Anthropogenic greenhouse gases (GHG) emission and related global warming issues have been the focus of international communities for some time. The international communities have reached a consensus to reduce anthro...Anthropogenic greenhouse gases (GHG) emission and related global warming issues have been the focus of international communities for some time. The international communities have reached a consensus to reduce anthropogenic GHG emissions and restrain global warming. The quantitative assessment of anthropogenic GHG emissions is the scientific basis to find out the status of global GHG emission, identify the commitments of each country, and arrange the international efforts of GHG emission reduction. Currently the main assessment indicators for GHG emission include national indicator, per capita indicator, per GDP indicator, and international trade indicator etc. The introduction to the above indi- cators is put forward and their merits and demerits are analyzed. Based on the GHG emission data from the World Resource Institute (WRI), the US Energy Information Administration (EIA), and the Carbon Dioxide Information Analysis Center (CDIAC), the results of each indictor are calculated for the world, for the eight G8 industrialized countries (USA, UK, Canada, Japan, Germany, France, Italy and Russia), and the five major developing countries including China, Brazil, India, South Africa and Mexico. The paper points out that all these indicators have some limitations. The Indicator of Industrialized Accumulative Emission per Capita (IAEC) is put forward as the equitable indicator to evaluate the industrialized historical accumulative emission per capita of every country. IAEC indicator can reflect the economic achievement of GHG emission enjoyed by the current generations in every country and their commitments. The analysis of IAEC indicates that the historical accumulative emission per capita in indus- trialized countries such as UK and USA were typically higher than those of the world average and the developing countries. Emission indicator per capita per GDP, consumptive emission indicator and survival emission indicator are also put forward and discussed in the paper.展开更多
Study is conducted on the life cycle assessment of bio-ethanol used for transportation vehicles and their emissions. The emissions that are analyzed include greenhouse gases, volatile organic compounds, sulfur oxide, ...Study is conducted on the life cycle assessment of bio-ethanol used for transportation vehicles and their emissions. The emissions that are analyzed include greenhouse gases, volatile organic compounds, sulfur oxide, carbon monoxide, nitrous oxide, particulate matter with the size less than 10 and 2.5 microns. Furthermore, various blends of bio-ethanol and gasoline are studied to learn about the impacts of higher blend on emissions. The Greenhouse Gases, Regulated Emissions, and Energy Use in Transportation (GREET) model software are used to simulate for emissions. The research analyzes two pathways of emissions: Well-to-Pump and Pump-to-Vehicle analyses. It is found that the fuel cell vehicles using 100% bio-ethanol have shown the most reduction in the amount of all the pollutants from the Pump-to-Vehicle emission analysis. The Well-to-Pump analysis shows that only greenhouse gases (GHGs) reduce with higher blends of bio-ethanol. All other pollutants VOC, CO, NO<sub>x</sub>, SO<sub>x</sub>, PM10 and PM2.5 emissions increase with the higher blending ratios. The Pump-to-Vehicle analysis shows that all the pollutant emissions reduce with the percentage increase of bio-ethanol in the fuel blends.展开更多
Combining improved injector, gas line and valve-driving models, a gas chromatograph (GC) equipped with Hydrogen Flame Ionization Detector (FID) and Electron Capture Detector (ECD), can measure CH4, CO2, and N2O simult...Combining improved injector, gas line and valve-driving models, a gas chromatograph (GC) equipped with Hydrogen Flame Ionization Detector (FID) and Electron Capture Detector (ECD), can measure CH4, CO2, and N2O simultaneously in an air sample in four minutes. Test results show that the system has high sensitivity, resolution, and precision; the linear response range of the system meets the requirement of flux measurements in situ. The system is suitable for monitoring fluxes of the main greenhouse gases in a short-plant field since it is easy to use, efficacious, and constant and reliable in collecting data.展开更多
Animal husbandry is a major source of greenhouse gas(GHG)emissions in agriculture.Mitigating the emissions from the livestock sector is vital for green development of agriculture in China.Based on National Communicati...Animal husbandry is a major source of greenhouse gas(GHG)emissions in agriculture.Mitigating the emissions from the livestock sector is vital for green development of agriculture in China.Based on National Communication on Climate Change of United Nations,this study aims to investigate the characteristics of GHG emissions of animal husbandry during 1994 to 2014,introduce major emission reduction technologies and their effectiveness,and investigate options for emission reduction for the livestock sector in China.It proposes that control of pollution and carbon emissions can be realized through increased animal productivity,improved feed quality and recycling of animal manure.This paper thus concludes with suggestions of green and lowcarbon development of animal husbandry,including the research and development of new technology for emission reduction and carbon sequestration of the livestock sector,enhancement of monitoring and evaluation,and establishment of emission reduction and carbon sequestration standards.展开更多
Hujiatai Village, Xiong County, Hebei Province was nominated as the experimental unit of new countryside construction by Hebei Province in 2008. In order to make Hujiatai Village become a new countryside model with fr...Hujiatai Village, Xiong County, Hebei Province was nominated as the experimental unit of new countryside construction by Hebei Province in 2008. In order to make Hujiatai Village become a new countryside model with friendly ecological and environmental conditions, local energy resources should be considered. In this study, a mode of 'geothermal energy extraction-heat exchange-space heating-reinjection' was adopted to supply heat to resident houses in Hujiatai Village cooperating with a geothermal development entity based on the abundant geothermal resources, thereby constructing a clean, economic and autarkic new countryside energy system, which avoids utilization of fossil-energy, reduces emission of greenhouse gases and generation of solid coal cinder, protecting air and land environment, improving life quality of the people and building a typical model for Hebei Province and even for the whole country.展开更多
Several food companies are implementing effective strategies to evaluate the environmental impacts of their products or processes and to estimate the greenhouse gases emissions (GHG) using a life cycle approach. Par...Several food companies are implementing effective strategies to evaluate the environmental impacts of their products or processes and to estimate the greenhouse gases emissions (GHG) using a life cycle approach. Particularly, a sector which can play an important role to reduce the impact on the environment through the life cycle thinking is the beverage packaging. In this context, the aim of this study was to use the life cycle assessment (LCA) method to investigate the consistency of the preference order across two alternative beverage packages through the application of two impact assessment methods, namely the IPCC 2007 which is focused on the GHG emissions estimation and the EcoIndicator 99 which considers several environmental categories including impact on climate change. The results showed that the life cycle approach employment was a useful strategy to investigate the consistency of the preference order across two beverage packages, especially, whether the results are made more reliable by the utilization of primary data. The investigation on climate change conducted on two level, initially, the quantification of the GHG emissions and secondly the estimation of the related diseases and mortality, demonstrated that the laminated carton presents lower impacts than the high-density polyethylene (HDPE) bottle.展开更多
Greenhouse gas emissions (GHGs) from swine production systems are relatively well researched with the exception of emissions from land application of manure. GttGs inventories are needed for process- based modeling ...Greenhouse gas emissions (GHGs) from swine production systems are relatively well researched with the exception of emissions from land application of manure. GttGs inventories are needed for process- based modeling and science-based regulations. Thus, the objective of this observational study was to measure GHG fluxes from land application of swine manure on a typical corn field. Assessment of GHG emissions from deep injected land-applied swine manure, Phil and reapplication in the spring, on a typical US Midwestern corn-on-corn farm was completed. Static chambers were used Ibr flux measurement along with gas analysis on a GC-FID-ECD+ Measured gas concentrations were used to estimate GHGs flux using four different models: linear regression, nonlinear regression, first order linear regression and the revised Hutchinson and Mosier (HMR) model, respectively for comparisons.Cumulative flux esmnates after manure apphcatmn of 5.85×10 g·ha^-1(1 ha = 0.01 km) of CO2 6.60×10^1g·ha^-1 of CH4 and3.48 ×10^3g·ha^-1 N2O for the fall trial and 3.11×10^6g·ha^-1 of CO2,2.95×10^3g·ha^-1 of OH4, and 1.47×10^4g·ha^-1 N2O after the spnng reapphcation trial were observed. The N2O net cumulative flux represents 0.595% of nitrogen applied in swine manure for the fall trial.展开更多
Combining improved injector, gas line and valve-driving modules, a GC equipped with FID and ECD, could simultaneously measure CH4, CO2 and N2O in an air sample within 4 min. Test results showed that the system has hig...Combining improved injector, gas line and valve-driving modules, a GC equipped with FID and ECD, could simultaneously measure CH4, CO2 and N2O in an air sample within 4 min. Test results showed that the system has high sensitivity, resolution and precision; the linear response range of the system meets the requirement of in situ flux measurements. Thus, the system is suitable for monitoring fluxes of main greenhouse gases in terrestrial ecosystem since it is easy to use, efficacious, stable and reliable to collect data.展开更多
Since its launch in 2013,the Chinese Road and Belt Innitiative(BRI)has grown into a platform for any countries and regions that wish to participate,with global connectivity as the orienting goal.However,since its ince...Since its launch in 2013,the Chinese Road and Belt Innitiative(BRI)has grown into a platform for any countries and regions that wish to participate,with global connectivity as the orienting goal.However,since its inception,concerns over the BRI’s potential impacts on ecology,environment and resilience,as well as its implications for global climate change and sustainability,have gathered force.As this thematic issue goes to press,these already complex BRI issues have been compounded by challenges from the COVID-19 pandemic.Whether and how the BRI can meet these challenges are questions worthy of deep exploration.This emerging BRI scholarship studied various aspects of BRI activities.However,major knowledge gaps remain regarding BRI impacts on GHG emission and on climate adaptation and sustainable resource management more broadly.To this end,this thematic issue aims to contribute to deeper understandings of climate and environmental changes along the BRI by bringing together state-of-art research and views on climate change patterns,trends,risks,impacts and adaptation.展开更多
Global warming has been one of the biggest issues faced by the world in recent decades.It is closely related to anthropogenic emissions of greenhouse gases(GHGs)—mainly CO_2,CH_4 and N_2O—and the effects of reduci...Global warming has been one of the biggest issues faced by the world in recent decades.It is closely related to anthropogenic emissions of greenhouse gases(GHGs)—mainly CO_2,CH_4 and N_2O—and the effects of reducing emissions and increasing the carbon fixation capability.展开更多
Intensive management of planted forests may result in soil degradation and decline in timber yield with successive rotations. Biochars may be beneficial for plant production, nutrient uptake and greenhouse gas mitigat...Intensive management of planted forests may result in soil degradation and decline in timber yield with successive rotations. Biochars may be beneficial for plant production, nutrient uptake and greenhouse gas mitigation. Biochar properties vary widely and are known to be highly dependent on feedstocks, but their effects on planted forest ecosystem are elusive. This study investigated the effects of chicken manure biochar, sawdust biochar and their feedstocks on 2-year-old Pinus elliottii growth, fertilizer N use efficiency (NUE), soil N20 and CH4 emissions, and C storage in an acidic forest soil in a subtropical area of China for one year. The soil was mixed with materials in a total of 8 treatments: non-amended control (CK); sawdust at 2.16 kg m^-2 (SD); chicken manure at 1.26 kg m^-2 (CM); sawdust biochar at 2.4 kg m^-2 (SDB); chicken manure biochar at 2.4 kg m^-2 (CMB); 15N-fertilizer alone (10.23 atom% 15N) (NF); sawdust biochar at 2.4 kg m^-2 plus lSN-fertilizer (SDBN) and chicken manure biochar at 2.4 kg m^-2 plus 15N-fertilizer (CMBN). Results showed that the CMB treatment increased P. elliottii net primary production (aboveground biomass plus litterfall) and annual net C fixation (ANCF) by about 180% and 157%, respectively, while the the SDB treatment had little effect on P. eUiottii growth. The 15N stable isotope labelling technique revealed that fertilizer NUE was 22.7% in CK, 25.5% in the NF treatment, and 37.0% in the CMB treatment. Chicken manure biochar significantly increased soil pH, total N, total P, total K, available P and available K. Only 2% of the N in chicken manure biochar was available to the tree. The soil N20 emission and CH4 uptake showed no significant differences among the treatments. The apparent C losses from the SD and CM treatments were 35% and 61%, respectively; while those from the CMB and SDB treatments were negligible. These demonstrated that it is crucial to consider biochar properties while evaluating their effects on plant growth and C sequestration.展开更多
The subtropical hilly region of China is a region with intensive crop and livestock production,which has resulted in serious N pollution in soil,water and air.This review summarizes the major soil N cycling processes ...The subtropical hilly region of China is a region with intensive crop and livestock production,which has resulted in serious N pollution in soil,water and air.This review summarizes the major soil N cycling processes and their influencing factors in rice paddies and uplands in the subtropical hilly region of China.The major N cycling processes include the N fertilizer application in croplands,atmospheric N deposition,biological N fixation,crop N uptake,ammonia volatilization,N_(2)O/NO emissions,nitrogen runoff and leaching losses.The catchment nutrients management model for N cycle modeling and its case studies in the subtropical hilly region were also introduced.Finally,N management practices for improving N use efficiency in cropland,as well as catchment scales are summarized.展开更多
To solve the problem energy deficit encountered in developing countries,Hybrid Renewable Energy System(HRES)appears to be a very good solution.The paper presents the optimal design of a hybrid renewable energy system ...To solve the problem energy deficit encountered in developing countries,Hybrid Renewable Energy System(HRES)appears to be a very good solution.The paper presents the optimal design of a hybrid renewable energy system considering the technical i.e Loss of Power Supply Probability(LPSP),economic i.e Cost of Electricity(COE)and Net Present Cost(NPC)and environmental i.e Total Greenhouse gases emission(TGE)aspects using Particle Swarm Optimization(PSO),hybrid Particle Swarm Optimization-Grey Wolf Optimization(PSOGWO),hybrid Grey-Wolf Optimization-Cuckoo Search(GWOCS)and Sine-Cosine Algorithm(SCA)for a Community multimedia center in MAKENENE,Cameroon;where inhabitants have to spend at times 3 to 4 days of blackout.Seven configurations(Scenarios)of hybrid energy systems including PV,WT,Battery and Diesel generator are analyzed considering an average daily energy load of 50.22 kWh with a peak load of 5.6 kW.Four values of the derating factor i.e 0.6,0.7,0.8 and 0.9 are used in this analysis and the best value is 0.9.Scenario 3 with LPSP,COE,NPC,TGE and RF of 0.003%,0.15913$/kWh,46953.0485$,2.3406 kg/year and 99.8%respectively when using GWOCS is found to be the most appropriate for the Community multimedia center.The optimal Scenario is obtained for a system comprising of 18 kW of P_(pv-rated)corresponding to 69 solar panels,3 days of AD corresponding to a total battery capacity of 241 kWh and 1 of N_(dg).展开更多
基金The Key Project for Knowledge Innovation Program of CAS,No.KZCX2-YW-501The Western Talent Project of CAS in2005The National S&T Pillar Program,No.007BAC03A11-05
文摘Anthropogenic greenhouse gases (GHG) emission and related global warming issues have been the focus of international communities for some time. The international communities have reached a consensus to reduce anthropogenic GHG emissions and restrain global warming. The quantitative assessment of anthropogenic GHG emissions is the scientific basis to find out the status of global GHG emission, identify the commitments of each country, and arrange the international efforts of GHG emission reduction. Currently the main assessment indicators for GHG emission include national indicator, per capita indicator, per GDP indicator, and international trade indicator etc. The introduction to the above indi- cators is put forward and their merits and demerits are analyzed. Based on the GHG emission data from the World Resource Institute (WRI), the US Energy Information Administration (EIA), and the Carbon Dioxide Information Analysis Center (CDIAC), the results of each indictor are calculated for the world, for the eight G8 industrialized countries (USA, UK, Canada, Japan, Germany, France, Italy and Russia), and the five major developing countries including China, Brazil, India, South Africa and Mexico. The paper points out that all these indicators have some limitations. The Indicator of Industrialized Accumulative Emission per Capita (IAEC) is put forward as the equitable indicator to evaluate the industrialized historical accumulative emission per capita of every country. IAEC indicator can reflect the economic achievement of GHG emission enjoyed by the current generations in every country and their commitments. The analysis of IAEC indicates that the historical accumulative emission per capita in indus- trialized countries such as UK and USA were typically higher than those of the world average and the developing countries. Emission indicator per capita per GDP, consumptive emission indicator and survival emission indicator are also put forward and discussed in the paper.
文摘Study is conducted on the life cycle assessment of bio-ethanol used for transportation vehicles and their emissions. The emissions that are analyzed include greenhouse gases, volatile organic compounds, sulfur oxide, carbon monoxide, nitrous oxide, particulate matter with the size less than 10 and 2.5 microns. Furthermore, various blends of bio-ethanol and gasoline are studied to learn about the impacts of higher blend on emissions. The Greenhouse Gases, Regulated Emissions, and Energy Use in Transportation (GREET) model software are used to simulate for emissions. The research analyzes two pathways of emissions: Well-to-Pump and Pump-to-Vehicle analyses. It is found that the fuel cell vehicles using 100% bio-ethanol have shown the most reduction in the amount of all the pollutants from the Pump-to-Vehicle emission analysis. The Well-to-Pump analysis shows that only greenhouse gases (GHGs) reduce with higher blends of bio-ethanol. All other pollutants VOC, CO, NO<sub>x</sub>, SO<sub>x</sub>, PM10 and PM2.5 emissions increase with the higher blending ratios. The Pump-to-Vehicle analysis shows that all the pollutant emissions reduce with the percentage increase of bio-ethanol in the fuel blends.
文摘Combining improved injector, gas line and valve-driving models, a gas chromatograph (GC) equipped with Hydrogen Flame Ionization Detector (FID) and Electron Capture Detector (ECD), can measure CH4, CO2, and N2O simultaneously in an air sample in four minutes. Test results show that the system has high sensitivity, resolution, and precision; the linear response range of the system meets the requirement of flux measurements in situ. The system is suitable for monitoring fluxes of the main greenhouse gases in a short-plant field since it is easy to use, efficacious, and constant and reliable in collecting data.
基金sponsored by the National Key R&D Program of China(2022YFE0115600)Agricultural Science and Technology Innovation Program(CAAS-ZDRW202110)China Agricultural Research System(CARS-42-23)。
文摘Animal husbandry is a major source of greenhouse gas(GHG)emissions in agriculture.Mitigating the emissions from the livestock sector is vital for green development of agriculture in China.Based on National Communication on Climate Change of United Nations,this study aims to investigate the characteristics of GHG emissions of animal husbandry during 1994 to 2014,introduce major emission reduction technologies and their effectiveness,and investigate options for emission reduction for the livestock sector in China.It proposes that control of pollution and carbon emissions can be realized through increased animal productivity,improved feed quality and recycling of animal manure.This paper thus concludes with suggestions of green and lowcarbon development of animal husbandry,including the research and development of new technology for emission reduction and carbon sequestration of the livestock sector,enhancement of monitoring and evaluation,and establishment of emission reduction and carbon sequestration standards.
基金Supported by the Major Program of Water Resources Exploration in Beijing City(Exploration and Assessment Project of Karst Water Resources in Beijing City
文摘Hujiatai Village, Xiong County, Hebei Province was nominated as the experimental unit of new countryside construction by Hebei Province in 2008. In order to make Hujiatai Village become a new countryside model with friendly ecological and environmental conditions, local energy resources should be considered. In this study, a mode of 'geothermal energy extraction-heat exchange-space heating-reinjection' was adopted to supply heat to resident houses in Hujiatai Village cooperating with a geothermal development entity based on the abundant geothermal resources, thereby constructing a clean, economic and autarkic new countryside energy system, which avoids utilization of fossil-energy, reduces emission of greenhouse gases and generation of solid coal cinder, protecting air and land environment, improving life quality of the people and building a typical model for Hebei Province and even for the whole country.
文摘Several food companies are implementing effective strategies to evaluate the environmental impacts of their products or processes and to estimate the greenhouse gases emissions (GHG) using a life cycle approach. Particularly, a sector which can play an important role to reduce the impact on the environment through the life cycle thinking is the beverage packaging. In this context, the aim of this study was to use the life cycle assessment (LCA) method to investigate the consistency of the preference order across two alternative beverage packages through the application of two impact assessment methods, namely the IPCC 2007 which is focused on the GHG emissions estimation and the EcoIndicator 99 which considers several environmental categories including impact on climate change. The results showed that the life cycle approach employment was a useful strategy to investigate the consistency of the preference order across two beverage packages, especially, whether the results are made more reliable by the utilization of primary data. The investigation on climate change conducted on two level, initially, the quantification of the GHG emissions and secondly the estimation of the related diseases and mortality, demonstrated that the laminated carton presents lower impacts than the high-density polyethylene (HDPE) bottle.
文摘Greenhouse gas emissions (GHGs) from swine production systems are relatively well researched with the exception of emissions from land application of manure. GttGs inventories are needed for process- based modeling and science-based regulations. Thus, the objective of this observational study was to measure GHG fluxes from land application of swine manure on a typical corn field. Assessment of GHG emissions from deep injected land-applied swine manure, Phil and reapplication in the spring, on a typical US Midwestern corn-on-corn farm was completed. Static chambers were used Ibr flux measurement along with gas analysis on a GC-FID-ECD+ Measured gas concentrations were used to estimate GHGs flux using four different models: linear regression, nonlinear regression, first order linear regression and the revised Hutchinson and Mosier (HMR) model, respectively for comparisons.Cumulative flux esmnates after manure apphcatmn of 5.85×10 g·ha^-1(1 ha = 0.01 km) of CO2 6.60×10^1g·ha^-1 of CH4 and3.48 ×10^3g·ha^-1 N2O for the fall trial and 3.11×10^6g·ha^-1 of CO2,2.95×10^3g·ha^-1 of OH4, and 1.47×10^4g·ha^-1 N2O after the spnng reapphcation trial were observed. The N2O net cumulative flux represents 0.595% of nitrogen applied in swine manure for the fall trial.
文摘Combining improved injector, gas line and valve-driving modules, a GC equipped with FID and ECD, could simultaneously measure CH4, CO2 and N2O in an air sample within 4 min. Test results showed that the system has high sensitivity, resolution and precision; the linear response range of the system meets the requirement of in situ flux measurements. Thus, the system is suitable for monitoring fluxes of main greenhouse gases in terrestrial ecosystem since it is easy to use, efficacious, stable and reliable to collect data.
基金This work was supported by the Ministry of Science and Technology of the People’s Republic of China[2018YFA0606503]。
文摘Since its launch in 2013,the Chinese Road and Belt Innitiative(BRI)has grown into a platform for any countries and regions that wish to participate,with global connectivity as the orienting goal.However,since its inception,concerns over the BRI’s potential impacts on ecology,environment and resilience,as well as its implications for global climate change and sustainability,have gathered force.As this thematic issue goes to press,these already complex BRI issues have been compounded by challenges from the COVID-19 pandemic.Whether and how the BRI can meet these challenges are questions worthy of deep exploration.This emerging BRI scholarship studied various aspects of BRI activities.However,major knowledge gaps remain regarding BRI impacts on GHG emission and on climate adaptation and sustainable resource management more broadly.To this end,this thematic issue aims to contribute to deeper understandings of climate and environmental changes along the BRI by bringing together state-of-art research and views on climate change patterns,trends,risks,impacts and adaptation.
文摘Global warming has been one of the biggest issues faced by the world in recent decades.It is closely related to anthropogenic emissions of greenhouse gases(GHGs)—mainly CO_2,CH_4 and N_2O—and the effects of reducing emissions and increasing the carbon fixation capability.
基金supported by the National Natural Science Foundation of China(No.NFSC-41171191)the Special Agricultural Science and Technology Project of China(No.201503137)+2 种基金the Science and Technology Supporting Project of China(No.2013BAD11B01)the Knowledge Innovation Program of Chinese Academy of Sciences(No.KZCX2-EW-409)the Science and Technology Supporting Project of Jiangsu Province,China(No.BE2013451)
文摘Intensive management of planted forests may result in soil degradation and decline in timber yield with successive rotations. Biochars may be beneficial for plant production, nutrient uptake and greenhouse gas mitigation. Biochar properties vary widely and are known to be highly dependent on feedstocks, but their effects on planted forest ecosystem are elusive. This study investigated the effects of chicken manure biochar, sawdust biochar and their feedstocks on 2-year-old Pinus elliottii growth, fertilizer N use efficiency (NUE), soil N20 and CH4 emissions, and C storage in an acidic forest soil in a subtropical area of China for one year. The soil was mixed with materials in a total of 8 treatments: non-amended control (CK); sawdust at 2.16 kg m^-2 (SD); chicken manure at 1.26 kg m^-2 (CM); sawdust biochar at 2.4 kg m^-2 (SDB); chicken manure biochar at 2.4 kg m^-2 (CMB); 15N-fertilizer alone (10.23 atom% 15N) (NF); sawdust biochar at 2.4 kg m^-2 plus lSN-fertilizer (SDBN) and chicken manure biochar at 2.4 kg m^-2 plus 15N-fertilizer (CMBN). Results showed that the CMB treatment increased P. elliottii net primary production (aboveground biomass plus litterfall) and annual net C fixation (ANCF) by about 180% and 157%, respectively, while the the SDB treatment had little effect on P. eUiottii growth. The 15N stable isotope labelling technique revealed that fertilizer NUE was 22.7% in CK, 25.5% in the NF treatment, and 37.0% in the CMB treatment. Chicken manure biochar significantly increased soil pH, total N, total P, total K, available P and available K. Only 2% of the N in chicken manure biochar was available to the tree. The soil N20 emission and CH4 uptake showed no significant differences among the treatments. The apparent C losses from the SD and CM treatments were 35% and 61%, respectively; while those from the CMB and SDB treatments were negligible. These demonstrated that it is crucial to consider biochar properties while evaluating their effects on plant growth and C sequestration.
基金supported by the National Natural Science Foundation of China(41771336,41471267,4211101081,42161144002)Youth Innovation Promotion Association of the Chinese Academy of Sciences(Y2021102)+1 种基金Key Research and Development Program of Hunan Province(2020NK2011)Chinese Academy of Science and Technology Service Network Initiative Project(KFJ-STSQYZD-2021-22-002).
文摘The subtropical hilly region of China is a region with intensive crop and livestock production,which has resulted in serious N pollution in soil,water and air.This review summarizes the major soil N cycling processes and their influencing factors in rice paddies and uplands in the subtropical hilly region of China.The major N cycling processes include the N fertilizer application in croplands,atmospheric N deposition,biological N fixation,crop N uptake,ammonia volatilization,N_(2)O/NO emissions,nitrogen runoff and leaching losses.The catchment nutrients management model for N cycle modeling and its case studies in the subtropical hilly region were also introduced.Finally,N management practices for improving N use efficiency in cropland,as well as catchment scales are summarized.
文摘To solve the problem energy deficit encountered in developing countries,Hybrid Renewable Energy System(HRES)appears to be a very good solution.The paper presents the optimal design of a hybrid renewable energy system considering the technical i.e Loss of Power Supply Probability(LPSP),economic i.e Cost of Electricity(COE)and Net Present Cost(NPC)and environmental i.e Total Greenhouse gases emission(TGE)aspects using Particle Swarm Optimization(PSO),hybrid Particle Swarm Optimization-Grey Wolf Optimization(PSOGWO),hybrid Grey-Wolf Optimization-Cuckoo Search(GWOCS)and Sine-Cosine Algorithm(SCA)for a Community multimedia center in MAKENENE,Cameroon;where inhabitants have to spend at times 3 to 4 days of blackout.Seven configurations(Scenarios)of hybrid energy systems including PV,WT,Battery and Diesel generator are analyzed considering an average daily energy load of 50.22 kWh with a peak load of 5.6 kW.Four values of the derating factor i.e 0.6,0.7,0.8 and 0.9 are used in this analysis and the best value is 0.9.Scenario 3 with LPSP,COE,NPC,TGE and RF of 0.003%,0.15913$/kWh,46953.0485$,2.3406 kg/year and 99.8%respectively when using GWOCS is found to be the most appropriate for the Community multimedia center.The optimal Scenario is obtained for a system comprising of 18 kW of P_(pv-rated)corresponding to 69 solar panels,3 days of AD corresponding to a total battery capacity of 241 kWh and 1 of N_(dg).