Based on 22 of the climate models from phase 3 of the Coupled Model Intercomparison Project, we investigate the ability of the models to reproduce the spatiotemporal features of the wintertime North Pacific Oscillatio...Based on 22 of the climate models from phase 3 of the Coupled Model Intercomparison Project, we investigate the ability of the models to reproduce the spatiotemporal features of the wintertime North Pacific Oscillation(NPO), which is the second most important factor determining the wintertime sea level pressure field in simulations of the pre-industrial control climate, and evaluate the NPO response to the future most reasonable global warming scenario(the A1B scenario). We reveal that while most models simulate the geographic distribution and amplitude of the NPO pattern satisfactorily, only 13 models capture both features well. However, the temporal variability of the simulated NPO could not be significantly correlated with the observations. Further analysis indicates the weakened NPO intensity for a scenario of strong global warming is attributable to the reduced lower-tropospheric baroclinicity at mid-latitudes, which is anticipated to disrupt large-scale and low-frequency atmospheric variability, resulting in the diminished transfer of energy to the NPO, together with its northward shift.展开更多
Global warming has been one of the biggest issues faced by the world in recent decades.It is closely related to anthropogenic emissions of greenhouse gases(GHGs)—mainly CO_2,CH_4 and N_2O—and the effects of reduci...Global warming has been one of the biggest issues faced by the world in recent decades.It is closely related to anthropogenic emissions of greenhouse gases(GHGs)—mainly CO_2,CH_4 and N_2O—and the effects of reducing emissions and increasing the carbon fixation capability.展开更多
Understanding the effects of warming on greenhouse gas(GHG, such as N2O, CH4 and CO2 )feedbacks to climate change represents the major environmental issue. However, little information is available on how warming eff...Understanding the effects of warming on greenhouse gas(GHG, such as N2O, CH4 and CO2 )feedbacks to climate change represents the major environmental issue. However, little information is available on how warming effects on GHG fluxes in farmland of North China Plain(NCP). An infrared warming simulation experiment was used to assess the responses of N2O, CH4 and CO2 to warming in wheat season of 2012–2014 from conventional tillage(CT) and no-tillage(NT) systems. The results showed that warming increased cumulative N2O emission by 7.7% in CT but decreased it by 9.7% in NT fields(p 〈 0.05). Cumulative CH4 uptake and CO2 emission were increased by 28.7%–51.7% and 6.3%–15.9% in both two tillage systems,respectively(p 〈 0.05). The stepwise regressions relationship between GHG fluxes and soil temperature and soil moisture indicated that the supply soil moisture due to irrigation and precipitation would enhance the positive warming effects on GHG fluxes in two wheat seasons.However, in 2013, the long-term drought stress due to infrared warming and less precipitation decreased N2O and CO2 emission in warmed treatments. In contrast, warming during this time increased CH4 emission from deep soil depth. Across two years wheat seasons, warming significantly decreased by 30.3% and 63.9% sustained-flux global warming potential(SGWP) of N2O and CH4 expressed as CO2 equivalent in CT and NT fields, respectively. However, increase in soil CO2 emission indicated that future warming projection might provide positive feedback between soil C release and global warming in NCP.展开更多
Using 32 CMIP5(Coupled Model Intercomparison Project Phase 5) models, this study examines the veracity in the simulation of cloud amount and their radiative effects(CREs) in the historical run driven by observed e...Using 32 CMIP5(Coupled Model Intercomparison Project Phase 5) models, this study examines the veracity in the simulation of cloud amount and their radiative effects(CREs) in the historical run driven by observed external radiative forcing for 1850-2005, and their future changes in the RCP(Representative Concentration Pathway) 4.5 scenario runs for2006-2100. Validation metrics for the historical run are designed to examine the accuracy in the representation of spatial patterns for climatological mean, and annual and interannual variations of clouds and CREs. The models show large spread in the simulation of cloud amounts, specifically in the low cloud amount. The observed relationship between cloud amount and the controlling large-scale environment are also reproduced diversely by various models. Based on the validation metrics,four models-ACCESS1.0, ACCESS1.3, Had GEM2-CC, and Had GEM2-ES-are selected as best models, and the average of the four models performs more skillfully than the multimodel ensemble average.All models project global-mean SST warming at the increase of the greenhouse gases, but the magnitude varies across the simulations between 1 and 2 K, which is largely attributable to the difference in the change of cloud amount and distribution. The models that simulate more SST warming show a greater increase in the net CRE due to reduced low cloud and increased incoming shortwave radiation, particularly over the regions of marine boundary layer in the subtropics. Selected best-performing models project a significant reduction in global-mean cloud amount of about-0.99% K^-1and net radiative warming of 0.46 W m^-2K^-1, suggesting a role of positive feedback to global warming.展开更多
The Hadley circulation is one of the most important atmospheric circulations.Widening of the Hadley circulation has drawn extensive studies in the past decade.The key concern is that widening of the Hadley circulation...The Hadley circulation is one of the most important atmospheric circulations.Widening of the Hadley circulation has drawn extensive studies in the past decade.The key concern is that widening of the Hadley circulation would cause poleward shift of the subtropical dry zone.Various metrics have been applied to measure the widening of the tropics.What are responsible for the observed widening trends of the Hadley circulation? How anthropogenic and natural forcings caused the widening? How the widening results in regional climatic effects? These are the major questions in studing the widening of the Hadley circulation.While both observations and simulations all show widening of the Hadley circulation in the past few decades,there are no general agreements of changes in the strength of the Hadley circulation.Although some reanalysis datasets show strengthening of the Hadley circulation,it was shown that the strengthening trend could be artificial,and simulations show weakening of the Hadley circulation for global greenhouse warming.In the present paper,we shall briefly review the major progresses of studies in trends in width and strength of the Hadley circulation.We address answers to these questions,clarify inconsistent results,and propose ideas for future studies.展开更多
In this study, the effects of the thermal properties of asphalt binders and aggregate ma- terials were characterized in terms of the specific heat capacity (C) for energy consumption and environmental footprints of ...In this study, the effects of the thermal properties of asphalt binders and aggregate ma- terials were characterized in terms of the specific heat capacity (C) for energy consumption and environmental footprints of hot mix asphalt (HMA) and warm mix asphalt (WMA). Asphalt mixes produced using low-C aggregate are found to be more energy-efficient and environmental friendly, irrespective of the binder type and construction technology. Therefore, different fractions of aggregate blends were replaced with the aggregate pro- vided from a ]ow-C source or sustainable source. Analysis of energy consumption clearly indicated that the specific energy and environmental footprints decrease linearly as the low-C aggregate content increases. The amount of energy saving realized in the asphalt industries by the use of low-C aggregate is significant on a national scale in China. In this regard, China was chosen as a case study. Analysis of fuel requirement clearly indicated that the production of WMA using high thermal sensitivity aggregate can yield significant energy saving sufficient to fuel 44,007 to 664,880 Chinese households per year. Therefore, use of low C aggregate in asphalt mix production can be adopted as a strategy to produce WMA and HMA.展开更多
基金Supported by the China National Global Change Major Research Project(No.2013CB956201)the National Science Foundation of China(NSFC)Key Project(No.41130859)+1 种基金the NSFC(Nos.41506009,41521091)the NSFC Major Project(No.41490643)
文摘Based on 22 of the climate models from phase 3 of the Coupled Model Intercomparison Project, we investigate the ability of the models to reproduce the spatiotemporal features of the wintertime North Pacific Oscillation(NPO), which is the second most important factor determining the wintertime sea level pressure field in simulations of the pre-industrial control climate, and evaluate the NPO response to the future most reasonable global warming scenario(the A1B scenario). We reveal that while most models simulate the geographic distribution and amplitude of the NPO pattern satisfactorily, only 13 models capture both features well. However, the temporal variability of the simulated NPO could not be significantly correlated with the observations. Further analysis indicates the weakened NPO intensity for a scenario of strong global warming is attributable to the reduced lower-tropospheric baroclinicity at mid-latitudes, which is anticipated to disrupt large-scale and low-frequency atmospheric variability, resulting in the diminished transfer of energy to the NPO, together with its northward shift.
文摘Global warming has been one of the biggest issues faced by the world in recent decades.It is closely related to anthropogenic emissions of greenhouse gases(GHGs)—mainly CO_2,CH_4 and N_2O—and the effects of reducing emissions and increasing the carbon fixation capability.
基金supported by the National Natural Science Foundation of China(No.31170414)the 100 Talents Program of Chinese Academy of Science(No.2009)
文摘Understanding the effects of warming on greenhouse gas(GHG, such as N2O, CH4 and CO2 )feedbacks to climate change represents the major environmental issue. However, little information is available on how warming effects on GHG fluxes in farmland of North China Plain(NCP). An infrared warming simulation experiment was used to assess the responses of N2O, CH4 and CO2 to warming in wheat season of 2012–2014 from conventional tillage(CT) and no-tillage(NT) systems. The results showed that warming increased cumulative N2O emission by 7.7% in CT but decreased it by 9.7% in NT fields(p 〈 0.05). Cumulative CH4 uptake and CO2 emission were increased by 28.7%–51.7% and 6.3%–15.9% in both two tillage systems,respectively(p 〈 0.05). The stepwise regressions relationship between GHG fluxes and soil temperature and soil moisture indicated that the supply soil moisture due to irrigation and precipitation would enhance the positive warming effects on GHG fluxes in two wheat seasons.However, in 2013, the long-term drought stress due to infrared warming and less precipitation decreased N2O and CO2 emission in warmed treatments. In contrast, warming during this time increased CH4 emission from deep soil depth. Across two years wheat seasons, warming significantly decreased by 30.3% and 63.9% sustained-flux global warming potential(SGWP) of N2O and CH4 expressed as CO2 equivalent in CT and NT fields, respectively. However, increase in soil CO2 emission indicated that future warming projection might provide positive feedback between soil C release and global warming in NCP.
基金supported by the APEC Climate Centersupported by the UNIST research fund (Grant No. 1.09006.01)provided by a grant (Grant No. 14AWMP-B082564-01) from the Advanced Water Management Research Program funded by the Ministry of Land, Infrastructure and Transport of the Korean government
文摘Using 32 CMIP5(Coupled Model Intercomparison Project Phase 5) models, this study examines the veracity in the simulation of cloud amount and their radiative effects(CREs) in the historical run driven by observed external radiative forcing for 1850-2005, and their future changes in the RCP(Representative Concentration Pathway) 4.5 scenario runs for2006-2100. Validation metrics for the historical run are designed to examine the accuracy in the representation of spatial patterns for climatological mean, and annual and interannual variations of clouds and CREs. The models show large spread in the simulation of cloud amounts, specifically in the low cloud amount. The observed relationship between cloud amount and the controlling large-scale environment are also reproduced diversely by various models. Based on the validation metrics,four models-ACCESS1.0, ACCESS1.3, Had GEM2-CC, and Had GEM2-ES-are selected as best models, and the average of the four models performs more skillfully than the multimodel ensemble average.All models project global-mean SST warming at the increase of the greenhouse gases, but the magnitude varies across the simulations between 1 and 2 K, which is largely attributable to the difference in the change of cloud amount and distribution. The models that simulate more SST warming show a greater increase in the net CRE due to reduced low cloud and increased incoming shortwave radiation, particularly over the regions of marine boundary layer in the subtropics. Selected best-performing models project a significant reduction in global-mean cloud amount of about-0.99% K^-1and net radiative warming of 0.46 W m^-2K^-1, suggesting a role of positive feedback to global warming.
基金supported by the National Natural Science Foundation of China(41530423,and 41761144072)
文摘The Hadley circulation is one of the most important atmospheric circulations.Widening of the Hadley circulation has drawn extensive studies in the past decade.The key concern is that widening of the Hadley circulation would cause poleward shift of the subtropical dry zone.Various metrics have been applied to measure the widening of the tropics.What are responsible for the observed widening trends of the Hadley circulation? How anthropogenic and natural forcings caused the widening? How the widening results in regional climatic effects? These are the major questions in studing the widening of the Hadley circulation.While both observations and simulations all show widening of the Hadley circulation in the past few decades,there are no general agreements of changes in the strength of the Hadley circulation.Although some reanalysis datasets show strengthening of the Hadley circulation,it was shown that the strengthening trend could be artificial,and simulations show weakening of the Hadley circulation for global greenhouse warming.In the present paper,we shall briefly review the major progresses of studies in trends in width and strength of the Hadley circulation.We address answers to these questions,clarify inconsistent results,and propose ideas for future studies.
基金the Japan Society for the Promotion of Science(JSPS) Fellows(grant number:26.04058)
文摘In this study, the effects of the thermal properties of asphalt binders and aggregate ma- terials were characterized in terms of the specific heat capacity (C) for energy consumption and environmental footprints of hot mix asphalt (HMA) and warm mix asphalt (WMA). Asphalt mixes produced using low-C aggregate are found to be more energy-efficient and environmental friendly, irrespective of the binder type and construction technology. Therefore, different fractions of aggregate blends were replaced with the aggregate pro- vided from a ]ow-C source or sustainable source. Analysis of energy consumption clearly indicated that the specific energy and environmental footprints decrease linearly as the low-C aggregate content increases. The amount of energy saving realized in the asphalt industries by the use of low-C aggregate is significant on a national scale in China. In this regard, China was chosen as a case study. Analysis of fuel requirement clearly indicated that the production of WMA using high thermal sensitivity aggregate can yield significant energy saving sufficient to fuel 44,007 to 664,880 Chinese households per year. Therefore, use of low C aggregate in asphalt mix production can be adopted as a strategy to produce WMA and HMA.