Kuala Lumpur of Malaysia,as a tropical city,has experienced a notable decline in its critical urban green infrastructure(UGI)due to rapid urbanization and haphazard development.The decrease of UGI,especially natural f...Kuala Lumpur of Malaysia,as a tropical city,has experienced a notable decline in its critical urban green infrastructure(UGI)due to rapid urbanization and haphazard development.The decrease of UGI,especially natural forest and artificial forest,may reduce the diversity of ecosystem services and the ability of Kuala Lumpur to build resilience in the future.This study analyzed land use and land cover(LULC)and UGI changes in Kuala Lumpur based on Landsat satellite images in 1990,2005,and 2021and employed the overall accuracy and Kappa coefficient to assess classification accuracy.LULC was categorized into six main types:natural forest,artificial forest,grassland,water body,bare ground,and built-up area.Satellite images in 1990,2005,and 2021 showed the remarkable overall accuracy values of 91.06%,96.67%,and 98.28%,respectively,along with the significant Kappa coefficient values of 0.8997,0.9626,and 0.9512,respectively.Then,this study utilized Cellular Automata and Markov Chain model to analyze the transition of different LULC types during 1990-2005 and 1990-2021 and predict LULC types in 2050.The results showed that natural forest decreased from 15.22%to 8.20%and artificial forest reduced from 18.51%to 15.16%during 1990-2021.Reductions in natural forest and artificial forest led to alterations in urban surface water dynamics,increasing the risk of urban floods.However,grassland showed a significant increase from 7.80%to 24.30%during 1990-2021.Meanwhile,bare ground increased from 27.16%to 31.56%and built-up area increased from 30.45%to 39.90%during 1990-2005.In 2021,built-up area decreased to 35.10%and bare ground decreased to 13.08%,indicating a consistent dominance of built-up area in the central parts of Kuala Lumpur.This study highlights the importance of integrating past,current,and future LULC changes to improve urban ecosystem services in the city.展开更多
The accelerating urbanization process and intensifying climate change have exacerbated the urban heat island effect, threatening sustainable urban development. This study investigates the role of green infrastructure ...The accelerating urbanization process and intensifying climate change have exacerbated the urban heat island effect, threatening sustainable urban development. This study investigates the role of green infrastructure in mitigating urban heat island effects, its implementation challenges, and applications. Employing a system dynamics approach, the research models the relationships between green infrastructure, urban microclimate, and human well-being. Findings indicate that large, continuous green spaces, such as urban parks and green corridors, are most effective, potentially reducing surrounding temperatures by 1˚C - 4˚C. Green infrastructure also provides multiple ecosystem services, including improved air quality and increased biodiversity. However, its implementation faces challenges such as land resource limitations and financial constraints. To address these issues, the study proposes a performance-based planning method, emphasizing multifunctional design and cross-sectoral collaboration. Through analysis of international and Chinese urban case studies, best practices and lessons learned are summarized. The research demonstrates that successful strategies must be context-specific, integrating local conditions while emphasizing long-term planning and continuous optimization. This study provides a scientific basis for developing effective heat island mitigation strategies and climate adaptation plans, ultimately achieving sustainable urban development and improved living environments.展开更多
Through a case study of Shenzhen City,China,this study focused on a quantitative method for analyzing the spatial processes involved in green infrastructure changes associated with rapid urbanization.Based on RS,GIS a...Through a case study of Shenzhen City,China,this study focused on a quantitative method for analyzing the spatial processes involved in green infrastructure changes associated with rapid urbanization.Based on RS,GIS and SPSS statistics software,the approach includes selection of the square analysis units and representative landscape metrics,quantification of the change types of landscape metrics in all analysis units through two indices and hierarchical cluster analysis of the above analysis units with different landscape metric change types(i.e.spatial attributes).The analyses verify that there is a significant sequence of continuous changes in green infrastructure in Shenzhen.They are the perforation,the segmentation,the fragmentation,the evanescence and the filling-in processes,which have a good spatio-temporal correspondence with urbanization and reflect the synthetic influence of urban planning,government policies and landforms.Compared with other studies on quantifying the spatial pattern,this study provides an alternative probe into linking the spatial pattern to spatial processes and the corresponding ecological processes in the future.These spatio-temporal processes offer many opportunities for identifying,protecting and restoring key elements in an urban green infrastructure network for areas in the early stages of urbanization or for non-urbanized areas.展开更多
As an important coal-resource based city in eastern China, coal mining activities have greatly promoted economic development to Xuzhou while resulted in kinds of blocks for sustainable development. Subsidence areas ca...As an important coal-resource based city in eastern China, coal mining activities have greatly promoted economic development to Xuzhou while resulted in kinds of blocks for sustainable development. Subsidence areas caused by coal mining activities and rapid urbanization process led to the losing of ecological function and decreasing of landscape connectivity in the city. As the important life-support system, urban green infrastructure (GI as short) has great significance in improving human well-beings. Taking Xuzhou urban area as the study object, this paper proposed a green infrastructure construction method based on the principle of ecological priority. Firstly, key ecological patches were identified by GIS and RS methods. Secondly, we established corridors by minimum cost path model. Then, we built GI network and evaluated the ecological importance of different patches. Finally, by comparing the status of patches and coal mining subsidence areas, we proposed a framework for constructing GI network in Xuzhou urban area.展开更多
Currently, urban Green Space Systems in China show fragile ecological conditions, the overseas Green Infrastructure is a new idea to construct urban green ecological spaces. Typical Green Infrastructure construction c...Currently, urban Green Space Systems in China show fragile ecological conditions, the overseas Green Infrastructure is a new idea to construct urban green ecological spaces. Typical Green Infrastructure construction cases in the U. K., such as London greenbelt, park system, green corridor, green chain and Green Grid were studied to analyze problems of China urban Green Space System planning, construction, and management, so as to propose suggestions for improving ecological functions of the urban Green Space System.展开更多
Sustainability is one of the most-mentioned words from the UN seminars to local community meetings, it is the issue of the world. The emerging science of landscape ecology, is learning more and more about the importan...Sustainability is one of the most-mentioned words from the UN seminars to local community meetings, it is the issue of the world. The emerging science of landscape ecology, is learning more and more about the importance of the "linkage" that green infrastructure(GI) provides in maintaining and restoring ecological processes and the health of nature. The world has moved from the industrialization period to sustainability as a growing issue and answering the question of sustainability in different sectors and green infrastructure is trying to answer the request for sustainable infrastructure. Applying the concept and characteristics of green infrastructure is the infrastructural solution in design. This paper tries to see the origins and concepts of green infrastructure and the strong role of green infrastructure as a part of sustainable development.展开更多
Green Infrastructure(GI)has garnered increasing attention from various regions due to its potential to mitigate urban heat island(UHI),which has been exacerbated by global climate change.This study focuses on the cent...Green Infrastructure(GI)has garnered increasing attention from various regions due to its potential to mitigate urban heat island(UHI),which has been exacerbated by global climate change.This study focuses on the central area of Fuzhou city,one of the“furnace”cities,and aims to explore the correlation between the GI pattern and land surface temperature(LST)in the spring and autumn seasons.The research adopts a multiscale approach,starting from the urban scale and using urban geographic spatial characteristics,multispectral remote sensing data,and morphological spatial pattern analysis(MSPA).Significant MSPA elements were tested and combined with LST to conduct a geographic weighted regression(GWR)experiment.The findings reveal that the UHI in the central area of Fuzhou city has a spatial characteristic of“high temperature in the middle and low temperature around,”which is coupled with a“central scattered and peripheral concentrated”distribution of GI.This suggests that remote sensing data can effectively be utilised for UHI inversion.Additionally,the study finds that the complexity of GI,whether from the perspective of the overall GI pattern or the classification study based on the proportion of the core area,has an impact on the alleviation of UHI in both seasons.In conclusion,this study underscores the importance of a reasonable layout of urban green infrastructure for mitigating UHI.展开更多
Dynamic</span></span><span><span><span style="font-family:""><span style="font-family:Verdana;"> urbanization of African cities has created development traj...Dynamic</span></span><span><span><span style="font-family:""><span style="font-family:Verdana;"> urbanization of African cities has created development trajectories that face systemic challenges in the provision of sustainable and ecologically resilient urban environments. The specific challenges include extensive unregulated growth with informal settlements reflecting poor service levels and high poverty indices, inadequacy in </span><span style="font-family:Verdana;">provision</span><span style="font-family:Verdana;"> of basic services in health, water, housing, transport </span><span style="font-family:Verdana;">and</span><span style="font-family:Verdana;"> communication infrastructure, high reliance on biomass fuels, exposure to environmental stress </span><span style="font-family:Verdana;">and</span><span style="font-family:Verdana;"> implausible climate change coping and mitigation mechanisms among others. </span><span style="font-family:Verdana;">Review</span><span style="font-family:Verdana;"> of extensive literature and synthesis of existing bodies of knowledge on the ecological and management perspectives of urban environments revealed many gaps and understanding of urban transformation processes. The purpose of this review was to contextualize credible pathways for optimization of both ecosystem goods and services from green urban landscapes (Green infrastructure) and non-green infrastructure to ensure sustainable and ecologically resilient urban environments. Attempts were made to rationalize and validate through discussions the benefits of managed urban ecosystems for African cities. </span><span style="font-family:Verdana;">On the basis of</span><span style="font-family:Verdana;"> the evidence from the literature, it is concluded that urban development trajectories that do not embrace multifaceted approaches that deliberately retain and maintain green infrastructure in the urban environment may not be cost-effective. It is recommended that systematic integration of urban forestry concepts in urban planning that involves communities, local and national governments, business entrepreneurs </span><span style="font-family:Verdana;">and</span><span style="font-family:Verdana;"> public and private research institutions provides tenable frameworks for addressing current and future challenges of urbanization in Africa.展开更多
In recent years,global ecological and environmental problems have gradually become prominent,and green infrastructure(GI),as one of the effective measures to deal with environmental problems,has gradually attracted at...In recent years,global ecological and environmental problems have gradually become prominent,and green infrastructure(GI),as one of the effective measures to deal with environmental problems,has gradually attracted attention from various fields.In this paper,green infrastructure is taken as the research object,and a total of 1950 related documents in the core database of"web of science"from 1995 to 2021 are taken as the basic data source.By using CiteSpace visualization software,the network of scholars,the distribution characteristics of journals,highly cited articles,prominent keywords,research hotspots and future research trends of related documents are analyzed.The analysis results show that the research on green infrastructure at home and abroad continues to increase;the research on green infrastructure mainly focuses on urban planning,ecosystem services,ecological environment and other issues;the research field of green infrastructure has gradually changed from traditional research fields such as urban planning,architectural engineering and ecology to land use management,urban healthy development,urban sustainable development,physical heat radiation and other fields;at present,research on green infrastructure mainly involves urban planning,ecology and other fields;the future research on green infrastructure will involve the field of physical heat radiation.The purpose is to provide valuable scientific basis and theoretical basis for the future green infrastructure construction in China.展开更多
The positive role of urban green stormwater infrastructure(GIS)and wetland park construction in the process of“sponge city”construction is analyzed by expounding the connotation and problems of“sponge city”constru...The positive role of urban green stormwater infrastructure(GIS)and wetland park construction in the process of“sponge city”construction is analyzed by expounding the connotation and problems of“sponge city”construction.Through the analysis of relevant cases,the realization approaches of combing different types of GIS with wetland park landscape design are interpreted,and it is pointed out that different types of GIS can guide the further practice of“sponge city”construction.展开更多
In order to improve the stormwater regulation functions of urban greenways on the basis of literature research and case study the relationships between urban greenway and low impact development LID and green stormwate...In order to improve the stormwater regulation functions of urban greenways on the basis of literature research and case study the relationships between urban greenway and low impact development LID and green stormwater infrastructure GSI are analyzed. Then the classification system of urban greenways is proposed based on their stormwater regulation function and the suitable technical measures for stormwater management which can be used in different kinds of greenways are selected. According to China’s urban planning system the greenway planning method combined with the urban drainage system is developed and the design methods of the greenway stormwater system and individual stormwater facilities are put forward. The relationships between the greenway stormwater system and other systems are also analyzed in terms of stormwater inlet vertical design and overflow.Finally the waterfront greenway and street greenway demonstration projects in Jiaxing City which adopts the above concept and method are introduced. The results show that the reduction rates of annual total stormwater runoff and average total runoff contaminants TSS of the stormwater system are not less than 30% and 40% respectively.展开更多
The strength and expertise that botanic gardens bring to conservation are based on their detailed knowledge and understanding of the care. management, and biology of a diversity of plant species. This emphasis on the ...The strength and expertise that botanic gardens bring to conservation are based on their detailed knowledge and understanding of the care. management, and biology of a diversity of plant species. This emphasis on the organism has led to many ex-situ and in-situ conservation programs aimed at protecting endangered species, restoring threatened populations, and establishing living plant and seed collections of endangered species. In China, the scale and pace of change in land and resource use, often leading to environmental degradation, has created a strong emphasis on improving environmental conditions. If done properly, being "green" can be a surprisingly complex issue, because it should encompass and exploit the whole of plant diversity and function. Unfortunately, 'green' often includes a small portion of this whole. Earth's rich plant diversity presents considerable opportunity but requires expertise and knowledge for stable and beneficial management. With the dawning of the Anthropocene, we should strive to live on a "Garden Earth", where we design and manage our environments, both built and natural, to create a healthy, beneficial living landscape for people and other organisms. The staff of botanic gardens worldwide and the living collections they maintain embody the best examples of sustainable, beautiful, and beneficial environments that thrive on plant diversity. This expertise should be a fundamental resource for agencies in all sectors responsible for managing and designing "green" infrastructure. Botanic gardens should actively engage and contribute to these opportunities, from large public infrastructure projects to small private conservation efforts. Here, we discuss several ongoing conservation efforts, primarily in China, and attempt to identify areas where botanic gardens could make a significant and meaningful difference.展开更多
Experiencing urban green and blue spaces(GBSs)can be a nature-based solution to improve mental well-being and cope with negative moods for people exposed to PM2.5 pollution.In this study,a total of 1257 photos were co...Experiencing urban green and blue spaces(GBSs)can be a nature-based solution to improve mental well-being and cope with negative moods for people exposed to PM2.5 pollution.In this study,a total of 1257 photos were collected to recognize their posted emotions of Sina Weibo users from 38 parks in 22 cities in Northeast China in 2021,when atmospheric PM_(2.5)and landscape metrics were evaluated for GBSs of each park.Autumn and winter had heavy atmospheric PM_(2.5)pollutions in resource-dependent cities of Liaoning.Net positive emotions(happy minus sad scores)decreased in larger green spaces.The perception of blue space countered the presentation of sadness only for a limited period over four seasons.High elevation decreased the level of happiness presented in winter.Overall,this study confirms that visiting large urban green spaces at low elevations can benefit the perception of positive sentiments for people exposed to PM_(2.5)in autumn.For planning urban forests in Northeast China,more green spaces should be constructed in cities in southern Jilin province to alleviate air PM_(2.5)pollution and gain better well-being of local people.展开更多
Hungary is located in the deepest part of the Pannonian Basin,which is affected by floodwaters.Lowland areas are particularly vulnerable to floods.Many natural and anthropogenic processes have contributed to the forma...Hungary is located in the deepest part of the Pannonian Basin,which is affected by floodwaters.Lowland areas are particularly vulnerable to floods.Many natural and anthropogenic processes have contributed to the formation of these flood patches,after river regulation(decisively from the middle of 18th century)and continue to affect them.The objective of this research is to reveal the processes of landscape-change in areas of waterlogging,or areas threatened by excess water inundation in order to establish methods of adaptive excess water management.The analysis focuses on examining the previously prevalent land-use structure and linear infrastructure elements(green,blue infrastructures)of the past 200-250 years that can be identified using historical,military maps and aerial photos.Historical maps compare different periods of 50-60 years prevalence.As a result of this analysis,the role of watercourses in shaping landscapes and human intervention process can be monitored and supported with maps including data.The processing consisted of geographic information system(GIS)methods:georeference the historical maps and digitalize the well-separable land-uses of the sample area.The results confirmed the process of landscape-change and the trend of green areas:cultivated areas and the spread of settlements.In conclusion,landscape-changing analyses of landscape-changes provide valuable data onto identifying changes in land-use,which are complemented by hydrological databases,especially those related to waterlogging areas,as they adequately support adaptive excess water management methods in areas with specific characteristics.The results show which land-uses can be considered as permanent,stable land-uses in the given sample area and broach whether changes within the green and blue infrastructure network contribute to the increase or decrease of excess water formation.展开更多
China started a Sponge City program to offset the adverse impacts of urban developments and to tackle many water-related problems.By emphasizing stormwater management practices with“natural solutions”,many positive ...China started a Sponge City program to offset the adverse impacts of urban developments and to tackle many water-related problems.By emphasizing stormwater management practices with“natural solutions”,many positive results have been achieved.The operation and maintenance(O&M)of Sponge City to support long-term success gained considerable focus.China is facing challenges many developed countries have encountered,as well as unique ones due to specific social,economic,and environmental conditions.This study identified and discussed Sponge City O&M challenges:(1)scheduling challenges,(2)technical challenges,(3)in short of local regulation/ordnance,(4)inadequate O&M assessment standard,(5)underprovided training,(6)PPP related concerns,(7)inter-agency coordination needs,(8)ownership and responsible party issues,(9)substandard documentation,and(10)funding and financial concerns.Selected cases and progress in pilot cities are introduced in the discussions.展开更多
Severe urban heat,a prevalent climate change consequence,endangers city residents globally.Vegetation-based mitigation strategies are commonly employed to address this issue.However,the Middle East and North Africa ar...Severe urban heat,a prevalent climate change consequence,endangers city residents globally.Vegetation-based mitigation strategies are commonly employed to address this issue.However,the Middle East and North Africa are under investigated in terms of heat mitigation,despite being one of the regions most vulnerable to climate change.This study assesses the feasibility and climatic implications of wide-scale implementation of green infrastructure(GI)for heat mitigation in Riyadh,Saudi Arabia—a representative desert city characterized by low vegetation coverage,severe summer heat,and drought.Weather research forecasting model(WRF)is used to simulate GI cooling measures in Riyadh’s summer condition,including measures of increasing vegetation coverage up to 60%,considering irrigation and vegetation types(tall/short).In Riyadh,without irrigation,increasing GI fails to cool the city and can even lead to warming(0.1 to 0.3℃).Despite irrigation,Riyadh’s overall GI cooling effect is 50% lower than GI cooling expectations based on literature meta-analyses,in terms of average peak hour temperature reduction.The study highlights that increased irrigation substantially raises the rate of direct soil evaporation,reducing the proportion of irrigation water used for transpiration and thus diminishing efficiency.Concurrently,water resource management must be tailored to these specific considerations.展开更多
Urban green areas are essential elements of cities and contribute to the quality of life in numerous ways by maintaining and regulating the environment.However,increased urbanization and development have placed urban ...Urban green areas are essential elements of cities and contribute to the quality of life in numerous ways by maintaining and regulating the environment.However,increased urbanization and development have placed urban green areas under extreme pressure,while unplanned urban growth has resulted in the loss of urban landscape and ecosystem.This study’s objective was the public perception on the role of urban green infrastructure and land use management.The 385 sample households were selected by using random sampling method.Descriptive and econometric analyses were used for analyzing both quantitative and qualitative data by using SPSS version 25.Among the major factors influencing the urban green infrastructure by respondents perception were education,income,family size,sex of respondent,marital status,type of employment,ownership of house,participation on public involvement,and frequency of visit to nearer planning which are significant variables in the model.Individuals visited the given green structure at least twice a week,and those not done it were 47.9% and 52.1%.The amount of individuals who visited it twice a week in positive perceivers was 64%,and the amount of those who have not done it was 36%.The Chi-square value of 10.9 was very big and telling us that the frequency of visit was determinant factor of perception.It is vital to keep in mind that while the built-up area and the agricultural areas are rising due to urbanization,the core-ecosystem land is being“eaten”as a result of the past and present land uses inside the administrative limits,as well as the services they provide.In the last 6 years,the rate at which the most precious ecosystems are disappearing has tripled.The population,which reflects the demand for these services and benefits,is still growing,putting more strain on the environment.The recommendations include:Public involvement in urban green space planning and development was determinant and core variable of the study.The government of the town administration should prepare the meeting.The result showed a high correlation between urban green planning and land use changes.展开更多
Objectives:(1)to explore what kind of green infrastructure(GI)meets the demand for urban ecological security of rapid urbanization areas;(2)to figure out how to determine the specific function and configuration of GI ...Objectives:(1)to explore what kind of green infrastructure(GI)meets the demand for urban ecological security of rapid urbanization areas;(2)to figure out how to determine the specific function and configuration of GI from ecosystem service requirements of urban ecological security.Methods:(1)Through the literature review,this article summarizes the function and structure evolution of GI in order to adapt to urban growth.(2)Standing on the imperfect ecological functions and unreasonable spatial configurations,this article builds up a conceptual model for the optimization of green infrastructure ecosystem services to meet the demand for the green infrastructure pattern needed by urban growth.Results:The optimization framework consists of four central function modules and its regulating and controlling mechanisms,incuding:(1)Balancing supply and demand of GI's ecosystem service;(2)Measuring and evaluating GI's ecosystem services;(3)Elevating and optimizing GI's ecosystem service;(4)Building urban ecological security patterm with high efficiency of GI's ecosystem services.Moreover,this framework provides guidance for the planning and design of GI and the urban ecological security pattern building in rapid urbanization areas based on ba lancing supply and demand of GI's ecosystem services.Conclusion:The conceptual model of Gl's ecosystem service optimization based on balan-cing supply and demand shows a new path to meet the needs of urban growth and build a city's ecological security pattern through upgrading and optimizing GI.展开更多
The cities of desert climates are anticipated to recognize a synergy of urban heat island(UHI)and severe heat waves during summertime.To improve the urban thermal environment,the present study aims quantitatively expl...The cities of desert climates are anticipated to recognize a synergy of urban heat island(UHI)and severe heat waves during summertime.To improve the urban thermal environment,the present study aims quantitatively explore a strategically designed network of vegetation patches called green infrastructure(GI)in subtropical desert cities such as Dubai.To achieve a more comfortable temperature environment,we built and simulated four GI situations with higher GI fractions,GI25,GI50,GI75,and GI100.Using a mesoscale urban model,the mosaic approach is utilized to test potential thermal improvement and urban climate impact,and a portion of each urban grid cell in the model domain is altered with various species of urban vegetation patches by 25%,50%,75%,and 100%.The daily peak reduction in ambient temperature at 17:00LT is similar to 0.0168℃ per unit of GI increase when compared to the untreated scenario;however,the maximum anticipated daytime summer temperature decline for GI25,GI50,GI75,and GI100 is 0.6℃,1.1℃,1.4℃,and 1.7℃,respectively.The associated reduction in nighttime ambient temperature per unit increase in the GI is 0.0432℃,with a maximum temperature drop of around 2.4℃ for the GI100 scenario.Increased GI reduces the height of the planetary boundary layer(PBL)by up to 468 m,which might lead to greater pollution concentrations.While GI-based cooling has a significant influence on delayed sea breeze and humidity,it may raise the risk of heat discomfort in the indoor building environment.This study adds to our understanding of the potential for GI mitigation as well as the seasonal impact of developing GIs on the desert urban boundary layer.展开更多
基金supported by the Malaysia-Japan International Institute of Technology(MJIIT),Universiti Teknologi Malaysia.
文摘Kuala Lumpur of Malaysia,as a tropical city,has experienced a notable decline in its critical urban green infrastructure(UGI)due to rapid urbanization and haphazard development.The decrease of UGI,especially natural forest and artificial forest,may reduce the diversity of ecosystem services and the ability of Kuala Lumpur to build resilience in the future.This study analyzed land use and land cover(LULC)and UGI changes in Kuala Lumpur based on Landsat satellite images in 1990,2005,and 2021and employed the overall accuracy and Kappa coefficient to assess classification accuracy.LULC was categorized into six main types:natural forest,artificial forest,grassland,water body,bare ground,and built-up area.Satellite images in 1990,2005,and 2021 showed the remarkable overall accuracy values of 91.06%,96.67%,and 98.28%,respectively,along with the significant Kappa coefficient values of 0.8997,0.9626,and 0.9512,respectively.Then,this study utilized Cellular Automata and Markov Chain model to analyze the transition of different LULC types during 1990-2005 and 1990-2021 and predict LULC types in 2050.The results showed that natural forest decreased from 15.22%to 8.20%and artificial forest reduced from 18.51%to 15.16%during 1990-2021.Reductions in natural forest and artificial forest led to alterations in urban surface water dynamics,increasing the risk of urban floods.However,grassland showed a significant increase from 7.80%to 24.30%during 1990-2021.Meanwhile,bare ground increased from 27.16%to 31.56%and built-up area increased from 30.45%to 39.90%during 1990-2005.In 2021,built-up area decreased to 35.10%and bare ground decreased to 13.08%,indicating a consistent dominance of built-up area in the central parts of Kuala Lumpur.This study highlights the importance of integrating past,current,and future LULC changes to improve urban ecosystem services in the city.
文摘The accelerating urbanization process and intensifying climate change have exacerbated the urban heat island effect, threatening sustainable urban development. This study investigates the role of green infrastructure in mitigating urban heat island effects, its implementation challenges, and applications. Employing a system dynamics approach, the research models the relationships between green infrastructure, urban microclimate, and human well-being. Findings indicate that large, continuous green spaces, such as urban parks and green corridors, are most effective, potentially reducing surrounding temperatures by 1˚C - 4˚C. Green infrastructure also provides multiple ecosystem services, including improved air quality and increased biodiversity. However, its implementation faces challenges such as land resource limitations and financial constraints. To address these issues, the study proposes a performance-based planning method, emphasizing multifunctional design and cross-sectoral collaboration. Through analysis of international and Chinese urban case studies, best practices and lessons learned are summarized. The research demonstrates that successful strategies must be context-specific, integrating local conditions while emphasizing long-term planning and continuous optimization. This study provides a scientific basis for developing effective heat island mitigation strategies and climate adaptation plans, ultimately achieving sustainable urban development and improved living environments.
基金Under the auspices of National Natural Science Foundation of China (No. 41001112,40635028)
文摘Through a case study of Shenzhen City,China,this study focused on a quantitative method for analyzing the spatial processes involved in green infrastructure changes associated with rapid urbanization.Based on RS,GIS and SPSS statistics software,the approach includes selection of the square analysis units and representative landscape metrics,quantification of the change types of landscape metrics in all analysis units through two indices and hierarchical cluster analysis of the above analysis units with different landscape metric change types(i.e.spatial attributes).The analyses verify that there is a significant sequence of continuous changes in green infrastructure in Shenzhen.They are the perforation,the segmentation,the fragmentation,the evanescence and the filling-in processes,which have a good spatio-temporal correspondence with urbanization and reflect the synthetic influence of urban planning,government policies and landforms.Compared with other studies on quantifying the spatial pattern,this study provides an alternative probe into linking the spatial pattern to spatial processes and the corresponding ecological processes in the future.These spatio-temporal processes offer many opportunities for identifying,protecting and restoring key elements in an urban green infrastructure network for areas in the early stages of urbanization or for non-urbanized areas.
基金This work was supported by National Natural Science Foundation of China for funding the project "Research on Space-Time Evolution Laws and Optimization Model of Green Infrastructure in Coal Resource Based Cities" (No. 41671524).
文摘As an important coal-resource based city in eastern China, coal mining activities have greatly promoted economic development to Xuzhou while resulted in kinds of blocks for sustainable development. Subsidence areas caused by coal mining activities and rapid urbanization process led to the losing of ecological function and decreasing of landscape connectivity in the city. As the important life-support system, urban green infrastructure (GI as short) has great significance in improving human well-beings. Taking Xuzhou urban area as the study object, this paper proposed a green infrastructure construction method based on the principle of ecological priority. Firstly, key ecological patches were identified by GIS and RS methods. Secondly, we established corridors by minimum cost path model. Then, we built GI network and evaluated the ecological importance of different patches. Finally, by comparing the status of patches and coal mining subsidence areas, we proposed a framework for constructing GI network in Xuzhou urban area.
基金Supported by General Program of Yunnan Provincial Applied Basic Research(2009ZC075M):Study on Yunnan Town’s Characteristic Landscape and Ecological Security Pattern based on GIS
文摘Currently, urban Green Space Systems in China show fragile ecological conditions, the overseas Green Infrastructure is a new idea to construct urban green ecological spaces. Typical Green Infrastructure construction cases in the U. K., such as London greenbelt, park system, green corridor, green chain and Green Grid were studied to analyze problems of China urban Green Space System planning, construction, and management, so as to propose suggestions for improving ecological functions of the urban Green Space System.
文摘Sustainability is one of the most-mentioned words from the UN seminars to local community meetings, it is the issue of the world. The emerging science of landscape ecology, is learning more and more about the importance of the "linkage" that green infrastructure(GI) provides in maintaining and restoring ecological processes and the health of nature. The world has moved from the industrialization period to sustainability as a growing issue and answering the question of sustainability in different sectors and green infrastructure is trying to answer the request for sustainable infrastructure. Applying the concept and characteristics of green infrastructure is the infrastructural solution in design. This paper tries to see the origins and concepts of green infrastructure and the strong role of green infrastructure as a part of sustainable development.
文摘Green Infrastructure(GI)has garnered increasing attention from various regions due to its potential to mitigate urban heat island(UHI),which has been exacerbated by global climate change.This study focuses on the central area of Fuzhou city,one of the“furnace”cities,and aims to explore the correlation between the GI pattern and land surface temperature(LST)in the spring and autumn seasons.The research adopts a multiscale approach,starting from the urban scale and using urban geographic spatial characteristics,multispectral remote sensing data,and morphological spatial pattern analysis(MSPA).Significant MSPA elements were tested and combined with LST to conduct a geographic weighted regression(GWR)experiment.The findings reveal that the UHI in the central area of Fuzhou city has a spatial characteristic of“high temperature in the middle and low temperature around,”which is coupled with a“central scattered and peripheral concentrated”distribution of GI.This suggests that remote sensing data can effectively be utilised for UHI inversion.Additionally,the study finds that the complexity of GI,whether from the perspective of the overall GI pattern or the classification study based on the proportion of the core area,has an impact on the alleviation of UHI in both seasons.In conclusion,this study underscores the importance of a reasonable layout of urban green infrastructure for mitigating UHI.
文摘Dynamic</span></span><span><span><span style="font-family:""><span style="font-family:Verdana;"> urbanization of African cities has created development trajectories that face systemic challenges in the provision of sustainable and ecologically resilient urban environments. The specific challenges include extensive unregulated growth with informal settlements reflecting poor service levels and high poverty indices, inadequacy in </span><span style="font-family:Verdana;">provision</span><span style="font-family:Verdana;"> of basic services in health, water, housing, transport </span><span style="font-family:Verdana;">and</span><span style="font-family:Verdana;"> communication infrastructure, high reliance on biomass fuels, exposure to environmental stress </span><span style="font-family:Verdana;">and</span><span style="font-family:Verdana;"> implausible climate change coping and mitigation mechanisms among others. </span><span style="font-family:Verdana;">Review</span><span style="font-family:Verdana;"> of extensive literature and synthesis of existing bodies of knowledge on the ecological and management perspectives of urban environments revealed many gaps and understanding of urban transformation processes. The purpose of this review was to contextualize credible pathways for optimization of both ecosystem goods and services from green urban landscapes (Green infrastructure) and non-green infrastructure to ensure sustainable and ecologically resilient urban environments. Attempts were made to rationalize and validate through discussions the benefits of managed urban ecosystems for African cities. </span><span style="font-family:Verdana;">On the basis of</span><span style="font-family:Verdana;"> the evidence from the literature, it is concluded that urban development trajectories that do not embrace multifaceted approaches that deliberately retain and maintain green infrastructure in the urban environment may not be cost-effective. It is recommended that systematic integration of urban forestry concepts in urban planning that involves communities, local and national governments, business entrepreneurs </span><span style="font-family:Verdana;">and</span><span style="font-family:Verdana;"> public and private research institutions provides tenable frameworks for addressing current and future challenges of urbanization in Africa.
基金Supported by the Key Special Project of National Key Research & Development Program for "Technological Innovation in Green and Livable Villages and Towns"(2018YFD1100203)
文摘In recent years,global ecological and environmental problems have gradually become prominent,and green infrastructure(GI),as one of the effective measures to deal with environmental problems,has gradually attracted attention from various fields.In this paper,green infrastructure is taken as the research object,and a total of 1950 related documents in the core database of"web of science"from 1995 to 2021 are taken as the basic data source.By using CiteSpace visualization software,the network of scholars,the distribution characteristics of journals,highly cited articles,prominent keywords,research hotspots and future research trends of related documents are analyzed.The analysis results show that the research on green infrastructure at home and abroad continues to increase;the research on green infrastructure mainly focuses on urban planning,ecosystem services,ecological environment and other issues;the research field of green infrastructure has gradually changed from traditional research fields such as urban planning,architectural engineering and ecology to land use management,urban healthy development,urban sustainable development,physical heat radiation and other fields;at present,research on green infrastructure mainly involves urban planning,ecology and other fields;the future research on green infrastructure will involve the field of physical heat radiation.The purpose is to provide valuable scientific basis and theoretical basis for the future green infrastructure construction in China.
文摘The positive role of urban green stormwater infrastructure(GIS)and wetland park construction in the process of“sponge city”construction is analyzed by expounding the connotation and problems of“sponge city”construction.Through the analysis of relevant cases,the realization approaches of combing different types of GIS with wetland park landscape design are interpreted,and it is pointed out that different types of GIS can guide the further practice of“sponge city”construction.
基金The National Natural Science Foundation of China(No.51208020)
文摘In order to improve the stormwater regulation functions of urban greenways on the basis of literature research and case study the relationships between urban greenway and low impact development LID and green stormwater infrastructure GSI are analyzed. Then the classification system of urban greenways is proposed based on their stormwater regulation function and the suitable technical measures for stormwater management which can be used in different kinds of greenways are selected. According to China’s urban planning system the greenway planning method combined with the urban drainage system is developed and the design methods of the greenway stormwater system and individual stormwater facilities are put forward. The relationships between the greenway stormwater system and other systems are also analyzed in terms of stormwater inlet vertical design and overflow.Finally the waterfront greenway and street greenway demonstration projects in Jiaxing City which adopts the above concept and method are introduced. The results show that the reduction rates of annual total stormwater runoff and average total runoff contaminants TSS of the stormwater system are not less than 30% and 40% respectively.
文摘The strength and expertise that botanic gardens bring to conservation are based on their detailed knowledge and understanding of the care. management, and biology of a diversity of plant species. This emphasis on the organism has led to many ex-situ and in-situ conservation programs aimed at protecting endangered species, restoring threatened populations, and establishing living plant and seed collections of endangered species. In China, the scale and pace of change in land and resource use, often leading to environmental degradation, has created a strong emphasis on improving environmental conditions. If done properly, being "green" can be a surprisingly complex issue, because it should encompass and exploit the whole of plant diversity and function. Unfortunately, 'green' often includes a small portion of this whole. Earth's rich plant diversity presents considerable opportunity but requires expertise and knowledge for stable and beneficial management. With the dawning of the Anthropocene, we should strive to live on a "Garden Earth", where we design and manage our environments, both built and natural, to create a healthy, beneficial living landscape for people and other organisms. The staff of botanic gardens worldwide and the living collections they maintain embody the best examples of sustainable, beautiful, and beneficial environments that thrive on plant diversity. This expertise should be a fundamental resource for agencies in all sectors responsible for managing and designing "green" infrastructure. Botanic gardens should actively engage and contribute to these opportunities, from large public infrastructure projects to small private conservation efforts. Here, we discuss several ongoing conservation efforts, primarily in China, and attempt to identify areas where botanic gardens could make a significant and meaningful difference.
基金funded by the Department of Science and Technology of Jilin Province (20190303126SF)the Project of Beihua University (320121060)+1 种基金National Natural Science Foundation of China (31771695 and 31971464)Fundamental Research Funds for the Central Universities (0919/140124)。
文摘Experiencing urban green and blue spaces(GBSs)can be a nature-based solution to improve mental well-being and cope with negative moods for people exposed to PM2.5 pollution.In this study,a total of 1257 photos were collected to recognize their posted emotions of Sina Weibo users from 38 parks in 22 cities in Northeast China in 2021,when atmospheric PM_(2.5)and landscape metrics were evaluated for GBSs of each park.Autumn and winter had heavy atmospheric PM_(2.5)pollutions in resource-dependent cities of Liaoning.Net positive emotions(happy minus sad scores)decreased in larger green spaces.The perception of blue space countered the presentation of sadness only for a limited period over four seasons.High elevation decreased the level of happiness presented in winter.Overall,this study confirms that visiting large urban green spaces at low elevations can benefit the perception of positive sentiments for people exposed to PM_(2.5)in autumn.For planning urban forests in Northeast China,more green spaces should be constructed in cities in southern Jilin province to alleviate air PM_(2.5)pollution and gain better well-being of local people.
文摘Hungary is located in the deepest part of the Pannonian Basin,which is affected by floodwaters.Lowland areas are particularly vulnerable to floods.Many natural and anthropogenic processes have contributed to the formation of these flood patches,after river regulation(decisively from the middle of 18th century)and continue to affect them.The objective of this research is to reveal the processes of landscape-change in areas of waterlogging,or areas threatened by excess water inundation in order to establish methods of adaptive excess water management.The analysis focuses on examining the previously prevalent land-use structure and linear infrastructure elements(green,blue infrastructures)of the past 200-250 years that can be identified using historical,military maps and aerial photos.Historical maps compare different periods of 50-60 years prevalence.As a result of this analysis,the role of watercourses in shaping landscapes and human intervention process can be monitored and supported with maps including data.The processing consisted of geographic information system(GIS)methods:georeference the historical maps and digitalize the well-separable land-uses of the sample area.The results confirmed the process of landscape-change and the trend of green areas:cultivated areas and the spread of settlements.In conclusion,landscape-changing analyses of landscape-changes provide valuable data onto identifying changes in land-use,which are complemented by hydrological databases,especially those related to waterlogging areas,as they adequately support adaptive excess water management methods in areas with specific characteristics.The results show which land-uses can be considered as permanent,stable land-uses in the given sample area and broach whether changes within the green and blue infrastructure network contribute to the increase or decrease of excess water formation.
基金supported by the National Key Research and Development Program of China under Grant 2016YFC0701001.
文摘China started a Sponge City program to offset the adverse impacts of urban developments and to tackle many water-related problems.By emphasizing stormwater management practices with“natural solutions”,many positive results have been achieved.The operation and maintenance(O&M)of Sponge City to support long-term success gained considerable focus.China is facing challenges many developed countries have encountered,as well as unique ones due to specific social,economic,and environmental conditions.This study identified and discussed Sponge City O&M challenges:(1)scheduling challenges,(2)technical challenges,(3)in short of local regulation/ordnance,(4)inadequate O&M assessment standard,(5)underprovided training,(6)PPP related concerns,(7)inter-agency coordination needs,(8)ownership and responsible party issues,(9)substandard documentation,and(10)funding and financial concerns.Selected cases and progress in pilot cities are introduced in the discussions.
文摘Severe urban heat,a prevalent climate change consequence,endangers city residents globally.Vegetation-based mitigation strategies are commonly employed to address this issue.However,the Middle East and North Africa are under investigated in terms of heat mitigation,despite being one of the regions most vulnerable to climate change.This study assesses the feasibility and climatic implications of wide-scale implementation of green infrastructure(GI)for heat mitigation in Riyadh,Saudi Arabia—a representative desert city characterized by low vegetation coverage,severe summer heat,and drought.Weather research forecasting model(WRF)is used to simulate GI cooling measures in Riyadh’s summer condition,including measures of increasing vegetation coverage up to 60%,considering irrigation and vegetation types(tall/short).In Riyadh,without irrigation,increasing GI fails to cool the city and can even lead to warming(0.1 to 0.3℃).Despite irrigation,Riyadh’s overall GI cooling effect is 50% lower than GI cooling expectations based on literature meta-analyses,in terms of average peak hour temperature reduction.The study highlights that increased irrigation substantially raises the rate of direct soil evaporation,reducing the proportion of irrigation water used for transpiration and thus diminishing efficiency.Concurrently,water resource management must be tailored to these specific considerations.
文摘Urban green areas are essential elements of cities and contribute to the quality of life in numerous ways by maintaining and regulating the environment.However,increased urbanization and development have placed urban green areas under extreme pressure,while unplanned urban growth has resulted in the loss of urban landscape and ecosystem.This study’s objective was the public perception on the role of urban green infrastructure and land use management.The 385 sample households were selected by using random sampling method.Descriptive and econometric analyses were used for analyzing both quantitative and qualitative data by using SPSS version 25.Among the major factors influencing the urban green infrastructure by respondents perception were education,income,family size,sex of respondent,marital status,type of employment,ownership of house,participation on public involvement,and frequency of visit to nearer planning which are significant variables in the model.Individuals visited the given green structure at least twice a week,and those not done it were 47.9% and 52.1%.The amount of individuals who visited it twice a week in positive perceivers was 64%,and the amount of those who have not done it was 36%.The Chi-square value of 10.9 was very big and telling us that the frequency of visit was determinant factor of perception.It is vital to keep in mind that while the built-up area and the agricultural areas are rising due to urbanization,the core-ecosystem land is being“eaten”as a result of the past and present land uses inside the administrative limits,as well as the services they provide.In the last 6 years,the rate at which the most precious ecosystems are disappearing has tripled.The population,which reflects the demand for these services and benefits,is still growing,putting more strain on the environment.The recommendations include:Public involvement in urban green space planning and development was determinant and core variable of the study.The government of the town administration should prepare the meeting.The result showed a high correlation between urban green planning and land use changes.
基金The National Key Research and Development Program of China[No.2017YFC0505705].
文摘Objectives:(1)to explore what kind of green infrastructure(GI)meets the demand for urban ecological security of rapid urbanization areas;(2)to figure out how to determine the specific function and configuration of GI from ecosystem service requirements of urban ecological security.Methods:(1)Through the literature review,this article summarizes the function and structure evolution of GI in order to adapt to urban growth.(2)Standing on the imperfect ecological functions and unreasonable spatial configurations,this article builds up a conceptual model for the optimization of green infrastructure ecosystem services to meet the demand for the green infrastructure pattern needed by urban growth.Results:The optimization framework consists of four central function modules and its regulating and controlling mechanisms,incuding:(1)Balancing supply and demand of GI's ecosystem service;(2)Measuring and evaluating GI's ecosystem services;(3)Elevating and optimizing GI's ecosystem service;(4)Building urban ecological security patterm with high efficiency of GI's ecosystem services.Moreover,this framework provides guidance for the planning and design of GI and the urban ecological security pattern building in rapid urbanization areas based on ba lancing supply and demand of GI's ecosystem services.Conclusion:The conceptual model of Gl's ecosystem service optimization based on balan-cing supply and demand shows a new path to meet the needs of urban growth and build a city's ecological security pattern through upgrading and optimizing GI.
文摘The cities of desert climates are anticipated to recognize a synergy of urban heat island(UHI)and severe heat waves during summertime.To improve the urban thermal environment,the present study aims quantitatively explore a strategically designed network of vegetation patches called green infrastructure(GI)in subtropical desert cities such as Dubai.To achieve a more comfortable temperature environment,we built and simulated four GI situations with higher GI fractions,GI25,GI50,GI75,and GI100.Using a mesoscale urban model,the mosaic approach is utilized to test potential thermal improvement and urban climate impact,and a portion of each urban grid cell in the model domain is altered with various species of urban vegetation patches by 25%,50%,75%,and 100%.The daily peak reduction in ambient temperature at 17:00LT is similar to 0.0168℃ per unit of GI increase when compared to the untreated scenario;however,the maximum anticipated daytime summer temperature decline for GI25,GI50,GI75,and GI100 is 0.6℃,1.1℃,1.4℃,and 1.7℃,respectively.The associated reduction in nighttime ambient temperature per unit increase in the GI is 0.0432℃,with a maximum temperature drop of around 2.4℃ for the GI100 scenario.Increased GI reduces the height of the planetary boundary layer(PBL)by up to 468 m,which might lead to greater pollution concentrations.While GI-based cooling has a significant influence on delayed sea breeze and humidity,it may raise the risk of heat discomfort in the indoor building environment.This study adds to our understanding of the potential for GI mitigation as well as the seasonal impact of developing GIs on the desert urban boundary layer.