Given the current global energy and environmental issues resulting from the fast pace of industrialization,the discovery of new functional materials has become increasingly imperative in order to advance science and t...Given the current global energy and environmental issues resulting from the fast pace of industrialization,the discovery of new functional materials has become increasingly imperative in order to advance science and technology and address the associated challenges.The boom in metal–organic frameworks(MOFs)and MOF-derived materials in recent years has stimulated profound interest in exploring their structures and applications.The preparation,characterization,and processing of MOF materials are the basis of their full engagement in industrial implementation.With intensive research in these topics,it is time to promote the practical utilization of MOFs on an industrial scale,such as for green chemical engineering,by taking advantage of their superior functions.Many famous MOFs have already demonstrated superiority over traditional materials in solving real-world problems.This review starts with the basic concept of MOF chemistry and ends with a discussion of the industrial production and exploitation of MOFs in several fields.Its goal is to provide a general scope of application to inspire MOF researchers to convert their focus on academic research to one on practical applications.After the obstacles of cost,scale-up preparation,processability,and stability have been overcome,MOFs and MOF-based devices will gradually enter the factory,become a part of our daily lives,and help to create a future based on green production and green living.展开更多
The microbubble and microinterface play key roles in the development and progress of the technology in the field of chemical engineering,which has attracted broad attention from the scientific and industrial community...The microbubble and microinterface play key roles in the development and progress of the technology in the field of chemical engineering,which has attracted broad attention from the scientific and industrial community.Recently,Zhang et al.published a book about microinterfacial mass transfer intensification technology,where they systematically introduced scientific essence,reaction mechanism,equipment structure,and influence law of multiphase reaction process strengthened by microinterface.I believe this book can promote the technological innovation of microbubble-related processes,and also the development of the green chemical industry!展开更多
This future article discusses the new prospects and directions of CO_(2)conversion via the photo-electrocatalytic(PEC)route.The second(2nd)generation solar fuels and chemicals(SFs)are generated directly in PEC systems...This future article discusses the new prospects and directions of CO_(2)conversion via the photo-electrocatalytic(PEC)route.The second(2nd)generation solar fuels and chemicals(SFs)are generated directly in PEC systems via electrons/protons reactions without forming molecular H_(2)as an intermediate,overcoming the thermodynamics limitations and practical issues encountered for electro-fuels produced by multistep thermocatalytic processes(i.e.CO_(2)conversion with H_(2)coming from water electrolysis).A distributed and decentralized production of SFs requires very compact,highly integrated,and intensified technologies.Among the existing reactors of advanced design(based on artificial leaves or photosynthesis),the integrated photovoltaic plus electrocatalytic(PV-EC)device is the only system(demonstrated at large scale)to produce SFs with high solar-to-fuel(STF)efficiency.However,while the literature indicates STF efficiency as the main(and only)measure of process performance,we remark here the need to refer to productivity(in terms of current density)and make tests with reliable flow PEC systems(with electrodes of at least 5–10 cm^(2))to accelerate the scaling-up process.Using approaches that minimize downstream separation costs is also mandatory.Many limitations exist in PEC systems,but most can be overcome by proper electrode and cell engineering,thus going beyond the properties of the electrocatalysts.As examples of current developments,we present the progress of(i)artificial leaf/tree devices for green H_(2)distributed production and(ii)a PEC device producing the same chemicals at both cathode and anode parts without downstream operations for green solvent distributed production.Based on these developments,future directions,such as producing fertilizers and food components from the air,are outlined.The aim is to provide new ideas and research directions from a personal perspective.展开更多
【目的】探讨我国英文科技期刊提升国际影响力的举措,为我国科技期刊特别是新创英文科技期刊提供一些思路和借鉴。【方法】以新创期刊Green Chemical Engineering(《绿色化学工程(英文)》,以下简称GreenChE)为例,总结GreenChE在国际化...【目的】探讨我国英文科技期刊提升国际影响力的举措,为我国科技期刊特别是新创英文科技期刊提供一些思路和借鉴。【方法】以新创期刊Green Chemical Engineering(《绿色化学工程(英文)》,以下简称GreenChE)为例,总结GreenChE在国际化发展过程中的实践和举措,重点从人才队伍、稿件质量、多维度传播等方面进行探索讨论。【结果】从筹备至今,经过近两年的探索发展,GreenChE已取得一定的建设成效,学术质量与国际影响力逐步提升,先后被DOAJ、Scopus、CSCD等数据库收录。【结论】新创英文科技期刊在筹办与发展过程中会面临很多困难与挑战,在借鉴成功办刊经验的基础上,结合GreenChE的实际,进一步探索出设置编委分类名单、打造期刊品牌效应、细化邮件推送策略等特色举措,从而实现新创期刊国际影响力的快速提升。展开更多
In order to move towards sustainable development, the discovery of energy-efficient and environmentally friendly materials has become increasingly imperative. Covalent organic frameworks(COFs) as emerging designable c...In order to move towards sustainable development, the discovery of energy-efficient and environmentally friendly materials has become increasingly imperative. Covalent organic frameworks(COFs) as emerging designable crystalline porous materials have captured increasing attention for a wide array of clean-energy and environmental applications, attributed to their attractive advantages of low density, high surface area, adjustable and periodic pores, and functional skeletons. This review attempts to highlight the key advancements made in the green synthesis of COFs, processing of COFs, energy and environment-related applications, including gas storage, water treatment, the separation of gas mixture and organic molecules, catalysis, supercapacitors, fuel cell, and rechargeable batteries. Finally, a perspective regarding the remaining challenges and future directions on the synthesis and promising application for green chemical engineering of COFs has also been presented based on current achievements.展开更多
基金We acknowledge financial support from the National Natural Science Foundation of China(51621003,21771012,and 22038001)the Science&Technology Project of Beijing Municipal Education Committee(KZ201810005004).
文摘Given the current global energy and environmental issues resulting from the fast pace of industrialization,the discovery of new functional materials has become increasingly imperative in order to advance science and technology and address the associated challenges.The boom in metal–organic frameworks(MOFs)and MOF-derived materials in recent years has stimulated profound interest in exploring their structures and applications.The preparation,characterization,and processing of MOF materials are the basis of their full engagement in industrial implementation.With intensive research in these topics,it is time to promote the practical utilization of MOFs on an industrial scale,such as for green chemical engineering,by taking advantage of their superior functions.Many famous MOFs have already demonstrated superiority over traditional materials in solving real-world problems.This review starts with the basic concept of MOF chemistry and ends with a discussion of the industrial production and exploitation of MOFs in several fields.Its goal is to provide a general scope of application to inspire MOF researchers to convert their focus on academic research to one on practical applications.After the obstacles of cost,scale-up preparation,processability,and stability have been overcome,MOFs and MOF-based devices will gradually enter the factory,become a part of our daily lives,and help to create a future based on green production and green living.
基金funded by the National Natural Science Foundation of China(21890762)。
文摘The microbubble and microinterface play key roles in the development and progress of the technology in the field of chemical engineering,which has attracted broad attention from the scientific and industrial community.Recently,Zhang et al.published a book about microinterfacial mass transfer intensification technology,where they systematically introduced scientific essence,reaction mechanism,equipment structure,and influence law of multiphase reaction process strengthened by microinterface.I believe this book can promote the technological innovation of microbubble-related processes,and also the development of the green chemical industry!
基金the EU for providing support to these activities through the EU projects DECADE(862030),EPOCH(101070976)and SCOPE(810182)。
文摘This future article discusses the new prospects and directions of CO_(2)conversion via the photo-electrocatalytic(PEC)route.The second(2nd)generation solar fuels and chemicals(SFs)are generated directly in PEC systems via electrons/protons reactions without forming molecular H_(2)as an intermediate,overcoming the thermodynamics limitations and practical issues encountered for electro-fuels produced by multistep thermocatalytic processes(i.e.CO_(2)conversion with H_(2)coming from water electrolysis).A distributed and decentralized production of SFs requires very compact,highly integrated,and intensified technologies.Among the existing reactors of advanced design(based on artificial leaves or photosynthesis),the integrated photovoltaic plus electrocatalytic(PV-EC)device is the only system(demonstrated at large scale)to produce SFs with high solar-to-fuel(STF)efficiency.However,while the literature indicates STF efficiency as the main(and only)measure of process performance,we remark here the need to refer to productivity(in terms of current density)and make tests with reliable flow PEC systems(with electrodes of at least 5–10 cm^(2))to accelerate the scaling-up process.Using approaches that minimize downstream separation costs is also mandatory.Many limitations exist in PEC systems,but most can be overcome by proper electrode and cell engineering,thus going beyond the properties of the electrocatalysts.As examples of current developments,we present the progress of(i)artificial leaf/tree devices for green H_(2)distributed production and(ii)a PEC device producing the same chemicals at both cathode and anode parts without downstream operations for green solvent distributed production.Based on these developments,future directions,such as producing fertilizers and food components from the air,are outlined.The aim is to provide new ideas and research directions from a personal perspective.
文摘【目的】探讨我国英文科技期刊提升国际影响力的举措,为我国科技期刊特别是新创英文科技期刊提供一些思路和借鉴。【方法】以新创期刊Green Chemical Engineering(《绿色化学工程(英文)》,以下简称GreenChE)为例,总结GreenChE在国际化发展过程中的实践和举措,重点从人才队伍、稿件质量、多维度传播等方面进行探索讨论。【结果】从筹备至今,经过近两年的探索发展,GreenChE已取得一定的建设成效,学术质量与国际影响力逐步提升,先后被DOAJ、Scopus、CSCD等数据库收录。【结论】新创英文科技期刊在筹办与发展过程中会面临很多困难与挑战,在借鉴成功办刊经验的基础上,结合GreenChE的实际,进一步探索出设置编委分类名单、打造期刊品牌效应、细化邮件推送策略等特色举措,从而实现新创期刊国际影响力的快速提升。
基金supported by the National Natural Science Foundation of China(22001131)the Frontiers Science Center for New Organic Matter of Nankai University(63181206)+1 种基金111 Projects(B12015)the Postdoctoral Science Foundation of China(2019M660974)。
文摘In order to move towards sustainable development, the discovery of energy-efficient and environmentally friendly materials has become increasingly imperative. Covalent organic frameworks(COFs) as emerging designable crystalline porous materials have captured increasing attention for a wide array of clean-energy and environmental applications, attributed to their attractive advantages of low density, high surface area, adjustable and periodic pores, and functional skeletons. This review attempts to highlight the key advancements made in the green synthesis of COFs, processing of COFs, energy and environment-related applications, including gas storage, water treatment, the separation of gas mixture and organic molecules, catalysis, supercapacitors, fuel cell, and rechargeable batteries. Finally, a perspective regarding the remaining challenges and future directions on the synthesis and promising application for green chemical engineering of COFs has also been presented based on current achievements.