To meet the current energy needs of society,the highly efficient and continuous production of clean energy is required.One of the key issues facing the green hydrogen evolution is the construction of efficient,low-cos...To meet the current energy needs of society,the highly efficient and continuous production of clean energy is required.One of the key issues facing the green hydrogen evolution is the construction of efficient,low-cost electrocatalysts.Prussian blue(PB),Prussian blue analogs(PBAs),and their derivatives have tunable metal centers and have attracted significant interest as novel photo-and electrochemical catalysts.In this review,recent research progress into PB/PBA-based hollow structures,substrate-supported nanostructures,and their derivatives for green water splitting is discussed and summarized.First,several remarkable examples of nanostructured PB/PBAs supported on substrates(copper foil,carbon cloth,and nickel foam)and hollow structures(such as single-shelled hollow boxes,open hollow cages,and intricate hollow structures(multi-shell and yolk-shell))are discussed in detail,including their synthesis and formation mechanisms.Subsequently,the applications of PB/PBA derivatives((hydr)oxides,phosphides,chalcogenides,and carbides)for water splitting are discussed.Finally,the limitations in this research area and the most urgent challenges are summarized.We hope that this review will stimulate more researchers to develop technologies based on these intricate PB/PBA structures and their derivatives for highly efficient,green water splitting.展开更多
In order to make full use of digital data, such as data extracted from electronic police video systems, and optimize intersection signal parameters, the theoretical distribution of the vehicle's road travel time m...In order to make full use of digital data, such as data extracted from electronic police video systems, and optimize intersection signal parameters, the theoretical distribution of the vehicle's road travel time must first be determined. The intersection signal cycle and the green splits were optimized simultaneously, and the system total travel time was selected as the optimization goal. The distribution of the vehicle's link travel time is the combined results of the flow composition, road marking, the form of control, and the driver's driving habits. The method proposed has 15% lower system total stop delay and fewer total stops than the method of TRRL(Transport and Road Research Laboratory) in England and the method of ARRB(Australian Road Research Board) in Australia. This method can save 0.5% total travel time and will be easier to understand and test, which establishes a causal relationship between optimal results and specific forms of road segment management, such as speed limits.展开更多
文摘To meet the current energy needs of society,the highly efficient and continuous production of clean energy is required.One of the key issues facing the green hydrogen evolution is the construction of efficient,low-cost electrocatalysts.Prussian blue(PB),Prussian blue analogs(PBAs),and their derivatives have tunable metal centers and have attracted significant interest as novel photo-and electrochemical catalysts.In this review,recent research progress into PB/PBA-based hollow structures,substrate-supported nanostructures,and their derivatives for green water splitting is discussed and summarized.First,several remarkable examples of nanostructured PB/PBAs supported on substrates(copper foil,carbon cloth,and nickel foam)and hollow structures(such as single-shelled hollow boxes,open hollow cages,and intricate hollow structures(multi-shell and yolk-shell))are discussed in detail,including their synthesis and formation mechanisms.Subsequently,the applications of PB/PBA derivatives((hydr)oxides,phosphides,chalcogenides,and carbides)for water splitting are discussed.Finally,the limitations in this research area and the most urgent challenges are summarized.We hope that this review will stimulate more researchers to develop technologies based on these intricate PB/PBA structures and their derivatives for highly efficient,green water splitting.
基金Project(14BTJ017)supported by National Social Science Foundation Project of ChinaProject supported by the 2014 Mathematics and Interdisciplinary Science Project of Central South University,China
文摘In order to make full use of digital data, such as data extracted from electronic police video systems, and optimize intersection signal parameters, the theoretical distribution of the vehicle's road travel time must first be determined. The intersection signal cycle and the green splits were optimized simultaneously, and the system total travel time was selected as the optimization goal. The distribution of the vehicle's link travel time is the combined results of the flow composition, road marking, the form of control, and the driver's driving habits. The method proposed has 15% lower system total stop delay and fewer total stops than the method of TRRL(Transport and Road Research Laboratory) in England and the method of ARRB(Australian Road Research Board) in Australia. This method can save 0.5% total travel time and will be easier to understand and test, which establishes a causal relationship between optimal results and specific forms of road segment management, such as speed limits.