existence of a non-trivial primitive integer right-angled triangle: a 2 + b 2 = c 2 , such that its area Δ= 1 2 ab=n f 2 , where f∈ ℕ ∗ , and this last equation can be written as follows, when using Pythagorician divisors: (1) Δ= 1 2 ab= 2 S−1 d e ¯ ( d+ 2 S−1 e ¯ )( d+ 2 S e ¯ )=n f 2;Where ( d, e ¯ )∈ ( 2ℕ+1 ) 2 such that gcd( d, e ¯ )=1 and S∈ ℕ ∗ , where 2 S−1 , d, e ¯ , d+ 2 S−1 e ¯ , d+ 2 S e ¯ , are pairwise prime quantities (these parameters are coming from Pythagorician divisors). When n=1 , it is the case of the famous impossible problem of the integer right-angled triangle area to be a square, solved by Fermat at his time, by his famous method of infinite descent. We propose in this article a new direct proof for the numbers n=1 (resp. n=2 ) to be non-congruent numbers, based on an particular induction method of resolution of Equation (1) (note that this method is efficient too for general case of prime numbers n=p≡a ( ( mod8 ) , gcd( a,8 )=1 ). To prove it, we use a classical proof by induction on k , that shows the non-solvability property of any of the following systems ( t=0 , corresponding to case n=1 (resp. t=1 , corresponding to case n=2 )): ( Ξ t,k ){ X 2 + 2 t ( 2 k Y ) 2 = Z 2 X 2 + 2 t+1 ( 2 k Y ) 2 = T 2 , where k∈ℕ;and solutions ( X,Y,Z,T )=( D k , E k , f k , f ′ k )∈ ( 2ℕ+1 ) 4 , are given in pairwise prime numbers.2020-Mathematics Subject Classification 11A05-11A07-11A41-11A51-11D09-11D25-11D41-11D72-11D79-11E25 . 展开更多
关键词 Prime Numbers-Diophantine Equations of Degree 2 & 4 Factorization Greater Common divisor Pythagoras Equation Pythagorician Triplets Congruent Numbers Inductive Demonstration Method Infinite Descent BSD Conjecture
下载PDF
On Fermat Last Theorem: The New Efficient Expression of a Hypothetical Solution as a Function of Its Fermat Divisors
4
作者 Prosper Kouadio Kimou 《American Journal of Computational Mathematics》 2023年第1期82-90,共9页
Denote by a non-trivial primitive solution of Fermat’s equation (p prime).We introduce, for the first time, what we call Fermat principal divisors of the triple defined as follows. , and . We show that it is possible... Denote by a non-trivial primitive solution of Fermat’s equation (p prime).We introduce, for the first time, what we call Fermat principal divisors of the triple defined as follows. , and . We show that it is possible to express a,b and c as function of the Fermat principal divisors. Denote by the set of possible non-trivial solutions of the Diophantine equation . And, let<sub></sub><sub></sub> (p prime). We prove that, in the first case of Fermat’s theorem, one has . In the second case of Fermat’s theorem, we show that , ,. Furthermore, we have implemented a python program to calculate the Fermat divisors of Pythagoreans triples. The results of this program, confirm the model used. We now have an effective tool to directly process Diophantine equations and that of Fermat. . 展开更多
关键词 Fermat’s Last Theorem Fermat divisors Barlow’s Relations Greatest Common divisor
下载PDF
关于一道抽象代数题的推广
5
作者 史江涛 王怡然 《高等数学研究》 2024年第4期18-19,共2页
用初等的方法证明了:设G是有限群,p是G的最小素因子,若对任意n∣|G|都有|{x∈G∣x^(n)=1}|≤(p-1)n,则G是循环群.推广了教材[1]第1.4节的习题3.
关键词 有限群 最小素因子 素数幂阶子群 正规 循环群
下载PDF
多通道奇异频率信号的稳相合成研究
6
作者 陈昌锐 李超 谢翔宇 《压电与声光》 CAS 北大核心 2024年第3期404-408,共5页
为了解决多通道奇异频率间相位差稳定的难题,理论上分析了锁相环稳相原理,提出了一种多通道奇异频率的稳相算法。该算法通过求解奇异频率间的最大公约数,联动输出频率的同时可满足稳相合成的条件。电路实物加入适当的环路阶型设计,当输... 为了解决多通道奇异频率间相位差稳定的难题,理论上分析了锁相环稳相原理,提出了一种多通道奇异频率的稳相算法。该算法通过求解奇异频率间的最大公约数,联动输出频率的同时可满足稳相合成的条件。电路实物加入适当的环路阶型设计,当输出频率在S波段时,相位差稳定性≤4°,满足使用需求,同时很好地验证了该算法的可行性和灵活性。 展开更多
关键词 异频 稳相 锁相环 最大公约数
下载PDF
无小环大列重QC-LDPC短码的显式构造
7
作者 张国华 孙爱晶 +1 位作者 倪孟迪 方毅 《电子学报》 EI CAS CSCD 北大核心 2024年第6期1862-1868,共7页
针对列重较大的无4环且无6环的准循环(Quasi-Cyclic,QC)低密度奇偶校验(Low-Density Parity-Check,LDPC)码,本文提出了三种新的显式构造方法.新方法的指数矩阵由两个整数序列完全定义,其中第一个序列是从0开始且公差为1的等差序列,第二... 针对列重较大的无4环且无6环的准循环(Quasi-Cyclic,QC)低密度奇偶校验(Low-Density Parity-Check,LDPC)码,本文提出了三种新的显式构造方法.新方法的指数矩阵由两个整数序列完全定义,其中第一个序列是从0开始且公差为1的等差序列,第二个序列是由符合最大公约数约束的整数组成的特殊序列.对于现有显式方法只能提供较大循环块尺寸的多种行重类型,新显式构造方法在这些行重类型下均获得了相当小的循环块尺寸,从而将最小循环块尺寸降低到大约只有原来的一半.与近期提出的基于搜索的对称结构法相比,新的显式构造方法具有类似或更优的译码性能、极低的描述复杂度且不需要计算机搜索. 展开更多
关键词 循环块 最大公约数 低密度奇偶校验码 准循环
下载PDF
围长为8的较大列重准循环低密度奇偶校验码的行重普适代数构造
8
作者 张国华 秦煜 +1 位作者 娄蒙娟 方毅 《电子与信息学报》 EI CAS CSCD 北大核心 2024年第7期3019-3025,共7页
适合于任意行重(即行重普适(RWU))的无小环准循环(QC)低密度奇偶校验(LDPC)短码,对于LDPC码的理论研究和工程应用具有重要意义。具有行重普适特性且消除4环6环的现有构造方法,只能针对列重为3和4的情况提供QC-LDPC短码。该文在最大公约... 适合于任意行重(即行重普适(RWU))的无小环准循环(QC)低密度奇偶校验(LDPC)短码,对于LDPC码的理论研究和工程应用具有重要意义。具有行重普适特性且消除4环6环的现有构造方法,只能针对列重为3和4的情况提供QC-LDPC短码。该文在最大公约数(GCD)框架的基础上,对于列重为5和6的情况,提出了3种具有行重普适特性且消除4环6环的构造方法。与现有的行重普适方法相比,新方法提供的码长从目前的与行重呈4次方关系锐减至与行重呈3次方关系,因而可以为QC-LDPC码的复合构造和高级优化等需要较大列重基础码的场合提供行重普适的无4环无6环短码。此外,与基于计算机搜索的对称结构QC-LDPC码相比,新码不仅无需搜索、描述复杂度更低,而且具有更好的译码性能。 展开更多
关键词 低密度奇偶校验码 准循环 围长 最大公约数
下载PDF
New Asymptotic Results on Fermat-Wiles Theorem
9
作者 Kimou Kouadio Prosper Kouakou Kouassi Vincent Tanoé François 《Advances in Pure Mathematics》 2024年第6期421-441,共21页
We analyse the Diophantine equation of Fermat xp yp = zp with p > 2 a prime, x, y, z positive nonzero integers. We consider the hypothetical solution (a, b, c) of previous equation. We use Fermat main divisors, Dio... We analyse the Diophantine equation of Fermat xp yp = zp with p > 2 a prime, x, y, z positive nonzero integers. We consider the hypothetical solution (a, b, c) of previous equation. We use Fermat main divisors, Diophantine remainders of (a, b, c), an asymptotic approach based on Balzano Weierstrass Analysis Theorem as tools. We construct convergent infinite sequences and establish asymptotic results including the following surprising one. If z y = 1 then there exists a tight bound N such that, for all prime exponents p > N , we have xp yp zp. 展开更多
关键词 Fermat’s Last Theorem Fermat-Wiles Theorem Kimou’s divisors Diophantine Quotient Diophantine Remainders Balzano Weierstrass Analysis Theorem
下载PDF
关于不定方程x^(d(n))+y^(ϕ(n))=z^(σ(n))
10
作者 郦丽 管训贵 《河南财政金融学院学报(自然科学版)》 2024年第3期1-3,共3页
设n是正整数,证明了不定方程x^(d(n))+y^(ϕ(n))=z^(σ(n))在一定条件下无正整数解,这里d(n),ϕ(n)和σ(n)分别表示n的约数函数、欧拉函数及约数和函数。同时给出了n=3时,该方程的全部正整数解。
关键词 不定方程 正整数解 约数函数 欧拉函数 约数和函数
下载PDF
相邻自然数平方之间的可行数的个数
11
作者 王南翔 戴浩波 《哈尔滨商业大学学报(自然科学版)》 CAS 2024年第2期237-239,共3页
如果对于任意的自然数m满足1≤m≤h,m可以表示为h的某些因数的和,那么称h为可行数.文献[1]中提出了一个猜想,对于任意的自然数k≥1,存在N>0,当n>N时,在区间(n^(2),(n+1)^(2))内有k个可行数.利用文献[2]的定理9等一系列工具可以证... 如果对于任意的自然数m满足1≤m≤h,m可以表示为h的某些因数的和,那么称h为可行数.文献[1]中提出了一个猜想,对于任意的自然数k≥1,存在N>0,当n>N时,在区间(n^(2),(n+1)^(2))内有k个可行数.利用文献[2]的定理9等一系列工具可以证明这一猜想. 展开更多
关键词 可行数 素数 Legendre猜想 整除 因数和 数学归纳法
下载PDF
素变量三元二次型除数函数的均值问题
12
作者 郭华廷 《兰州文理学院学报(自然科学版)》 2024年第2期25-29,共5页
在数论中,除数函数是最基础和最重要的算术函数.借助经典圆法,研究了素变量三元二次型除数函数的均值问题H(X):=∑1≤p_(1),p_(2),p_(3)≤X d(p^(2)_(1)+p^(2)_(2)+p^(2)_(3)),得到了均值估计的渐近公式,其中X是一充分大的正数,d(n)是... 在数论中,除数函数是最基础和最重要的算术函数.借助经典圆法,研究了素变量三元二次型除数函数的均值问题H(X):=∑1≤p_(1),p_(2),p_(3)≤X d(p^(2)_(1)+p^(2)_(2)+p^(2)_(3)),得到了均值估计的渐近公式,其中X是一充分大的正数,d(n)是除数函数,p1,p2,p3是素数. 展开更多
关键词 除数函数 圆法 二次型
下载PDF
关于整数矩阵除数函数余项的二次积分均值
13
作者 于若彤 劳会学 杨晓伟 《纯粹数学与应用数学》 2024年第2期203-211,共9页
整数矩阵表法个数的渐近分布问题是解析数论中的重要研究课题,受到日益增长的关注.设t_(3)^((2))(n)是整数矩阵环M_(2)(Z)中形式为C=A_(1)A_(2)A_(3)且|C|=n的矩阵表法个数的求和函数,△_(2,3)^(*)(x)是关于t_(3)^((2))(n)的渐近公式中... 整数矩阵表法个数的渐近分布问题是解析数论中的重要研究课题,受到日益增长的关注.设t_(3)^((2))(n)是整数矩阵环M_(2)(Z)中形式为C=A_(1)A_(2)A_(3)且|C|=n的矩阵表法个数的求和函数,△_(2,3)^(*)(x)是关于t_(3)^((2))(n)的渐近公式中的余项.利用经典的解析方法和黎曼zeta函数的良好性质,本文研究了整数矩阵除数函数t_(3)^((2))(n)在无平方因子数集上的分布问题,并得到了余项△_(2,3)^(*)(x)的二次积分均值的上界估计. 展开更多
关键词 余项 无平方因子数 整数矩阵除数函数
下载PDF
Analysis of Distance-Based Topological Polynomials Associated with Zero-Divisor Graphs
14
作者 Ali Ahmad Roslan Hasni +1 位作者 Nahid Akhter Kashif Elahi 《Computers, Materials & Continua》 SCIE EI 2022年第2期2895-2904,共10页
Chemical compounds are modeled as graphs.The atoms of molecules represent the graph vertices while chemical bonds between the atoms express the edges.The topological indices representing the molecular graph correspond... Chemical compounds are modeled as graphs.The atoms of molecules represent the graph vertices while chemical bonds between the atoms express the edges.The topological indices representing the molecular graph corresponds to the different chemical properties of compounds.Let a,b be are two positive integers,andΓ(Z_(a)×Z_(b))be the zero-divisor graph of the commutative ring Z_(a)×Z_(b).In this article some direct questions have been answered that can be utilized latterly in different applications.This study starts with simple computations,leading to a quite complex ring theoretic problems to prove certain properties.The theory of finite commutative rings is useful due to its different applications in the fields of advanced mechanics,communication theory,cryptography,combinatorics,algorithms analysis,and engineering.In this paper we determine the distance-based topological polynomials and indices of the zero-divisor graph of the commutative ring Z_(p^(2))×Z_(q)(for p,q as prime numbers)with the help of graphical structure analysis.The study outcomes help in understanding the fundamental relation between ring-theoretic and graph-theoretic properties of a zero-divisor graphΓ(G). 展开更多
关键词 Zero divisor graph Wiener index Hosoya polynomial (modified)Schulz index (modified)Schulz polynomial
下载PDF
APPROXIMATE COMMON DIVISORS OF POLYNOMIALS AND DEGREE REDUCTION FOR RATIONAL CURVES 被引量:1
15
作者 SUN JIANZHONG,CHEN FALAI AND QU YONGMING 《Applied Mathematics(A Journal of Chinese Universities)》 SCIE CSCD 1998年第4期437-444,共8页
Abstract This paper deals with how to perturb a given set of polynomials so as to include a common linear factor. An algorithm is derived for determining such a set of perturbation polynomials which are subject to cer... Abstract This paper deals with how to perturb a given set of polynomials so as to include a common linear factor. An algorithm is derived for determining such a set of perturbation polynomials which are subject to certain constrains at the endpoints of a prescribed parametric interval and minimized in a certain sense. This result can be combined with subdivision technique to obtain a continuous piecewise approximation to a rational curve. 展开更多
关键词 Rational curve degree reduction SUBDIVISION approximate common divisor
全文增补中
Zero-divisor Graphs for Direct Products of Rings
16
作者 李云慧 唐高华 《Chinese Quarterly Journal of Mathematics》 CSCD 2011年第4期621-627,共7页
In [1], Joe Warfel investigated the diameter of a zero-divisor graph for a direct product R 1 × R 2 with respect to the diameter of the zero-divisor graph of R 1 and R 2 . But the author only considered those gra... In [1], Joe Warfel investigated the diameter of a zero-divisor graph for a direct product R 1 × R 2 with respect to the diameter of the zero-divisor graph of R 1 and R 2 . But the author only considered those graphs whose diameters ≥ 1 and discussed six cases. This paper further discusses the other nine cases and also gives a complete characterization for the possible diameters for left Artin rings. 展开更多
关键词 zero-divisor graph DIAMETER Artin ring local ring
下载PDF
The Zero-divisor Graphs of Abelian Regular Rings
17
作者 卢丹诚 佟文廷 《Northeastern Mathematical Journal》 CSCD 2004年第3期339-348,共10页
We introduce the zero-divisor graph for an abelian regular ring and show that if R,S are abelian regular, then (K0(R),[R])≌(K0(S),[S]) if and only if they have isomorphic reduced zero-divisor graphs. It is shown that... We introduce the zero-divisor graph for an abelian regular ring and show that if R,S are abelian regular, then (K0(R),[R])≌(K0(S),[S]) if and only if they have isomorphic reduced zero-divisor graphs. It is shown that the maximal right quotient ring of a potent semiprimitive normal ring is abelian regular, moreover, the zero-divisor graph of such a ring is studied. 展开更多
关键词 zero-divisor graph abelian regular ring Grothendieck group
下载PDF
马克思主义文艺理论的公约数——以“中国式现代化”为依据 被引量:3
18
作者 崔柯 《中国文艺评论》 CSSCI 2023年第6期27-37,I0002,共12页
近十年来,中国马克思主义文艺理论研究水准提升、格局改观,同时存在瓶颈问题。新时期以来,中国马克思主义文艺理论形成经典、中国与西方马克思主义三分的格局,三者之间,尤其是中国和西方马克思主义文论之间缺少充分的对话,影响了马克思... 近十年来,中国马克思主义文艺理论研究水准提升、格局改观,同时存在瓶颈问题。新时期以来,中国马克思主义文艺理论形成经典、中国与西方马克思主义三分的格局,三者之间,尤其是中国和西方马克思主义文论之间缺少充分的对话,影响了马克思主义文艺理论的深化发展及体系构建。中国马克思主义文艺理论应以“中国式现代化”的理论和实践为依据,以批判资本主义视野和关注绝大多数人维度为公约数,在深层对话的基础上实现理论创新。 展开更多
关键词 马克思主义文艺理论 中国式现代化 公约数
下载PDF
Some Conjectures on the Divisor Function
19
作者 Masatoshi Nakano 《Journal of Mathematics and System Science》 2020年第2期13-22,共10页
We propose the following conjecture on(σ)n the sum-of-divisors function:log(e'nlog logn-σ(n))/log(e'nlog log n)will increase strictly and converge to1 when n runs from the colossally abundant numbers to infi... We propose the following conjecture on(σ)n the sum-of-divisors function:log(e'nlog logn-σ(n))/log(e'nlog log n)will increase strictly and converge to1 when n runs from the colossally abundant numbers to infinity This conjecture is a sufficient condition for the and converge to1 when n nuns from the colossally abundant numbers to infinity.This conjecture is a sufficient condition for the Ricemann hypothesis by Robin's theorem,and it is confirmed for n from10^(4 )up to 10^(103078) Further,we present two additional Riemann hypothesis by Robin's theorem,and it is confirmed forn from 10^(4) up to 10^(103078) Further,we present two additional conjectures that are related to Robin's theorem. 展开更多
关键词 Riemann hypothesis Robin’s theorem colossally abundant number divisor function.
下载PDF
On the Cozero-Divisor Graphs of Commutative Rings
20
作者 Mojgan Afkham Kazem Khashyarmanesh 《Applied Mathematics》 2013年第7期979-985,共7页
Let R be a commutative ring with non-zero identity. The cozero-divisor graph of R, denoted by , is a graph with vertices in , which is the set of all non-zero and non-unit elements of R, and two distinct vertices a an... Let R be a commutative ring with non-zero identity. The cozero-divisor graph of R, denoted by , is a graph with vertices in , which is the set of all non-zero and non-unit elements of R, and two distinct vertices a and b in are adjacent if and only if and . In this paper, we investigate some combinatorial properties of the cozero-divisor graphs and such as connectivity, diameter, girth, clique numbers and planarity. We also study the cozero-divisor graphs of the direct products of two arbitrary commutative rings. 展开更多
关键词 CLIQUE Number Connectivity Cozero-divisor Graph Diameter Direct Product GIRTH RINGS of POLYNOMIALS RINGS of Power Series.
下载PDF
上一页 1 2 41 下一页 到第
使用帮助 返回顶部