To satisfy the increasing demands of high-speed transmission, high-efficiency computing, and real-time communications in the high-dynamic and heterogeneous networks, the Contact Plan Design(CPD) has attracted continuo...To satisfy the increasing demands of high-speed transmission, high-efficiency computing, and real-time communications in the high-dynamic and heterogeneous networks, the Contact Plan Design(CPD) has attracted continuous attention in recent years, especially for the spatial-node-based Internet of Everything(IoE). In this paper, we study the NP-hardness of contact scheduling and the attenuation of atmospheric precipitation in the spatial-node-based IoE. Two heuristic computing methods for contact plan design are proposed by comprehensively considering the time-varying topology, the intermittent connectivity, and the adaptive transmission in different weather conditions, which are named Contact Plan Design-Particle Swarm Optimization(CPD-PSO) and Contact Plan Design-Greedy algorithm with the Minimum Delivery Time(CPD-GMDT) separately. For the population-based algorithm, CPD-PSO not only solves the CPD problem with a limited-resource condition, but also dynamically adjusts the search scope to ensure the continuous searching capability of the algorithm. For the CPD-GMDT that makes CP decisions based on the current state, the algorithm uses the idea of greedy algorithm to schedule Satellite-Platform Links(SPLs) and Inter Satellite Links(ISLs) respectively using the strategies of optimal matching and load balancing. The simulation results show that the proposed CPD-PSO outperforms Contact Plan Design-Genetic Algorithm(CPD-GA) in terms of fitness and delivery time, and CPD-GMDT presents better overall delay than Fair Contact Plan(FCP).展开更多
We continue to consider one of the cybernetic methods in biology related to the study of DNA chains. Exactly, we are considering the problem of reconstructing the distance matrix for DNA chains. Such a matrix is forme...We continue to consider one of the cybernetic methods in biology related to the study of DNA chains. Exactly, we are considering the problem of reconstructing the distance matrix for DNA chains. Such a matrix is formed on the basis of any of the possible algorithms for determining the distances between DNA chains, as well as any specific object of study. At the same time, for example, the practical programming results show that on an average modern computer, it takes about a day to build such a 30 × 30 matrix for mnDNAs using the Needleman-Wunsch algorithm;therefore, for such a 300 × 300 matrix, about 3 months of continuous computer operation is expected. Thus, even for a relatively small number of species, calculating the distance matrix on conventional computers is hardly feasible and the supercomputers are usually not available. Therefore, we started publishing our variants of the algorithms for calculating the distance between two DNA chains, then we publish algorithms for restoring partially filled matrices, i.e., the inverse problem of matrix processing. Previously, we used the method of branches and boundaries, but in this paper we propose to use another new algorithm for restoring the distance matrix for DNA chains. Our recent work has shown that even greater improvement in the quality of the algorithm can often be achieved without improving the auxiliary heuristics of the branches and boundaries method. Thus, we are improving the algorithms that formulate the greedy function of this method only. .展开更多
测试用例优先排序(test case prioritization,简称TCP)问题是回归测试研究中的一个热点.通过设定特定排序准则,对测试用例进行排序以优化其执行次序,旨在最大化排序目标,例如最大化测试用例集的早期缺陷检测速率.TCP问题尤其适用于因测...测试用例优先排序(test case prioritization,简称TCP)问题是回归测试研究中的一个热点.通过设定特定排序准则,对测试用例进行排序以优化其执行次序,旨在最大化排序目标,例如最大化测试用例集的早期缺陷检测速率.TCP问题尤其适用于因测试预算不足以致不能执行完所有测试用例的测试场景.首先对TCP问题进行描述,并依次从源代码、需求和模型这3个角度出发对已有的TCP技术进行分类;然后对一类特殊的TCP问题(即测试资源感知的TCP问题)的已有研究成果进行总结;随后依次总结实证研究中常用的评测指标、评测数据集和缺陷类型对实证研究结论的影响;接着依次介绍TCP技术在一些特定测试领域中的应用,包括组合测试、事件驱动型应用测试、Web服务测试和缺陷定位等;最后对下一步工作进行展望.展开更多
基金jointly supported by the National Natural Science Foundation in China (61601075, 61671092, 61771120, 61801105)the Fundamental Research Funds for the Central University (N171602002)the Natural Science Foundation Project of CQ CSTC (cstc2016jcyjA0174)
文摘To satisfy the increasing demands of high-speed transmission, high-efficiency computing, and real-time communications in the high-dynamic and heterogeneous networks, the Contact Plan Design(CPD) has attracted continuous attention in recent years, especially for the spatial-node-based Internet of Everything(IoE). In this paper, we study the NP-hardness of contact scheduling and the attenuation of atmospheric precipitation in the spatial-node-based IoE. Two heuristic computing methods for contact plan design are proposed by comprehensively considering the time-varying topology, the intermittent connectivity, and the adaptive transmission in different weather conditions, which are named Contact Plan Design-Particle Swarm Optimization(CPD-PSO) and Contact Plan Design-Greedy algorithm with the Minimum Delivery Time(CPD-GMDT) separately. For the population-based algorithm, CPD-PSO not only solves the CPD problem with a limited-resource condition, but also dynamically adjusts the search scope to ensure the continuous searching capability of the algorithm. For the CPD-GMDT that makes CP decisions based on the current state, the algorithm uses the idea of greedy algorithm to schedule Satellite-Platform Links(SPLs) and Inter Satellite Links(ISLs) respectively using the strategies of optimal matching and load balancing. The simulation results show that the proposed CPD-PSO outperforms Contact Plan Design-Genetic Algorithm(CPD-GA) in terms of fitness and delivery time, and CPD-GMDT presents better overall delay than Fair Contact Plan(FCP).
文摘We continue to consider one of the cybernetic methods in biology related to the study of DNA chains. Exactly, we are considering the problem of reconstructing the distance matrix for DNA chains. Such a matrix is formed on the basis of any of the possible algorithms for determining the distances between DNA chains, as well as any specific object of study. At the same time, for example, the practical programming results show that on an average modern computer, it takes about a day to build such a 30 × 30 matrix for mnDNAs using the Needleman-Wunsch algorithm;therefore, for such a 300 × 300 matrix, about 3 months of continuous computer operation is expected. Thus, even for a relatively small number of species, calculating the distance matrix on conventional computers is hardly feasible and the supercomputers are usually not available. Therefore, we started publishing our variants of the algorithms for calculating the distance between two DNA chains, then we publish algorithms for restoring partially filled matrices, i.e., the inverse problem of matrix processing. Previously, we used the method of branches and boundaries, but in this paper we propose to use another new algorithm for restoring the distance matrix for DNA chains. Our recent work has shown that even greater improvement in the quality of the algorithm can often be achieved without improving the auxiliary heuristics of the branches and boundaries method. Thus, we are improving the algorithms that formulate the greedy function of this method only. .
文摘测试用例优先排序(test case prioritization,简称TCP)问题是回归测试研究中的一个热点.通过设定特定排序准则,对测试用例进行排序以优化其执行次序,旨在最大化排序目标,例如最大化测试用例集的早期缺陷检测速率.TCP问题尤其适用于因测试预算不足以致不能执行完所有测试用例的测试场景.首先对TCP问题进行描述,并依次从源代码、需求和模型这3个角度出发对已有的TCP技术进行分类;然后对一类特殊的TCP问题(即测试资源感知的TCP问题)的已有研究成果进行总结;随后依次总结实证研究中常用的评测指标、评测数据集和缺陷类型对实证研究结论的影响;接着依次介绍TCP技术在一些特定测试领域中的应用,包括组合测试、事件驱动型应用测试、Web服务测试和缺陷定位等;最后对下一步工作进行展望.