The study of green compression strength of a green sand mould using statistical approach has been undertaken. Empirically generated data in National Metallurgical Development Centre, Jos Sand Testing Laboratory were u...The study of green compression strength of a green sand mould using statistical approach has been undertaken. Empirically generated data in National Metallurgical Development Centre, Jos Sand Testing Laboratory were used for the study. Coefficient of correlation, coefficients of determination and coefficient of multiple determinations were used to explain the relationship existing between the two independent variables of clay and moisture content and green compression strength, the dependent variable. The study showed that the coefficient of determination for Ys: X1 was 0.88 while the coefficient of correlation was 0.94, coefficient of determination for Ys: X2 was 0.90 while the coefficient of correlation was 0.95 and the coefficient of multiple determination was 0.72;these coefficients assisted tremendously in the study of green compression strength. A mathematical model was developed for the prediction of green compression strength;it was tested and proved to be a good estimation tool for estimating green compression strength values on the foundry shop floor. The study has clearly shown that statistical approach is a good tool for studying green compression strength of green sand moulds.展开更多
High pressure squeeze is the most popular moulding process applied in modern moulding machines.Because of the unique characters of moulding sand and nonlinearity of squeezing process,the mechanical model is of key imp...High pressure squeeze is the most popular moulding process applied in modern moulding machines.Because of the unique characters of moulding sand and nonlinearity of squeezing process,the mechanical model is of key importance for computer simulation.Drucker-Prager/Cap is a typical soil mechanical theory model and it was used to simulate the squeezing process in this study,while ABAQUS software is used to simulate dynamic stress/strain evolution during the process.The simulation agrees well with the experimental results.We conclude that Drucker-Prager/Cap is an appropriate model for the squeezing compaction of moulding sand,and that the associated nonlinearity can be solved well with ABAQUS software.展开更多
文摘The study of green compression strength of a green sand mould using statistical approach has been undertaken. Empirically generated data in National Metallurgical Development Centre, Jos Sand Testing Laboratory were used for the study. Coefficient of correlation, coefficients of determination and coefficient of multiple determinations were used to explain the relationship existing between the two independent variables of clay and moisture content and green compression strength, the dependent variable. The study showed that the coefficient of determination for Ys: X1 was 0.88 while the coefficient of correlation was 0.94, coefficient of determination for Ys: X2 was 0.90 while the coefficient of correlation was 0.95 and the coefficient of multiple determination was 0.72;these coefficients assisted tremendously in the study of green compression strength. A mathematical model was developed for the prediction of green compression strength;it was tested and proved to be a good estimation tool for estimating green compression strength values on the foundry shop floor. The study has clearly shown that statistical approach is a good tool for studying green compression strength of green sand moulds.
文摘High pressure squeeze is the most popular moulding process applied in modern moulding machines.Because of the unique characters of moulding sand and nonlinearity of squeezing process,the mechanical model is of key importance for computer simulation.Drucker-Prager/Cap is a typical soil mechanical theory model and it was used to simulate the squeezing process in this study,while ABAQUS software is used to simulate dynamic stress/strain evolution during the process.The simulation agrees well with the experimental results.We conclude that Drucker-Prager/Cap is an appropriate model for the squeezing compaction of moulding sand,and that the associated nonlinearity can be solved well with ABAQUS software.