With China’s continued development of society and economy, the importance of ecological environmental protection is growing. This protection has become an indispensable part of social development. The use of various ...With China’s continued development of society and economy, the importance of ecological environmental protection is growing. This protection has become an indispensable part of social development. The use of various green environmental protection equipment can effectively promote ecological environmental protection and reduce the adverse effects of human activities on the environment. In the field of sports lighting equipment in China, traditional lighting methods constitute an inherent danger to the environment, leading to a waste of valuable resources and environmental pollution. This study involves a multi-tile-multifunctional-function controller, which effectively solves the control problem of the control light. In the sports lighting group, the high and low-level lighting of the sports lighting group, and adjust the light from the height highly effectively to adjust each height. The low-shot mode reduces the power consumption of the system by about 33% to 60%, which significantly helps energy saving. By optimizing the performance of the lighting system, promoting the preservation of power resources, reducing the adverse effects of pollution caused by equipment utilization and energy waste, and promoting the harmonious cohabitation of human and natural environment. .展开更多
Populus trinervis is native to China and plays an irreplaceable role in maintaining the ecological balance of boreal and temperate forests.P.trinervis mainly grows in high-altitude areas.At present,there are limited s...Populus trinervis is native to China and plays an irreplaceable role in maintaining the ecological balance of boreal and temperate forests.P.trinervis mainly grows in high-altitude areas.At present,there are limited studies on the response of P.trinervis to different light qualities,so it is necessary to investigate the photosynthetic physiological changes of P.trinervis in different light environments.In our study,P.trinervis was grown for 8 months under light filtered by three different colored films.The three treatments were blue film,green film,and white plastic film.The effects of blue(B),green(G),and white(W)light on photosynthetic pigment content,absolute growth,photosynthetic parameters,soluble sugar content,and chlorophyll fluorescence parameters were studied,respectively.Compared to the Wtreatment,the chlorophyll a and b,carotenoids,total chlorophyll content(a+b),absolute growth of seedling height,net photosynthetic rate(PN),water use efficiency(WUE),total soluble sugars,sucrose,and nonphotochemical quenching(NPQ)of P.trinervis were significantly increased under B treatment.Meanwhile,chlorophyll a and b,carotenoids,total chlorophyll(a+b),transpiration rate(Tr),intercellular CO_(2) concentration(Ci),stomatal conductance(gs),absolute growth of seedling height and leaf length,reducing sugar,total soluble sugar content,and NPQ were significantly increased under G treatment.The results showed that the absolute growth and chlorophyll content of P.trinervis were increased under B light,while the sugar and photosynthetic parameters were increased under G light.Additional studies may look into how B light impacts absolute growth and promotional mechanisms,as well as how G light affects the accumulation of sugar levels.展开更多
Background:Effect of monochromatic green light illumination on embryo development has been reported in chickens.The avian pineal gland is an important photo-endocrine organ formed by a mediodorsal protrusion during em...Background:Effect of monochromatic green light illumination on embryo development has been reported in chickens.The avian pineal gland is an important photo-endocrine organ formed by a mediodorsal protrusion during embryonic development.However,the involvement of pineal gland in the light transduction process remains to be elucidated.In the present study,we investigated the influence of monochromatic green light on hatching time and explored the possible mechanism via pineal function.Results:A total of 600 eggs of White Leghorn(Shaver strain)were incubated under photoperiods of either 12 h of light and 12 h of darkness using monochromatic green light(12L:12D group)or 24 h of darkness(0L:24D group)for 18 d.Compared to 0L:24D group,the green light stimulation shortened the hatching time without extending the hatch window or impairing hatchability.The liver of embryos incubated in the 12L:12D light condition was heavier than those of the 0L:24D group on d 21 post incubation which may be linked to the observed increase in the serum concentration of insulin-like growth factor 1(IGF-1);primary secretion of the liver.Histological structure analysis of pineal gland demonstrated that the light stimulation increased follicle area,wall thickness and lumen area on d 10 and d 12 post incubation.Rhythmic function analysis demonstrated that three clock related genes(brain and muscle ARNT-like-1,BMAL1;circadian locomotor output cycles kaput,CLOCK;and cryptochrome-1,CRY1)and a melatonin rate-limiting enzyme related gene(arylalkylamine N-acetyltransferase,AANAT)were rhythmically expressed in the pineal gland of the 12L:12D group,but not in the 0L:24D group.Simultaneously,the light stimulation also increased the concentration of melatonin(MT),which was linked to hepatocyte proliferation and IGF-1 secretion in previous studies.Conclusions:The 12L:12D monochromatic green light stimulation during incubation shortened hatching time without impairing hatching performance.Pineal gland’s early histological development and maturation of its rhythmic function were accelerated by the light stimulation.It may be the key organ in the photo-endocrine axis that regulates embryo development,and the potential mechanism could be through enhanced secretion of MT in the 12L:12D group which promotes the secretion of IGF-1.展开更多
AIM: To investigate the effects of green flickering light on refractive development and expression of muscarinic acetylcholine receptor(mAChR) M1 in the eyes of guinea pigs.METHODS: Thirty guinea pigs(15-20 days ...AIM: To investigate the effects of green flickering light on refractive development and expression of muscarinic acetylcholine receptor(mAChR) M1 in the eyes of guinea pigs.METHODS: Thirty guinea pigs(15-20 days old) were randomly divided into three groups(n=10/group). Animals in group I were raised in a completely closed carton with green flickering light illumination. Those in group II were kept in the open top closed carton under normal natural light. Guinea pigs were raised in a sight-widen cage under normal natural light in group III. The refractive status and axial length were measured before and after 8 weeks' illumination. Moreover, total RNA extracted from retinal, choroidal, and scleral tissues were determined by real-time reverse transcription polymerase chain reaction(RT-PCR). The expressions of the receptor M1 were also explored in the retina, choroid, and sclera using immunohistochemistry.RESULTS: There was a remarkable reduction in refractive error and increase in axial length after 8-weeks' green flickering light stimulation(P〈0.001). The expression of M1 receptor mRNA in sclera and retina in myopia group were remarkably lower than that in group II and III(P〈0.01). Significant reduced expression of M1 receptor stimulated by green flickering light in retina and sclera tissues were also observed(P〈0.05). However, there was no M1 receptor expression in choroid in 3 groups.CONCLUSION: Myopia can be induced by 8 weeks' green flickering light exposure in the animal model. M1 receptor may be involved causally or protectively in myopia development.展开更多
U.S. consumers are keenly aware of environmental issues and are concerned about the environmental friendliness of the products they buy. However, economic pressures may affect how actively shoppers seek out
Although green light(GL)is located in the middle of the visible light spectrum and regulates a series of plant developmental processes,the mechanism by which it regulates seedling development is largely unknown.In thi...Although green light(GL)is located in the middle of the visible light spectrum and regulates a series of plant developmental processes,the mechanism by which it regulates seedling development is largely unknown.In this study,we demonstrated that GL promotes atypical photomorphogenesis in Arabidopsis thaliana via the dual regulations of phytochrome B(phyB)and phyA.Although the Pr-to-Pfr conversion rates of phyB and phyA under GL were lower than those under red light(RL)in a fluence rate-dependent and time-dependent manner,long-term treatment with GL induced high Pfr/Pr ratios of phyB and phyA.Moreover,GL induced the formation of numerous small phyB photobodies in the nucleus,resulting in atypical photomorphogenesis,with smaller cotyledon opening angles and longer hypocotyls in seedlings compared to RL.The abundance of phyA significantly decreased after short-and long-term GL treatments.We determined that four major PHYTOCHROME-INTERACTING FACTORs(PIFs:PIF1,PIF3,PIF4,and PIF5)act downstream of phyB in GL-mediated cotyledon opening.In addition,GL plays opposite roles in regulating different PIFs.For example,under continuous GL,the protein levels of all PIFs decreased,whereas the transcript levels of PIF4 and PIF5 strongly increased compared with dark treatment.Taken together,our work provides a detailed molecular framework for understanding the role of the antagonistic regulations of phyB and phyA in GL-mediated atypical photomorphogenesis.展开更多
This article demonstrates the fabrication of organic-based devices using a low-cost solution-processable technique.A blended heterojunction of chlorine substituted 2D-conjugated polymer PBDB-T-2Cl,and PC71BM supported...This article demonstrates the fabrication of organic-based devices using a low-cost solution-processable technique.A blended heterojunction of chlorine substituted 2D-conjugated polymer PBDB-T-2Cl,and PC71BM supported nanocapsules hy-drate vanadium penta oxides(HVO)as hole transport layer(HTL)based photodetector fabricated on an ITO coated glass sub-strate under ambient condition.The device forms an excellent organic junction diode with a good rectification ratio of~200.The device has also shown excellent photodetection properties under photoconductive mode(at reverse bias)and zero bias for green light wavelength.A very high responsivity of~6500 mA/W and high external quantum efficiency(EQE)of 1400%have been reported in the article.The proposed organic photodetector exhibits an excellent response and recovery time of~30 and~40 ms,respectively.展开更多
Light is one of the key environmental factors for insects to survive.Artificial light sources different from natural environmental light can cause light stress in insects.Yellow and green light stress can interfere wi...Light is one of the key environmental factors for insects to survive.Artificial light sources different from natural environmental light can cause light stress in insects.Yellow and green light stress can interfere with the diurnal rhythm of nocturnal moths and their mating,oviposition,and adult longevity.The scarabaeid beetles Anomala corpulenta Motschulsky and Holotrichia parallela Motschulsky are widely distributed,and they are very harmful underground pests.In order to clarify the effects of light stress on their behaviors,individuals of both species were exposed to yellow light(565-585 nm)and green light(525-545 nm),with different light intensity gradients of yellow light in a laboratory setting.The short-term light stress treatment of A.corpulenta and H.parallela was carried out at night.The number of beetles emerging per half an hour was recorded,and mating pairs and feeding activity in 24 h were counted.The results showed that yellow and green light stress significantly changed the rhythm and reduced the rate of beetle emergence in the two beetle species investigated.Also,the peak emergence activity was delayed and the feeding and mating activities were significantly reduced.When treated with different intensities of yellow light,it was found that the rate of emergence of A.corpulenta under 10 lx was close to the control groups.The rate of emergence in H.parallela was significantly lower than the control groups before 0:00,in the 60 lx and 110 lx treatment groups,but after 0:00,the emergence rate of H.parallela was significantly higher in the 60 lx and 110 lx treatment groups than other treatments.However,the emergence rhythms in the three light intensity treatment groups are basically the same as in the control groups.The feeding amount and mating beetles in the three light intensity treatment groups were significantly lower than in the control groups.There were no significant differences in the three treatments.The results show that light stress above 10 lx significantly interferes with the behavioral activities of the two beetle species,investigated.This study provides a new approach for a light control technology for nocturnal beetle pest species.展开更多
Green semiconductor lasers are still undeveloped,so high-power green lasers have heavily relied on nonlinear frequency conversion of near-infrared lasers,precluding compact and low-cost green laser systems.Here,we rep...Green semiconductor lasers are still undeveloped,so high-power green lasers have heavily relied on nonlinear frequency conversion of near-infrared lasers,precluding compact and low-cost green laser systems.Here,we report the first Watt-level all-fiber CW Pr3t-doped laser operating directly in the green spectral region,addressing the aforementioned difficulties.The compact all-fiber laser consists of a double-clad Pr3t-doped fluoride fiber,two homemade fiber dichroic mirrors at visible wavelengths,and a 443-nm fiber-pigtailed pump source.Benefitting from>10 MW∕cm2 high damage intensity of our designed fiber dielectric mirror,the green laser can stably deliver 3.62-W of continuous-wave power at∼521 nm with a slope efficiency of 20.9%.To the best of our knowledge,this is the largest output power directly from green fiber lasers,which is one order higher than previously reported.Moreover,these green all-fiber laser designs are optimized by using experiments and numerical simulations.Numerical results are in excellent agreement with our experimental results and show that the optimal gain fiber length,output mirror reflectivity,and doping level should be considered to obtain higher power and efficiency.This work may pave a path toward compact high-power green all-fiber lasers for applications in biomedicine,laser display,underwater detection,and spectroscopy.展开更多
We represent a design of a 20 W, fiber-coupled diode laser module based on 26 single emitters at 520 nm. The module can produce more than 20 W output power from a standard fiber with core diameter of 400 Hm and numeri...We represent a design of a 20 W, fiber-coupled diode laser module based on 26 single emitters at 520 nm. The module can produce more than 20 W output power from a standard fiber with core diameter of 400 Hm and numerical aperture (NA) of 0.22. To achieve a 20 W laser beam, the spatial beam combination and polarization beam combination by polarization beam splitter are used to combine output of 26 single emitters into a single beam, and then an aspheric lens is used to couple the combined beam into an optical fiber. The simulation shows that the total coupling efficiency is more than 95%.展开更多
This study aimed to determine the effects of spectral light characteristics on the visual response of the western flower thrips,the strengthening mechanism of thrips response behavior regulated by light,and thrips res...This study aimed to determine the effects of spectral light characteristics on the visual response of the western flower thrips,the strengthening mechanism of thrips response behavior regulated by light,and thrips response characteristics to contrast light.Light with combined and single wavelength were tested by using a self-made behavior response device for thrips.Light sources for trapping thrips were made to verify the trapping effect on thrips in a greenhouse,and the reasons for changes in thrips behavior were analyzed to characterize the mechanism of their phototactic response.The results showed that the light mode(single,contrast,combined light)affected the thrips visual response and approach response,whereas in contrast light,the effects were optimal.Combination light inhibited the thrips visual response,and when the illumination increased,the thrips visual response to single and combination light intensified,and the thrips approach sensitivity to green light increased in contrast and combination light.However,the light mode did not affect the thrips visual response and sensitivity to spectral light characteristics.The degree of thrips visual response to yellow light was stronger than that to green light,while the degree of thrips visual response to green light was stronger than that to yellow light,indicating that the photo-induced mechanism of the thrips visual response differed from that of the thrips approach response.Moreover,in the greenhouse,the trapping effect of different light sources on thrips was positively correlated with temperature.The trapping effect of green light was optimal,followed by a yellow light source,while the difference of light intensity(illumination,illumination energy)and its photo-thermal intensity between yellow and green light was the reason for the differences in the degree of visual trends and the trapping effects of thrips.However,the sensitivity of thrips responding to different light depended on the difference in the heterogeneous stimulation intensity of different spectral light.Thus,light brightness and photo-thermal effects were the causes of thrips visual responses,while bio-photoelectric reaction effects caused thrips to produce a visual response and affected the degree of the thrips visual response.The results reveal the underlying causes of pest control by light,and provide a theoretical basis for the research and development of pest induction equipment and light arrangements.展开更多
This study considered the design of an efficient, high brightness polar InGaN/GaN light emitting diode (LED) structure with A1GaN capping layer for green light emission. The deposition of high In (〉 15%) composit...This study considered the design of an efficient, high brightness polar InGaN/GaN light emitting diode (LED) structure with A1GaN capping layer for green light emission. The deposition of high In (〉 15%) composition within InGaN quantum well (QW) has limitations when providing intense green light. To design an effective model for a highly efficient InGaN green LEDs, this study considered the compositions of indium and aluminum for InxGal xN QW and AlyGal yN cap layers, along with different layer thicknesses of well, barrier and cap. These structural properties significantly affect different properties. For example, these properties affect electric fields of layers, polarization, overall elastic stress energy and lattice parameter of the structure, emission wavelength, and intensity of the emitted light. Three models with different composition and layer thicknesses are simulated and analyzed to obtain green light with in-plane equilibrium lattice parameter close to GaN (3.189 A ) with the highest oscillator strength values. A structure model is obtained with an oscillator strength value of 1.18 × 10-1 and least in-plane equilibrium lattice constant of 3.218 A. This emitter can emit at a wavelength of 540 nm, which is the expected design for the fabrication of highly efficient, bright green LEDs.展开更多
Collagen is one of the most important biomaterials for tissue engineering approaches.Despite its excellent biocompatibility,it shows the non-negligible disadvantage of poor mechanical stability.Photochemical crosslink...Collagen is one of the most important biomaterials for tissue engineering approaches.Despite its excellent biocompatibility,it shows the non-negligible disadvantage of poor mechanical stability.Photochemical crosslinking with rose bengal and green light(RGX)is an appropriate method to improve this property.The development of collagen laminates is helpful for further adjustment of the mechanical properties as well as the controlled release of incorporated substances.In this study,we investigate the impact of crosslinking and layering of two different collagen scaffolds on the swelling behavior andmechanical behavior inmicro tensile tests to obtain information on its wearing comfort(stiffness,strength and ductility).The mechanical stability of the collagen material after degradation due to cell contact is examined using thickness measurements.There is no linear increase or decrease due to layering homologous laminates.Unexpectedly,a decrease in elongation at break,Young’s modulus and ultimate tensile strength are measured when the untreated monolayer is compared to the crosslinked one.Furthermore,we can detect a connection between stability and cell proliferation.The results show that with variation in number and type of layers,collagen scaffolds with tailored mechanical properties can be produced.Such a multi-layered structure enables the release of biomolecules into inner or outer layers for biomedical applications.展开更多
Maximal and partial quantum yields of photosystem II(Fv/Fm and Fv–/Fp)in Phaseolus vulgaris leaves were determined in response to the turning on saturating and low(undersaturating)actinic light,accordingly.Measuring ...Maximal and partial quantum yields of photosystem II(Fv/Fm and Fv–/Fp)in Phaseolus vulgaris leaves were determined in response to the turning on saturating and low(undersaturating)actinic light,accordingly.Measuring lights(ML)of blue,green,and red colors were applied simultaneously using a novel method of the polychromatic fast Fourier transforming pulse amplitude modulation(FFT PAM)chlorophyll fluorometry.Colors of ML were cross-combined with the colors of low and saturating actinic light.Fv/Fm values measured with the green ML were found to be close to that of red light,whereas application of blue ML leads to lower Fv/Fm.In addition,5-nm resolved excitation spectra were measured to evaluate the dependence between red/far red fluorescence ratios(peak height based–F685/F730,and deconvolved peak square based–F685sq/F730sq)and wavelength of the excitation light.It demonstrates that chlorophyll fluorescence ratio red/far red may be dependent on the spectral absorbance of chlorophyll.The data obtained confirm the results of the previous studies which explain high photosynthetic activity of the green light in terms of redistribution of absorbed quanta throughout thickness of the leaf,thus suggesting possible advisability of green light application in greenhouse lighting,especially for the plants having thick leaves.展开更多
PRO Supporters of the NSG’s decision argue that the policy change will keep nuclear technology and materials off the black market, ultimately making the world a safer place
Detection of ppb-level NO_(2) gas under atmosphere is urgent to meet the requirements of the rapidly developing internet of things.Compared with traditional sensing methods,light illumination has been considered as a ...Detection of ppb-level NO_(2) gas under atmosphere is urgent to meet the requirements of the rapidly developing internet of things.Compared with traditional sensing methods,light illumination has been considered as a key approach for excellent gas sensor performance under moderate conditions.Herein,we developed a green-light-assisted gas sensor based on cadmium sulfide nanowires(CdS NWs)that has good NO_(2) sensing capability at ambient temperature.The response values of NO_(2) are 236%and 11%to 10 ppm and 12.5 ppb,respectively.Furthermore,the CdS NWs sensor has a high selectivity for NO_(2) over a variety of interference gases,as well as good stability.The cleaning light activation and the sulfur vacancy-trapped charge behavior of CdS NWs are observed,which suggest a light-assisted sensing mechanism.These results suggest that light-induced charge separation behavior might significantly improve gas-sensing characteristics.展开更多
Beijing is to work with foreign countries to improvetraffic control,and reduce jams and accidents.“All modes of Sino-foreign contacts and co-operationare welcome to improve Beijing’s traffic management andsafety,”s...Beijing is to work with foreign countries to improvetraffic control,and reduce jams and accidents.“All modes of Sino-foreign contacts and co-operationare welcome to improve Beijing’s traffic management andsafety,”said Duan Liren,Vice-Director of Beijing TrafficManagement Bureau.So the city is hosting a five-day multinational trafficconference and exhibition which opened on Thursday.The capital has spent about 10 million since 1984展开更多
The National Stadium is just the beginning of expanded use of solar energy in China The National Stadium, a nest-like structure where the opening and closing ceremonies of the 2008 Beijing Olympic Games will be he...The National Stadium is just the beginning of expanded use of solar energy in China The National Stadium, a nest-like structure where the opening and closing ceremonies of the 2008 Beijing Olympic Games will be held, is setting a good example for展开更多
文摘With China’s continued development of society and economy, the importance of ecological environmental protection is growing. This protection has become an indispensable part of social development. The use of various green environmental protection equipment can effectively promote ecological environmental protection and reduce the adverse effects of human activities on the environment. In the field of sports lighting equipment in China, traditional lighting methods constitute an inherent danger to the environment, leading to a waste of valuable resources and environmental pollution. This study involves a multi-tile-multifunctional-function controller, which effectively solves the control problem of the control light. In the sports lighting group, the high and low-level lighting of the sports lighting group, and adjust the light from the height highly effectively to adjust each height. The low-shot mode reduces the power consumption of the system by about 33% to 60%, which significantly helps energy saving. By optimizing the performance of the lighting system, promoting the preservation of power resources, reducing the adverse effects of pollution caused by equipment utilization and energy waste, and promoting the harmonious cohabitation of human and natural environment. .
基金Applied Basic Research Foundation of Yunnan Province(Grant No.202101AU070144)the Joint Agricultural Project of Yunnan Province(Grant No.202101BD070001-127).
文摘Populus trinervis is native to China and plays an irreplaceable role in maintaining the ecological balance of boreal and temperate forests.P.trinervis mainly grows in high-altitude areas.At present,there are limited studies on the response of P.trinervis to different light qualities,so it is necessary to investigate the photosynthetic physiological changes of P.trinervis in different light environments.In our study,P.trinervis was grown for 8 months under light filtered by three different colored films.The three treatments were blue film,green film,and white plastic film.The effects of blue(B),green(G),and white(W)light on photosynthetic pigment content,absolute growth,photosynthetic parameters,soluble sugar content,and chlorophyll fluorescence parameters were studied,respectively.Compared to the Wtreatment,the chlorophyll a and b,carotenoids,total chlorophyll content(a+b),absolute growth of seedling height,net photosynthetic rate(PN),water use efficiency(WUE),total soluble sugars,sucrose,and nonphotochemical quenching(NPQ)of P.trinervis were significantly increased under B treatment.Meanwhile,chlorophyll a and b,carotenoids,total chlorophyll(a+b),transpiration rate(Tr),intercellular CO_(2) concentration(Ci),stomatal conductance(gs),absolute growth of seedling height and leaf length,reducing sugar,total soluble sugar content,and NPQ were significantly increased under G treatment.The results showed that the absolute growth and chlorophyll content of P.trinervis were increased under B light,while the sugar and photosynthetic parameters were increased under G light.Additional studies may look into how B light impacts absolute growth and promotional mechanisms,as well as how G light affects the accumulation of sugar levels.
基金Financial support of this study was provided by The National Key Research and Development Program of China(grant number 2016YFD0500502)China Agriculture Research Systems(grant number CARS-40)+1 种基金Fundamental Research Funds for Central Non-profit Scientific Institution(grant number 2018-YWF-YB-20)Agricultural Science and Technology Innovation Program(grant number ASTIP-IAS04).
文摘Background:Effect of monochromatic green light illumination on embryo development has been reported in chickens.The avian pineal gland is an important photo-endocrine organ formed by a mediodorsal protrusion during embryonic development.However,the involvement of pineal gland in the light transduction process remains to be elucidated.In the present study,we investigated the influence of monochromatic green light on hatching time and explored the possible mechanism via pineal function.Results:A total of 600 eggs of White Leghorn(Shaver strain)were incubated under photoperiods of either 12 h of light and 12 h of darkness using monochromatic green light(12L:12D group)or 24 h of darkness(0L:24D group)for 18 d.Compared to 0L:24D group,the green light stimulation shortened the hatching time without extending the hatch window or impairing hatchability.The liver of embryos incubated in the 12L:12D light condition was heavier than those of the 0L:24D group on d 21 post incubation which may be linked to the observed increase in the serum concentration of insulin-like growth factor 1(IGF-1);primary secretion of the liver.Histological structure analysis of pineal gland demonstrated that the light stimulation increased follicle area,wall thickness and lumen area on d 10 and d 12 post incubation.Rhythmic function analysis demonstrated that three clock related genes(brain and muscle ARNT-like-1,BMAL1;circadian locomotor output cycles kaput,CLOCK;and cryptochrome-1,CRY1)and a melatonin rate-limiting enzyme related gene(arylalkylamine N-acetyltransferase,AANAT)were rhythmically expressed in the pineal gland of the 12L:12D group,but not in the 0L:24D group.Simultaneously,the light stimulation also increased the concentration of melatonin(MT),which was linked to hepatocyte proliferation and IGF-1 secretion in previous studies.Conclusions:The 12L:12D monochromatic green light stimulation during incubation shortened hatching time without impairing hatching performance.Pineal gland’s early histological development and maturation of its rhythmic function were accelerated by the light stimulation.It may be the key organ in the photo-endocrine axis that regulates embryo development,and the potential mechanism could be through enhanced secretion of MT in the 12L:12D group which promotes the secretion of IGF-1.
基金Supported by Qilu Hospital of Shandong University (No.201805049)
文摘AIM: To investigate the effects of green flickering light on refractive development and expression of muscarinic acetylcholine receptor(mAChR) M1 in the eyes of guinea pigs.METHODS: Thirty guinea pigs(15-20 days old) were randomly divided into three groups(n=10/group). Animals in group I were raised in a completely closed carton with green flickering light illumination. Those in group II were kept in the open top closed carton under normal natural light. Guinea pigs were raised in a sight-widen cage under normal natural light in group III. The refractive status and axial length were measured before and after 8 weeks' illumination. Moreover, total RNA extracted from retinal, choroidal, and scleral tissues were determined by real-time reverse transcription polymerase chain reaction(RT-PCR). The expressions of the receptor M1 were also explored in the retina, choroid, and sclera using immunohistochemistry.RESULTS: There was a remarkable reduction in refractive error and increase in axial length after 8-weeks' green flickering light stimulation(P〈0.001). The expression of M1 receptor mRNA in sclera and retina in myopia group were remarkably lower than that in group II and III(P〈0.01). Significant reduced expression of M1 receptor stimulated by green flickering light in retina and sclera tissues were also observed(P〈0.05). However, there was no M1 receptor expression in choroid in 3 groups.CONCLUSION: Myopia can be induced by 8 weeks' green flickering light exposure in the animal model. M1 receptor may be involved causally or protectively in myopia development.
文摘U.S. consumers are keenly aware of environmental issues and are concerned about the environmental friendliness of the products they buy. However, economic pressures may affect how actively shoppers seek out
基金supported by the Excellent Young Talents Fund Program of Higher Education Institutions of Anhui Province(2023AH030049)Anhui Agricultural University Startup Fund(grant no.rc422115,to J.J.L.)Anhui Province Fund for University Development(22103103)。
文摘Although green light(GL)is located in the middle of the visible light spectrum and regulates a series of plant developmental processes,the mechanism by which it regulates seedling development is largely unknown.In this study,we demonstrated that GL promotes atypical photomorphogenesis in Arabidopsis thaliana via the dual regulations of phytochrome B(phyB)and phyA.Although the Pr-to-Pfr conversion rates of phyB and phyA under GL were lower than those under red light(RL)in a fluence rate-dependent and time-dependent manner,long-term treatment with GL induced high Pfr/Pr ratios of phyB and phyA.Moreover,GL induced the formation of numerous small phyB photobodies in the nucleus,resulting in atypical photomorphogenesis,with smaller cotyledon opening angles and longer hypocotyls in seedlings compared to RL.The abundance of phyA significantly decreased after short-and long-term GL treatments.We determined that four major PHYTOCHROME-INTERACTING FACTORs(PIFs:PIF1,PIF3,PIF4,and PIF5)act downstream of phyB in GL-mediated cotyledon opening.In addition,GL plays opposite roles in regulating different PIFs.For example,under continuous GL,the protein levels of all PIFs decreased,whereas the transcript levels of PIF4 and PIF5 strongly increased compared with dark treatment.Taken together,our work provides a detailed molecular framework for understanding the role of the antagonistic regulations of phyB and phyA in GL-mediated atypical photomorphogenesis.
文摘This article demonstrates the fabrication of organic-based devices using a low-cost solution-processable technique.A blended heterojunction of chlorine substituted 2D-conjugated polymer PBDB-T-2Cl,and PC71BM supported nanocapsules hy-drate vanadium penta oxides(HVO)as hole transport layer(HTL)based photodetector fabricated on an ITO coated glass sub-strate under ambient condition.The device forms an excellent organic junction diode with a good rectification ratio of~200.The device has also shown excellent photodetection properties under photoconductive mode(at reverse bias)and zero bias for green light wavelength.A very high responsivity of~6500 mA/W and high external quantum efficiency(EQE)of 1400%have been reported in the article.The proposed organic photodetector exhibits an excellent response and recovery time of~30 and~40 ms,respectively.
基金supported by the Fund for the National Natural Science Foundation of China(Grant No.32001902)Henan Scientific and Technical Attack Project(Grant No.12102110460)+2 种基金Underground pest post of the national wheat industry system(CARS-03)Major public welfare special projects in Henan Province(201300111500)Basic scientific research business fee of Henan Academy of Agricultural Sciences(2021zc42).
文摘Light is one of the key environmental factors for insects to survive.Artificial light sources different from natural environmental light can cause light stress in insects.Yellow and green light stress can interfere with the diurnal rhythm of nocturnal moths and their mating,oviposition,and adult longevity.The scarabaeid beetles Anomala corpulenta Motschulsky and Holotrichia parallela Motschulsky are widely distributed,and they are very harmful underground pests.In order to clarify the effects of light stress on their behaviors,individuals of both species were exposed to yellow light(565-585 nm)and green light(525-545 nm),with different light intensity gradients of yellow light in a laboratory setting.The short-term light stress treatment of A.corpulenta and H.parallela was carried out at night.The number of beetles emerging per half an hour was recorded,and mating pairs and feeding activity in 24 h were counted.The results showed that yellow and green light stress significantly changed the rhythm and reduced the rate of beetle emergence in the two beetle species investigated.Also,the peak emergence activity was delayed and the feeding and mating activities were significantly reduced.When treated with different intensities of yellow light,it was found that the rate of emergence of A.corpulenta under 10 lx was close to the control groups.The rate of emergence in H.parallela was significantly lower than the control groups before 0:00,in the 60 lx and 110 lx treatment groups,but after 0:00,the emergence rate of H.parallela was significantly higher in the 60 lx and 110 lx treatment groups than other treatments.However,the emergence rhythms in the three light intensity treatment groups are basically the same as in the control groups.The feeding amount and mating beetles in the three light intensity treatment groups were significantly lower than in the control groups.There were no significant differences in the three treatments.The results show that light stress above 10 lx significantly interferes with the behavioral activities of the two beetle species,investigated.This study provides a new approach for a light control technology for nocturnal beetle pest species.
基金the National Science Fund for Excellent Young Scholars(62022069)Shenzhen Science and Technology Projects(JCYJ20210324115813037)+2 种基金National Natural Science Foundation of China(62105272)Technology Development Program from Huawei Technologies Co.,Ltd.,Fundamental Research Funds for the Central Universities(20720200068)National Key Research and Development Program of China(2020YFC2200400).
文摘Green semiconductor lasers are still undeveloped,so high-power green lasers have heavily relied on nonlinear frequency conversion of near-infrared lasers,precluding compact and low-cost green laser systems.Here,we report the first Watt-level all-fiber CW Pr3t-doped laser operating directly in the green spectral region,addressing the aforementioned difficulties.The compact all-fiber laser consists of a double-clad Pr3t-doped fluoride fiber,two homemade fiber dichroic mirrors at visible wavelengths,and a 443-nm fiber-pigtailed pump source.Benefitting from>10 MW∕cm2 high damage intensity of our designed fiber dielectric mirror,the green laser can stably deliver 3.62-W of continuous-wave power at∼521 nm with a slope efficiency of 20.9%.To the best of our knowledge,this is the largest output power directly from green fiber lasers,which is one order higher than previously reported.Moreover,these green all-fiber laser designs are optimized by using experiments and numerical simulations.Numerical results are in excellent agreement with our experimental results and show that the optimal gain fiber length,output mirror reflectivity,and doping level should be considered to obtain higher power and efficiency.This work may pave a path toward compact high-power green all-fiber lasers for applications in biomedicine,laser display,underwater detection,and spectroscopy.
基金supported by the National Key R&D Program of China(No.2016YFB0402105)the Key Deployment Program of the Chinese Academy of Sciences(No.KGZD-SW-T01-2)the National Natural Science Foundation of China(No.61404135)
文摘We represent a design of a 20 W, fiber-coupled diode laser module based on 26 single emitters at 520 nm. The module can produce more than 20 W output power from a standard fiber with core diameter of 400 Hm and numerical aperture (NA) of 0.22. To achieve a 20 W laser beam, the spatial beam combination and polarization beam combination by polarization beam splitter are used to combine output of 26 single emitters into a single beam, and then an aspheric lens is used to couple the combined beam into an optical fiber. The simulation shows that the total coupling efficiency is more than 95%.
基金The authors acknowledge that this work was financial supported by the Scientific and technological project in Henan Province(Grant No.212102110139)the China Agricultural Research System(Grant No.CARS-03).
文摘This study aimed to determine the effects of spectral light characteristics on the visual response of the western flower thrips,the strengthening mechanism of thrips response behavior regulated by light,and thrips response characteristics to contrast light.Light with combined and single wavelength were tested by using a self-made behavior response device for thrips.Light sources for trapping thrips were made to verify the trapping effect on thrips in a greenhouse,and the reasons for changes in thrips behavior were analyzed to characterize the mechanism of their phototactic response.The results showed that the light mode(single,contrast,combined light)affected the thrips visual response and approach response,whereas in contrast light,the effects were optimal.Combination light inhibited the thrips visual response,and when the illumination increased,the thrips visual response to single and combination light intensified,and the thrips approach sensitivity to green light increased in contrast and combination light.However,the light mode did not affect the thrips visual response and sensitivity to spectral light characteristics.The degree of thrips visual response to yellow light was stronger than that to green light,while the degree of thrips visual response to green light was stronger than that to yellow light,indicating that the photo-induced mechanism of the thrips visual response differed from that of the thrips approach response.Moreover,in the greenhouse,the trapping effect of different light sources on thrips was positively correlated with temperature.The trapping effect of green light was optimal,followed by a yellow light source,while the difference of light intensity(illumination,illumination energy)and its photo-thermal intensity between yellow and green light was the reason for the differences in the degree of visual trends and the trapping effects of thrips.However,the sensitivity of thrips responding to different light depended on the difference in the heterogeneous stimulation intensity of different spectral light.Thus,light brightness and photo-thermal effects were the causes of thrips visual responses,while bio-photoelectric reaction effects caused thrips to produce a visual response and affected the degree of the thrips visual response.The results reveal the underlying causes of pest control by light,and provide a theoretical basis for the research and development of pest induction equipment and light arrangements.
文摘This study considered the design of an efficient, high brightness polar InGaN/GaN light emitting diode (LED) structure with A1GaN capping layer for green light emission. The deposition of high In (〉 15%) composition within InGaN quantum well (QW) has limitations when providing intense green light. To design an effective model for a highly efficient InGaN green LEDs, this study considered the compositions of indium and aluminum for InxGal xN QW and AlyGal yN cap layers, along with different layer thicknesses of well, barrier and cap. These structural properties significantly affect different properties. For example, these properties affect electric fields of layers, polarization, overall elastic stress energy and lattice parameter of the structure, emission wavelength, and intensity of the emitted light. Three models with different composition and layer thicknesses are simulated and analyzed to obtain green light with in-plane equilibrium lattice parameter close to GaN (3.189 A ) with the highest oscillator strength values. A structure model is obtained with an oscillator strength value of 1.18 × 10-1 and least in-plane equilibrium lattice constant of 3.218 A. This emitter can emit at a wavelength of 540 nm, which is the expected design for the fabrication of highly efficient, bright green LEDs.
基金supported by the Deutsche Forschungsgemeinschaft(Project number:400569699).
文摘Collagen is one of the most important biomaterials for tissue engineering approaches.Despite its excellent biocompatibility,it shows the non-negligible disadvantage of poor mechanical stability.Photochemical crosslinking with rose bengal and green light(RGX)is an appropriate method to improve this property.The development of collagen laminates is helpful for further adjustment of the mechanical properties as well as the controlled release of incorporated substances.In this study,we investigate the impact of crosslinking and layering of two different collagen scaffolds on the swelling behavior andmechanical behavior inmicro tensile tests to obtain information on its wearing comfort(stiffness,strength and ductility).The mechanical stability of the collagen material after degradation due to cell contact is examined using thickness measurements.There is no linear increase or decrease due to layering homologous laminates.Unexpectedly,a decrease in elongation at break,Young’s modulus and ultimate tensile strength are measured when the untreated monolayer is compared to the crosslinked one.Furthermore,we can detect a connection between stability and cell proliferation.The results show that with variation in number and type of layers,collagen scaffolds with tailored mechanical properties can be produced.Such a multi-layered structure enables the release of biomolecules into inner or outer layers for biomedical applications.
基金We are grateful to Ministry of education and science of the Russian Federation for the financial support(grant No 6.6222.2017/8.9).The project was performed with the equipment of Multiaccess Center‘‘Biotechnology,Biomedicine and Environmental Monitoring”,Laboratory of plant ecology and physiology of Academy of Biology and Biotechnology of Southern Federal University(Rostov-on-Don).Researchers are also grateful to Russian Information-Analytical andWater Management Research Center for help in performing this study.
文摘Maximal and partial quantum yields of photosystem II(Fv/Fm and Fv–/Fp)in Phaseolus vulgaris leaves were determined in response to the turning on saturating and low(undersaturating)actinic light,accordingly.Measuring lights(ML)of blue,green,and red colors were applied simultaneously using a novel method of the polychromatic fast Fourier transforming pulse amplitude modulation(FFT PAM)chlorophyll fluorometry.Colors of ML were cross-combined with the colors of low and saturating actinic light.Fv/Fm values measured with the green ML were found to be close to that of red light,whereas application of blue ML leads to lower Fv/Fm.In addition,5-nm resolved excitation spectra were measured to evaluate the dependence between red/far red fluorescence ratios(peak height based–F685/F730,and deconvolved peak square based–F685sq/F730sq)and wavelength of the excitation light.It demonstrates that chlorophyll fluorescence ratio red/far red may be dependent on the spectral absorbance of chlorophyll.The data obtained confirm the results of the previous studies which explain high photosynthetic activity of the green light in terms of redistribution of absorbed quanta throughout thickness of the leaf,thus suggesting possible advisability of green light application in greenhouse lighting,especially for the plants having thick leaves.
文摘PRO Supporters of the NSG’s decision argue that the policy change will keep nuclear technology and materials off the black market, ultimately making the world a safer place
基金The authors are thankful for the financial support from the National Key Research and Development Program of China(Grant No.2018YFA0208504)National Natural Science Foundation of China(NSFC 21932006)the Youth Innovation Promotion Association of CAS(2017049).
文摘Detection of ppb-level NO_(2) gas under atmosphere is urgent to meet the requirements of the rapidly developing internet of things.Compared with traditional sensing methods,light illumination has been considered as a key approach for excellent gas sensor performance under moderate conditions.Herein,we developed a green-light-assisted gas sensor based on cadmium sulfide nanowires(CdS NWs)that has good NO_(2) sensing capability at ambient temperature.The response values of NO_(2) are 236%and 11%to 10 ppm and 12.5 ppb,respectively.Furthermore,the CdS NWs sensor has a high selectivity for NO_(2) over a variety of interference gases,as well as good stability.The cleaning light activation and the sulfur vacancy-trapped charge behavior of CdS NWs are observed,which suggest a light-assisted sensing mechanism.These results suggest that light-induced charge separation behavior might significantly improve gas-sensing characteristics.
文摘Beijing is to work with foreign countries to improvetraffic control,and reduce jams and accidents.“All modes of Sino-foreign contacts and co-operationare welcome to improve Beijing’s traffic management andsafety,”said Duan Liren,Vice-Director of Beijing TrafficManagement Bureau.So the city is hosting a five-day multinational trafficconference and exhibition which opened on Thursday.The capital has spent about 10 million since 1984
文摘The National Stadium is just the beginning of expanded use of solar energy in China The National Stadium, a nest-like structure where the opening and closing ceremonies of the 2008 Beijing Olympic Games will be held, is setting a good example for