The fuzzy goal flexible job-shop scheduling problem (FGFJSP) is the extension of FJSP. Compared with the convention JSP, it can solve the fuzzy goal problem and meet suit requirements of the key job. The multi-objec...The fuzzy goal flexible job-shop scheduling problem (FGFJSP) is the extension of FJSP. Compared with the convention JSP, it can solve the fuzzy goal problem and meet suit requirements of the key job. The multi-object problem, such as the fuzzy cost, the fuzzy due-date, and the fuzzy makespan, etc, can be solved by FGFJSP. To optimize FGFJSP, an individual optimization and colony diversity genetic algorithm (IOCDGA) is presented to accelerate the convergence speed and to avoid the earliness. In IOCDGA, the colony average distance and the colony entropy are defined after the definition of the encoding model. The colony diversity is expressed by the colony average distance and the colony entropy. The crossover probability and the mutation probability are controlled by the colony diversity. The evolution emphasizes that sigle individual or a few individuals evolve into the best in IOCDGA, but not the all in classical GA. Computational results show that the algorithm is applicable and the number of iterations is less.展开更多
In the flexible job-shop scheduling problem (FJSP), each operation has to be assigned to a machine from a set of capable machines before alocating the assigned operations on all machines. To solve the multi-objectiv...In the flexible job-shop scheduling problem (FJSP), each operation has to be assigned to a machine from a set of capable machines before alocating the assigned operations on all machines. To solve the multi-objective FJSP, the Grantt graph oriented string representation (GOSR) and the basic manipulation of the genetic algorithm operator are presented. An integrated operator genetic algorithm (IOGA) and its process are described. Comparison between computational results and the latest research shows that the proposed algorithm is effective in reducing the total workload of all machines, the makespan and the critical machine workload.展开更多
The problem of simultaneous scheduling of machines and vehicles in flexible manufacturing system (FMS) was addressed.A spreadsheet based genetic algorithm (GA) approach was presented to solve the problem.A domain inde...The problem of simultaneous scheduling of machines and vehicles in flexible manufacturing system (FMS) was addressed.A spreadsheet based genetic algorithm (GA) approach was presented to solve the problem.A domain independent general purpose GA was used,which was an add-in to the spreadsheet software.An adaptation of the propritary GA software was demonstrated to the problem of minimizing the total completion time or makespan for simultaneous scheduling of machines and vehicles in flexible manufacturing systems.Computational results are presented for a benchmark with 82 test problems,which have been constructed by other researchers.The achieved results are comparable to the previous approaches.The proposed approach can be also applied to other problems or objective functions without changing the GA routine or the spreadsheet model.展开更多
The issue of reducing energy consumption for the job-shop scheduling problem in machining systems is addressed, whose dual objectives are to minimize both the energy consumption and the makespan. First, the bi- object...The issue of reducing energy consumption for the job-shop scheduling problem in machining systems is addressed, whose dual objectives are to minimize both the energy consumption and the makespan. First, the bi- objective model for the job-shop scheduling problem is proposed. The objective function value of the model represents synthesized optimization of energy consumption and makespan. Then, a heuristic algorithm is developed to locate the optimal or near optimal solutions of the model based on the Tabu search mechanism. Finally, the experimental case is presented to demonstrate the effectiveness of the proposed model and the algorithm.展开更多
This research provides academic and practical contributions. From a theoretical standpoint, a hybrid harmony search(HS)algorithm, namely the oppositional global-based HS(OGHS), is proposed for solving the multi-object...This research provides academic and practical contributions. From a theoretical standpoint, a hybrid harmony search(HS)algorithm, namely the oppositional global-based HS(OGHS), is proposed for solving the multi-objective flexible job-shop scheduling problems(MOFJSPs) to minimize makespan, total machine workload and critical machine workload. An initialization program embedded in opposition-based learning(OBL) is developed for enabling the individuals to scatter in a well-distributed manner in the initial harmony memory(HM). In addition, the recursive halving technique based on opposite number is employed for shrinking the neighbourhood space in the searching phase of the OGHS. From a practice-related standpoint, a type of dual vector code technique is introduced for allowing the OGHS algorithm to adapt the discrete nature of the MOFJSP. Two practical techniques, namely Pareto optimality and technique for order preference by similarity to an ideal solution(TOPSIS), are implemented for solving the MOFJSP.Furthermore, the algorithm performance is tested by using different strategies, including OBL and recursive halving, and the OGHS is compared with existing algorithms in the latest studies.Experimental results on representative examples validate the performance of the proposed algorithm for solving the MOFJSP.展开更多
The flexible job-shop scheduling problem(FJSP)with combined processing constraints is a common scheduling problem in mixed-flow production lines.However,traditional methods for classic FJSP cannot be directly applied....The flexible job-shop scheduling problem(FJSP)with combined processing constraints is a common scheduling problem in mixed-flow production lines.However,traditional methods for classic FJSP cannot be directly applied.Targeting this problem,the process state model of a mixed-flow production line is analyzed.On this basis,a mathematical model of a mixed-flow job-shop scheduling problem with combined processing constraints is established based on the traditional FJSP.Then,an improved genetic algorithm with multi-segment encoding,crossover,and mutation is proposed for the mixed-flow production line problem.Finally,the proposed algorithm is applied to the production workshop of missile structural components at an aerospace institute to verify its feasibility and effectiveness.展开更多
Economic globalization has transformed many manufacturing enterprises from a single-plant production mode to a multi-plant cooperative production mode.The distributed flexible job-shop scheduling problem(DFJSP)has bec...Economic globalization has transformed many manufacturing enterprises from a single-plant production mode to a multi-plant cooperative production mode.The distributed flexible job-shop scheduling problem(DFJSP)has become a research hot topic in the field of scheduling because its production is closer to reality.The research of DFJSP is of great significance to the organization and management of actual production process.To solve the heterogeneous DFJSP with minimal completion time,a hybrid chemical reaction optimization(HCRO)algorithm is proposed in this paper.Firstly,a novel encoding-decoding method for flexible manufacturing unit(FMU)is designed.Secondly,half of initial populations are generated by scheduling rule.Combined with the new solution acceptance method of simulated annealing(SA)algorithm,an improved method of critical-FMU is designed to improve the global and local search ability of the algorithm.Finally,the elitist selection strategy and the orthogonal experimental method are introduced to the algorithm to improve the convergence speed and optimize the algorithm parameters.In the experimental part,the effectiveness of the simulated annealing algorithm and the critical-FMU refinement methods is firstly verified.Secondly,in the comparison with other existing algorithms,the proposed optimal scheduling algorithm is not only effective in homogeneous FMUs examples,but also superior to existing algorithms in heterogeneous FMUs arithmetic cases.展开更多
Purpose–Flexible job-shop scheduling is significant for different manufacturing industries nowadays.Moreover,consideration of transportation time during scheduling makes it more practical and useful.The purpose of th...Purpose–Flexible job-shop scheduling is significant for different manufacturing industries nowadays.Moreover,consideration of transportation time during scheduling makes it more practical and useful.The purpose of this paper is to investigate multi-objective flexible job-shop scheduling problem(MOFJSP)considering transportation time.Design/methodology/approach–A hybrid genetic algorithm(GA)approach is integrated with simulated annealing to solve the MOFJSP considering transportation time,and an external elitism memory library is employed as a knowledge library to direct GA search into the region of better performance.Findings–The performance of the proposed algorithm is tested on different MOFJSP taken from literature.Experimental results show that proposed algorithm performs better than the original GA in terms of quality of solution and distribution of the solution,especially when the number of jobs and the flexibility of the machine increase.Originality/value–Most of existing studies have not considered the transportation time during scheduling of jobs.The transportation time is significantly desired to be included in the FJSP when the time of transportation of jobs has significant impact on the completion time of jobs.Meanwhile,GA is one of primary algorithms extensively used to address MOFJSP in literature.However,to solve the MOFJSP,the original GA has a possibility to get a premature convergence and it has a slow convergence speed.To overcome these problems,a new hybrid GA is developed in this paper.展开更多
文摘The fuzzy goal flexible job-shop scheduling problem (FGFJSP) is the extension of FJSP. Compared with the convention JSP, it can solve the fuzzy goal problem and meet suit requirements of the key job. The multi-object problem, such as the fuzzy cost, the fuzzy due-date, and the fuzzy makespan, etc, can be solved by FGFJSP. To optimize FGFJSP, an individual optimization and colony diversity genetic algorithm (IOCDGA) is presented to accelerate the convergence speed and to avoid the earliness. In IOCDGA, the colony average distance and the colony entropy are defined after the definition of the encoding model. The colony diversity is expressed by the colony average distance and the colony entropy. The crossover probability and the mutation probability are controlled by the colony diversity. The evolution emphasizes that sigle individual or a few individuals evolve into the best in IOCDGA, but not the all in classical GA. Computational results show that the algorithm is applicable and the number of iterations is less.
文摘In the flexible job-shop scheduling problem (FJSP), each operation has to be assigned to a machine from a set of capable machines before alocating the assigned operations on all machines. To solve the multi-objective FJSP, the Grantt graph oriented string representation (GOSR) and the basic manipulation of the genetic algorithm operator are presented. An integrated operator genetic algorithm (IOGA) and its process are described. Comparison between computational results and the latest research shows that the proposed algorithm is effective in reducing the total workload of all machines, the makespan and the critical machine workload.
文摘The problem of simultaneous scheduling of machines and vehicles in flexible manufacturing system (FMS) was addressed.A spreadsheet based genetic algorithm (GA) approach was presented to solve the problem.A domain independent general purpose GA was used,which was an add-in to the spreadsheet software.An adaptation of the propritary GA software was demonstrated to the problem of minimizing the total completion time or makespan for simultaneous scheduling of machines and vehicles in flexible manufacturing systems.Computational results are presented for a benchmark with 82 test problems,which have been constructed by other researchers.The achieved results are comparable to the previous approaches.The proposed approach can be also applied to other problems or objective functions without changing the GA routine or the spreadsheet model.
文摘The issue of reducing energy consumption for the job-shop scheduling problem in machining systems is addressed, whose dual objectives are to minimize both the energy consumption and the makespan. First, the bi- objective model for the job-shop scheduling problem is proposed. The objective function value of the model represents synthesized optimization of energy consumption and makespan. Then, a heuristic algorithm is developed to locate the optimal or near optimal solutions of the model based on the Tabu search mechanism. Finally, the experimental case is presented to demonstrate the effectiveness of the proposed model and the algorithm.
基金supported by the National Key Research and Development Program of China(2016YFD0700605)the Fundamental Research Funds for the Central Universities(JZ2016HGBZ1035)the Anhui University Natural Science Research Project(KJ2017A891)
文摘This research provides academic and practical contributions. From a theoretical standpoint, a hybrid harmony search(HS)algorithm, namely the oppositional global-based HS(OGHS), is proposed for solving the multi-objective flexible job-shop scheduling problems(MOFJSPs) to minimize makespan, total machine workload and critical machine workload. An initialization program embedded in opposition-based learning(OBL) is developed for enabling the individuals to scatter in a well-distributed manner in the initial harmony memory(HM). In addition, the recursive halving technique based on opposite number is employed for shrinking the neighbourhood space in the searching phase of the OGHS. From a practice-related standpoint, a type of dual vector code technique is introduced for allowing the OGHS algorithm to adapt the discrete nature of the MOFJSP. Two practical techniques, namely Pareto optimality and technique for order preference by similarity to an ideal solution(TOPSIS), are implemented for solving the MOFJSP.Furthermore, the algorithm performance is tested by using different strategies, including OBL and recursive halving, and the OGHS is compared with existing algorithms in the latest studies.Experimental results on representative examples validate the performance of the proposed algorithm for solving the MOFJSP.
基金supported by the National Key Research and Development Program of China (No.2020YFB1710500)the National Natural Science Foundation of China(No.51805253)the Fundamental Research Funds for the Central Universities(No. NP2020304)
文摘The flexible job-shop scheduling problem(FJSP)with combined processing constraints is a common scheduling problem in mixed-flow production lines.However,traditional methods for classic FJSP cannot be directly applied.Targeting this problem,the process state model of a mixed-flow production line is analyzed.On this basis,a mathematical model of a mixed-flow job-shop scheduling problem with combined processing constraints is established based on the traditional FJSP.Then,an improved genetic algorithm with multi-segment encoding,crossover,and mutation is proposed for the mixed-flow production line problem.Finally,the proposed algorithm is applied to the production workshop of missile structural components at an aerospace institute to verify its feasibility and effectiveness.
基金This work was supported by the National Natural Science Foundation of China(Nos.61973120,62076095,61673175,and 61573144).
文摘Economic globalization has transformed many manufacturing enterprises from a single-plant production mode to a multi-plant cooperative production mode.The distributed flexible job-shop scheduling problem(DFJSP)has become a research hot topic in the field of scheduling because its production is closer to reality.The research of DFJSP is of great significance to the organization and management of actual production process.To solve the heterogeneous DFJSP with minimal completion time,a hybrid chemical reaction optimization(HCRO)algorithm is proposed in this paper.Firstly,a novel encoding-decoding method for flexible manufacturing unit(FMU)is designed.Secondly,half of initial populations are generated by scheduling rule.Combined with the new solution acceptance method of simulated annealing(SA)algorithm,an improved method of critical-FMU is designed to improve the global and local search ability of the algorithm.Finally,the elitist selection strategy and the orthogonal experimental method are introduced to the algorithm to improve the convergence speed and optimize the algorithm parameters.In the experimental part,the effectiveness of the simulated annealing algorithm and the critical-FMU refinement methods is firstly verified.Secondly,in the comparison with other existing algorithms,the proposed optimal scheduling algorithm is not only effective in homogeneous FMUs examples,but also superior to existing algorithms in heterogeneous FMUs arithmetic cases.
基金supported by National Social Science Foundation of China under the project of 18BGL003.
文摘Purpose–Flexible job-shop scheduling is significant for different manufacturing industries nowadays.Moreover,consideration of transportation time during scheduling makes it more practical and useful.The purpose of this paper is to investigate multi-objective flexible job-shop scheduling problem(MOFJSP)considering transportation time.Design/methodology/approach–A hybrid genetic algorithm(GA)approach is integrated with simulated annealing to solve the MOFJSP considering transportation time,and an external elitism memory library is employed as a knowledge library to direct GA search into the region of better performance.Findings–The performance of the proposed algorithm is tested on different MOFJSP taken from literature.Experimental results show that proposed algorithm performs better than the original GA in terms of quality of solution and distribution of the solution,especially when the number of jobs and the flexibility of the machine increase.Originality/value–Most of existing studies have not considered the transportation time during scheduling of jobs.The transportation time is significantly desired to be included in the FJSP when the time of transportation of jobs has significant impact on the completion time of jobs.Meanwhile,GA is one of primary algorithms extensively used to address MOFJSP in literature.However,to solve the MOFJSP,the original GA has a possibility to get a premature convergence and it has a slow convergence speed.To overcome these problems,a new hybrid GA is developed in this paper.