In the Mangodara area within the Banfora greenstone belts (Baoulé-Mossi domain of the West African Craton), our study focused on geochemical assessment of the mobility of major and trace elements. Gold and base m...In the Mangodara area within the Banfora greenstone belts (Baoulé-Mossi domain of the West African Craton), our study focused on geochemical assessment of the mobility of major and trace elements. Gold and base metal occurrences are hosted in highly metamorphic felsic (metarhyolite) and intermediate (metadacite and metaandesite) formations. Common mineral assemblages made up of staurolite - kyanite - pyrophyllite are interpreted to represent the metamorphosed equivalent of aluminous hydrothermal alteration. Associated felsic and intermediate volcanic rocks are enriched in Fe<sub>2</sub>O<sub>3</sub>, K<sub>2</sub>O (metaandesite, metarhyolite) and depleted in MgO, Al<sub>2</sub>O<sub>3</sub>, CaO, P<sub>2</sub>O<sub>5</sub>, Na<sub>2</sub>O (metarhyolite) and Fe<sub>2</sub>O<sub>3</sub>, MgO, CaO (metaandesite). Al<sub>2</sub>O<sub>3</sub> depletion in mineralized kyanite-staurotide bearing metarhyolites suggests corroded minerals. Mineralized metarhyolites show enrichment in Au, Ag, Ba, Bi, Cr, Cu, Eu, La, Mo, Ni, Pb, S, Sc, V and depletion in As Sb Co, Sn, Zn while mineralized metaandesites show enrichment in Au, Ag, As, Mo, S, Sb and depletion in Co, Sn, Zn, Bi, Cr, Cu, Eu, Ni, Pb, Sc. Ba, La, V are immobile in metaandesites. Finally, Ag, As, Sn appear as geochemical vectors for gold exploration in the study area since gold mineralization is characterized by Au + Ba + Cu + Eu + La + Mo + Ni + S association in metarhyolites and Au + S + Sb + As + Ag + Bi in metaandesites.展开更多
Mount Fouimba and Mount Goma (Seguela) greenstone belts petro-structural studies combine remote sensing, geophysics, petrography and structural analysis. In view of establishing mapping details of paleoproterozoic geo...Mount Fouimba and Mount Goma (Seguela) greenstone belts petro-structural studies combine remote sensing, geophysics, petrography and structural analysis. In view of establishing mapping details of paleoproterozoic geological formations, geological setting rocks observed are essentially magmatic formations, such as two-mica granite, granodiorites, and porphyritic basalts;and a few metamorphics which are metatonalite, amphibolites and amphibo-lopyroxenites. Remote sensing, such as Landsat 8 OLI satellite imagery and geophysical data, has been combined to show regional NNE-SW shear zone. Tectonic structures and microstructures have enabled to identify two main deformation phases: D1 phase corresponding to compression, and D2 is a transpression phase. Mechanisms responsible for deformations are respectively flattening and transpression. Geological formations derived from mantle origin but contain crustal components, and their tectonic setting occurred during subduction.展开更多
Greenstone rocks, which include Banded Iron Formations (BIFs), tuffs, volcanic flows (basalt, andesite and rhyolite), and clastic sedimentary rocks (shale-mudstone, greywacke-sandstone and conglomerate), crop out arou...Greenstone rocks, which include Banded Iron Formations (BIFs), tuffs, volcanic flows (basalt, andesite and rhyolite), and clastic sedimentary rocks (shale-mudstone, greywacke-sandstone and conglomerate), crop out around Geita Hills and are flanked by granites and granodiorites. BIFs and tuffs occupy larger area than other lithological units, which crop out as patches. Structural analysis indicates that layers of green-stone rocks are folded and display a regional fold axis with an attitude of 320o/40o. Low-grade metamorphic mineral assemblages (actinolite-epidote-chlorite in basalts and muscovite-epidote-chlorite in granitoids) are common in these rocks;this indicates a regional metamorphism at greenschist facies. However, BIFs and basalts are locally metamorphosed to epidote-amphibolite and amphibolite facies. Basalts belong to the tholeiite series whereas granites, diorites and rhyolites belong to the calcalkaline series. Chondrite normalized rare earth element pattern of basalt is flat and plot slightly below the average N-MORB values suggesting the enrichment of the light rare earth elements, which means that mantle magma source was an E-MORB. Granitoids and rhyolites have strong affinities to the continental arc source magma displaying strong enrichments in the LREEs with (La/Sm)N values ranging between 2.53 and 3.95 in rhyolites and between 4.08 and 5.40 in granitoids. The granitoids are classified as the I-type synorogenic metaluminous granites and granodiorites. Geochemical signatures suggest that the Geita Hills basalts erupted at the enriched mid ocean ridge setting of the back arc setting, and the granites, granodiorite and rhyolite formed in a volcanic arc setting particularly the continental arc.展开更多
Chinese Achaean greenstone belts are mainly distributed along the northern and southwestern margins of the North China platform. In terms of their geological characteristics, the greenstone belts in China are comparab...Chinese Achaean greenstone belts are mainly distributed along the northern and southwestern margins of the North China platform. In terms of their geological characteristics, the greenstone belts in China are comparable to those in other countries but at the same time have unique features of their own. In view of their geochemistry, the Chinese greenstone belts may be grouped into three types: the Jiapigou type, Qingyuan type and Xiaoqinling type. The greenstone belts were formed possibly in a rift-type palaeo-tectonic setting, similar to that of the modern island are-continental margin mobile belts.展开更多
A comparative study of the Precambrian Sonakhan(SGB)and Mahakoshal(MGB)greenstones belts of Central India has been undertaken to decipher their provenance,paleoweathering,paleogeography,and tectonics.As compared to th...A comparative study of the Precambrian Sonakhan(SGB)and Mahakoshal(MGB)greenstones belts of Central India has been undertaken to decipher their provenance,paleoweathering,paleogeography,and tectonics.As compared to the Upper Continental Crust(UCC),the MGB samples are enriched while the SGB samples are depleted in mafic elements indicating the presence of mafic rocks in the source of the MGB.This is complemented by the Ni–Cr diagram.The REE concentrations,LREE fractionated patterns and negative Eu anomalies of the MGB and SGB samples indicate derivation of sediments from a highly fractionated granitic source.Since MGB samples also contain the geochemical signature of mafic rocks,it is,therefore proposed that the MGB clastic load were derived from two sources(mafic+felsic)with arc character.This is attested by Cr and Zr relationships,and LILE enrichment,and HFSE depletion.These features suggest that the SGB developed as autochthonous while the MGB developed as an allochthonous belt.The chemical alteration indices such as chemical index of alteration(CIA),plagioclase index of alteration(PIA),and index of compositional variability for MGB samples indicate that they were dominantly derived as the first cycle(with minor recycled)sediments from bimodal sources(dominantly continental arcs)by intense chemical weathering as compared to the SGB samples,which were derived from felsic sources(dominantly cratonic rocks),and partly by recycling through a low chemical weathering.The CIA and PIA values of the samples reveal a change in the climatic conditions from Late Archean to Late Paleoproterozoic.Such change is interpreted in terms of migration of the Indian plate from high latitudes in the Late Archean to lower latitudes during the Late Paleoproterozoic.This is consistent with the paleomagnetic data that placed India in the configuration of 2.45 Ga Ur and 1.78 Ga Columbia supercontinents.展开更多
The Filabusi greenstone belt (FGB), Zimbabwe craton, has been geologically remapped relatively recently but its regional tectonic setting and subsurface structure have, until now, remained unresolved. This paper prese...The Filabusi greenstone belt (FGB), Zimbabwe craton, has been geologically remapped relatively recently but its regional tectonic setting and subsurface structure have, until now, remained unresolved. This paper presents gravity and aeromagnetic studies that have been undertaken to provide this important information, and also extend mapping to areas of poor exposure. Several new NNW-trending dykes and structures cutting across the greenstone belt have been revealed, as well as a major extension of one of the metakomatiitic-BIF units, the Shamba Range. ESE-trending dykes identified in the southeast appear on a regional scale to be part of the giant Okavango dyke swarm in northern Botswana. An ~3 km wide NNE-striking magnetic low occurs over the Irisvale-Lancaster shear zone (ILSZ) on the extreme west of the FGB where it roughly marks the boundary with the Bulawayo greenstone belt. Magnetic anomaly trends over ultramafic schists are consistent with strike-slip movement along the ILSZ, and together with the gravity anomalies, support northeasterly directed detachment of the adjacent Fort Rixon belt from the Bulawayo-Filabusi belt. The Bouguer gravity anomaly map shows that the FGB is characterised by a well defined positive anomaly up to 37 mGal, whose symmetry and extent confirm the postulated synclinal structure of the belt. Isolated oval shaped small gravity lows generally correlate with sub-/out-cropping K-rich post-volcanic granite plutons. 2.5D gravity models along three profiles across the greenstone belt show a simple “basin shape” with a possible maximum depth extent of only 4.5 km, compared to an estimated stratigraphic thickness of about 9.0 km. This suggests a truncation at shallow depth of the structurally repeated lithologies. Gravity data and models support the proposed FGB model;deposition of volcanics in an extensional, structurally determined, evolving basin. This autochthonous setting is consistent with other greenstone belts in the Zimbabwe craton and other parts of the world.展开更多
Tectonic processes involving amalgamations of microblocks along zones of ocean closure represented by granite-greenstone belts(GGB) were fundamental in building the Earth's early continents. The crustal growth and...Tectonic processes involving amalgamations of microblocks along zones of ocean closure represented by granite-greenstone belts(GGB) were fundamental in building the Earth's early continents. The crustal growth and cratonization of the North China Craton(NCC) are correlated to the amalgamation of microblocks welded by 2.75-2.6 Ga and ~2.5 Ga GGBs. The lithological assemblages in the GGBs are broadly represented by volcano-sedimentary sequences, subduction-collision related granitoids and bimodal volcanic rocks(basalt and dacite) interlayered with minor komatiites and calc-alkalic volcanic rocks(basalt, andesite and felsic rock). The geochemical features of meta-basalts in the major GGBs of the NCC display affinity with N-MORB, E-MORB, OIB and calc-alkaline basalt, suggesting that the microblocks were separated by oceanic realm. The granitoid rocks display arc signature with enrichment of LILE(K,Rb, Sr, Ba) and LREE, and depletion of HFSE(Nb, Ta, Th, U, Ti) and HREE, and fall in the VAG field. The major mineralization includes Neoarchean BIF-type iron and VMS-type Cu-Zb deposits and these,together with the associated supracrustal rocks possibly formed in back-arc basins or arc-related oceanic slab subduction setting with or without input from mantle plumes. The 2.75-2.60 Ga TTG rocks,komatiites, meta-basalts and metasedimentary rocks in the Yanlingguan GGB are correlated to the upwelling mantle plume with eruption close to the continental margin within an ocean basin. The volcanosedimentary rocks and granitoid rocks in the late Neoarchean GGBs display formation ages of 2.60-2.48 Ga, followed by metamorphism at 2.52-2.47 Ga, corresponding to a typical modern-style subduction-collision system operating at the dawn of Proterozoic. The late Neoarchean komatiite(Dongwufenzi GGB), sanukitoid(Dongwufenzi GGB and Western Shandong GGB), BIF(Zunhua GGB) and VMS deposit(Hongtoushan-Qingyuan-Helong GGB) have closer connection to a combined process of oceanic slab subduction and mantle plume. The Neoarchean cratonization of the NCC appears to have involved two stages of tectonic process along the 2.75-2.6 Ga GGB and ~2.5 Ga GGBs, the former involve plume-arc interaction process, and the latter involving oceanic lithospheric subduction, with or without arcplume interaction.展开更多
Greenstone basalts and komatiites provide a means to track both mantle composition and magma generation temperature with time. Four types of mantle are characterized from incompatible element distributions in basalts ...Greenstone basalts and komatiites provide a means to track both mantle composition and magma generation temperature with time. Four types of mantle are characterized from incompatible element distributions in basalts and komatiites: depleted, hydrated, enriched and mantle from which komatiites are derived. Our most important observation is the recognition for the first time of what we refer to as a Great Thermal Divergence within the mantle beginning near the end of the Archean, which we ascribe to thermal and convective evolution. Prior to 2.5 Ga, depleted and enriched mantle have indistinguishable thermal histories, whereas at 2.5-2.0 Ga a divergence in mantle magma generation temperature begins between these two types of mantle. Major and incompatible element distributions and calculated magma generation temperatures suggest that Archean enriched mantle did not come from mantle plumes, but was part of an undifferentiated or well-mixed mantle similar in composition to calculated primitive mantle. During this time, however, high-temperature mantle plumes from dominantly depleted sources gave rise to komatiites and associated basalts. Recycling of oceanic crust into the deep mantle after the Archean may have contributed to enrichment ofTi, A1, Ca and Na in basalts derived from enriched mantle sources. After 2.5 Ga, increases in Mg# in basalts from depleted mantle and decreases in Fe and Mn reflect some combination of growing depletion and cooling of depleted mantle with time. A delay in cooling of depleted mantle until after the Archean probably reflects a combination of greater radiogenic heat sources in the Archean mantle and the propagation of plate tectonics after 3 Ga.展开更多
The Maevatanana greenstone belt in north-central Madagascar contains widespread exposures of tonalite-trondhjemite-granodiorite (TTG) gneisses, and is important for its concentrations of various metal deposits (e.g...The Maevatanana greenstone belt in north-central Madagascar contains widespread exposures of tonalite-trondhjemite-granodiorite (TTG) gneisses, and is important for its concentrations of various metal deposits (e.g., chromium, niekle, iron, gold). In this paper we report on the petrography, and major and trace element compositions of the TTG gneisses within the Berere Complex of the Maevatanana area, as well as LA-ICP-MS U-Pb ages and Lu-Hf isotopic compositions of zircons from the gneisses. The gneisses consist mainly of granitoid gneiss and biotite (± hornblende) plagiogneiss, and analysis of thin sections provides evidence of crushing, recrystallization, and metasomatism related to dynamic metamorphism. Samples have large variations in their major and trace element contents, with SiO2 = 55.87-68.06 wt%, Al2O3 = 13.9-17.8 wt%, and Na2O/K2O= 0.97-2.13. Geochemically, the granitoid gneisses and biotite plagiogneisses fall on a low-Al trondhjemite to granodiorite trend, while the biotite-hornblende plagiogneisses represent a high-Al tonalite TTG assemblage. Zircon U-Pb dating shows that the Berere Complex TTG gneisses formed at 2.5-2.4 Ga. Most εHf(t) values of zircons from the biotite (q- hornblende) plagiogneisses are positive, while most εHf(t) values from the granitoid gneisses are negative, suggesting a degree of crustal contamination. Two-stage Hf model ages suggest that the age of the protolith of the TTG gneisses was ca. 3.4-2.6 Ga, representing a period of paleocontinent formation in the Mesoarchean. Geothermometries indicate the temperature of metamorphism of the TTG gneisses was 522-612℃. Based on these data, the protolith of the TTG gneisses is inferred to have formed during the development of a Mesoarchean paleocontinent that is now widely exposed as a TTG gneiss belt (mostly lower amphibolite facies) in the Maevatanana area, and which records a geological evolution related to the subduction of an ancient oceanic crust and the collision of microcontinents during the formation of the Rodinia supercontinent. The lithological similarity of Precambrian basement, the close ages of metamorphism within greenstone belts and the comparable distribution of metamorphic grade all show a pronounced Precambrian geology similarity between Madagascar and India, which can provide significative clues in understanding the possible Precambrian Supercontinent tectonics, and also important constraints on the correlation of the two continental fragments.展开更多
The Wutai greenstone belt in central North China Craton(NCC) hosts a number of Precambrian gold deposits and ore occurrences. Based on the host rock association, these can be divided into Banded Iron Formation(BIF), m...The Wutai greenstone belt in central North China Craton(NCC) hosts a number of Precambrian gold deposits and ore occurrences. Based on the host rock association, these can be divided into Banded Iron Formation(BIF), meta-volcano-sedimentary and meta-conglomerate types. The two former types formed during ~2.5-2.3 Ga and the third one at ~1.85 Ga. The characteristics of these Precambrian gold deposits are broadly similar with those of the orogenic gold deposits. Based on available geochronological data, here we reconstruct the major tectonic events and their relationship with gold mineralization in the Wutai-Hengshan-Fuping region during Neoarchean to Paleoproterozoic as follows.(1)~2.6-2.5 Ga: widespread intrusion of tonalite-trondhjemite-granodiorite(TTG) magmas in the Hengshan terrane and Fuping continental arc, formation of the Wutai volcanic arc in the southern margin of Hengshan terrane with granitoids emplacement, and the Hengshan-Wutai intra-oceanic arc accretion to the Fuping arc at the end of Neoarchean.(2) ~ 2.5-2.3 Ga: the subduction of Hengshan arc from north leading to persistent magmatism and orogenic gold mineralization.(3)~2.2-2.1 Ga:extension leading to the formation of graben structure in the Wutai and Fuping region, deposition of the Hutuo and Wanzi Group sediments, formation of placer gold through erosion of the orogenic gold deposits.(4)~2.2-2.0 Ga: widespread magmatism in the Wutai-Hengshan-Fuping region.(5)~1.95-1.8 Ga: regional metamorphism associated with collision of the Western and Eastern Blocks of the NCC and associated orogenic gold deposits. The multiple subduction-accretion-collision history and subsequent deep erosion has significantly affected most of the Precambrian gold deposits in the Wutai greenstone belt.展开更多
The Neoarchean Bundelkhand greenstone sequences at Mauranipur and Babina areas within the Bundelkhand Gneissic Complex preserve a variety of magmatic rocks such as komatiitic basalts, basalts,felsic volcanic rocks and...The Neoarchean Bundelkhand greenstone sequences at Mauranipur and Babina areas within the Bundelkhand Gneissic Complex preserve a variety of magmatic rocks such as komatiitic basalts, basalts,felsic volcanic rocks and high-Mg andesites belonging to the Baragaon, Raspahari and Koti Formations.The intrusive and extrusive komatiitic basalts are characterized by low SiO_2(39-53 wt.%), high MgO(18-25 wt.%).moderately high Fe_2O_3(7.1-11.6 wt.%), Al_2O_3(4.5-12.0 wt.%), and TiO_2(0.4-1.23 wt.%)with super to subchondritic(Gd/Yb)N ratios indicating garnet control on the melts. The intrusive komatiitic suite of Ti-enriched and Al-depleted type possesses predominant negative Eu and positive Nb, Ti and Y anomalies. The chemical composition of basalts classifies them into three types with varying SiO_2, TiO_2, MgO, Fe_2O_3, Al_2O_3 and CaO. At similar SiO_2 content of type Ⅰ and Ⅲ basalts, the type II basalts show slightly high Al_2O_3 and Fe_2O_3 contents. Significant negative anomalies of Nb, Zr, Hf and Ti, slightly enriched LREE with relatively flat HREE and low ∑REE contents are observed in type Ⅰ and Ⅱ basalts. TypeⅢ basalts show high Zr/Nb ratios(9.8-10.4), TiO_2(1.97-2.04 wt.%), but possess strikingly flat Zr, Hf, Y and Yb and are uncontaminated. Andesites from Agar and Koti have high SiO_2(55-64 wt.%), moderate TiO_2(0.4-0.7 wt.%), slightly low Al_2O_3(7-11.9 wt.%), medium to high MgO(3-8 wt.%) and CaO contents(10-17 wt.%). Anomalously high Cr, Co and Ni contents are observed in the Koti rhyolites. Tholeiitic to calc alkaline affinity of mafic-felsic volcanic rocks and basalt-andesite dacite-rhyolite differentiation indicate a mature arc and thickened crust during the advanced stage of the evolution of Neoarchean Bundelkhand greenstone belt in a convergent tectonic setting where the melts were derived from partial melting of thick basaltic crust metamorphosed to amphibolite-eclogite facies. The trace element systematics suggest the presence of arc-back arc association with varying magnitudes of crust-mantle interaction. La/Sm, La/Ta,Nb/Th, high MgO contents(>20 wt.%), CaO/Al_2O_3 and(Gd/Yb)_N > 1 along with the positive Nb anomalies of the komatiite basalts reflect a mantle plume source for their origin contaminated by subductionmetasomatized mantle lithosphere. The overall geochemical signatures of the ultramafic-mafic and felsic volcanic rocks endorse the Neoarchean plume-arc accretion tectonics in the Bundelkhand greenstone belt.展开更多
Greenstone belts contain several clues about the evolutionary history of primitive Earth.Here,we describe the volcano-sedimentary rock association exposed along the eastern margin of the Gavião Block,named the No...Greenstone belts contain several clues about the evolutionary history of primitive Earth.Here,we describe the volcano-sedimentary rock association exposed along the eastern margin of the Gavião Block,named the Northern Mundo Novo Greenstone Belt(N-MNGB),and present data collected with different techniques,including U–Pb–Hf–O isotopes of zircon and multiple sulfur isotopes(^(32)S,^(33)S,^(34)S,and ^(36)S)of pyrite from this supracrustal sequence.A pillowed metabasalt situated in the upper section of the N-MNGB is 3337±25 Ma old and has zircon with ε_(Hf)(t)=2.47 to1.40,Hf model ages between 3.75 Ga and 3.82 Ga,and δ^(18)O=+3.6‰to+7.3‰.These isotopic data,together with compiled whole-rock trace element data,suggest that the mafic metavolcanic rocks formed in a subduction-related setting,likely a back-arc basin juxtaposed to a continental arc.In this context,the magma interacted with older Eoarchean crustal components from the Gavião Block.Detrital zircons from the overlying quartzites of the Jacobina Group are sourced from Paleoarchean rocks,in accordance with previous studies,yielding a maximum depositional age of 3353±22 Ma.These detrital zircons have ε_(Hf)(t)=5.40 to0.84,Hf model ages between 3.66 Ga and 4.30 Ga,and δ^(18)O=+4.8‰to+6.4‰.The pyrite multiple sulfur isotope investigation of the 3.3 Ga supracrustal rocks from the N-MNGB enabled a further understanding of Paleoarchean sulfur cycling.The samples have diverse isotopic compositions that indicate sulfur sourced from distinct reservoirs.Significantly,they preserve the signal of the anoxic Archean atmosphere,expressed by MIF-S signatures(Δ^(33)S between1.3‰to+1.4‰)and a Δ^(36)S/Δ^(33)S slope of0.81 that is indistinguishable from the so-called Archean array.A BIF sample has a magmatic origin of sulfur,as indicated by the limited Δ^(34)S range(0 to+2‰),Δ^(33)S~0‰,and Δ^(36)S~0‰.A carbonaceous schist shows positive Δ^(34)S(2.1‰–3.5‰)and elevated Δ^(33)S(1.2‰–1.4‰)values,with corresponding negative Δ^(36)S between1.2‰to0.2‰,which resemble the isotopic composition of Archean black shales and suggest a source from the photolytic reduction of elemental sulfur.The pillowed metabasalt displays heterogeneous Δ^(34)S,Δ^(33)S,and Δ^(36)S signatures that reflect assimilation of both magmatic sulfur and photolytic sulfate during hydrothermal seafloor alteration.Lastly,pyrite in a massive sulfide lens is isotopically similar to barite of several Paleoarchean deposits worldwide,which might indicate mass dependent sulfur processing from a global and well-mixed sulfate reservoir at this time.展开更多
Experiments were conducted on the leaching of gold from greenstone by chloride solution under the temperature of 200—550℃ and the pressure of 60 MPa. During part of the experiments, the oxygen fugacity was controlle...Experiments were conducted on the leaching of gold from greenstone by chloride solution under the temperature of 200—550℃ and the pressure of 60 MPa. During part of the experiments, the oxygen fugacity was controlled. The results show that the leaching rate of gold is related to temperature, composition of the solution, pH and oxygen fugacity. In the experiment with oxidative acidic solution, the leaching rate was up to 50% or more. It is known that the leaching of gold is restricted by the reaction in which the gold is dissolved from the rock to form gold chloride complex. Therefore, the authors hold that the acidic chloride solution derived from granite magma has caused the remobilization-migration of gold from greenstone and its enrichment into ore.展开更多
We present field, petrographic, major and trace element data for komatiites and komatiite basalts from Sargur Group Nagamangala greenstone belt, western Dharwar craton. Field evidences such as crude pillow structure i...We present field, petrographic, major and trace element data for komatiites and komatiite basalts from Sargur Group Nagamangala greenstone belt, western Dharwar craton. Field evidences such as crude pillow structure indicate their eruption in a marine environment whilst spinifex texture reveals their komatiite nature. Petrographic data suggest that the primary mineralogy has been completely altered during post-magmatic processes associated with metamorphism corresponding to greenschist to lower amphibolite facies conditions. The studied komatiites contain serpentine, talc, tremolite, actinolite and chlorite whilst tremolite, actinolite with minor plagioclase in komatiitic basalts. Based on the published Sm-Nd whole rock isochron ages of adjoining Banasandra komatiites (northern extension of Naga- mangala belt) and further northwest in Nuggihafli belt and Kalyadi belt we speculate ca. 3.2-3.15 Ga for komatiite eruption in Nagamangala belt. Trace element characteristics particularly HFSE and REE patterns suggest that most of the primary geochemical characteristics are preserved with minor influ- ence of post-magmatic alteration and[or contamination. About 1[3 of studied komatiites show AI- depletion whilst remaining komatiites and komatiite basalts are Al-undepleted. Several samples despite high MgO, (Gd]Yb)N ratios show low CaO/AI203 ratios. Such anomalous values could be related to removal of CaO from komatiites during fluid-driven hydrothermal alteration, thus lowering CaOJAI203 ratios. The elemental characteristics of Al-depleted komatiites such as higher (Gd/Yb)N (〉 1.0), CaO/AI203 (〉1.0), Al203frio2 (〈18) together with lower HREE, Y, Zr and Hf indicate their derivation from deeper upper mantle with minor garnet (majorite?) involvement in residue whereas lower (GdIYb)N (〈1.0), CaO/AI203 (〈0.9), higher A1203]TiO2 (〉18) together with higher HREE, Y, Zr suggest their derivation from shallower upper mantle without garnet involvement in residue. The observed chemical characteristics (CaO/AI203, AI203]TiO2, MgO, Ni, Cr, Nb, Zr, Y, Hf, and REE) indicate derivation of the komatiite and komatiite basalt magmas from heterogeneous mantle (depleted to primitive mantle) at different depths in hot spot environments possibly with a rising plume. The low content of incompatible elements in studied komatiites suggest existence of depleted mantle during ca. 3.2 Ga which in turn imply an earlier episode of mantle differentiation, greenstone volcanism and continental growth probably during ca. 3.6-3.3 Ga which is substantiated by Nd and Pb isotope data of gneisses and komatiites in western Dharwar craton (WDC).展开更多
Studies of accreted oceanic plateau sections provide crucial information on their structures,compositions,and origins.We investigate the petrogenesis of ultramafic–mafic rocks in the Tangjia–Sumdo greenstone belt of...Studies of accreted oceanic plateau sections provide crucial information on their structures,compositions,and origins.We investigate the petrogenesis of ultramafic–mafic rocks in the Tangjia–Sumdo greenstone belt of southeast Tibet using petrography,whole-rock geochemistry,and U-Pb zircon geochronology.These rocks are divided into four groups based on geochemical characteristics that include depleted and tholeiitic mafic rocks,transitional mafic rocks,enriched and alkaline mafic rocks,and picritic ultramafic rocks.Depleted and tholeiitic mafic rocks have the oldest crystallization ages(-272 Ma),followed by picritic ultramafic rocks(-270 Ma),transitional mafic rocks(267–254 Ma),and enriched and alkaline mafic rocks(252–250 Ma).Hafnium and neodymium isotope ratios of depleted and tholeiitic mafic rocks(ε_(Hf)(t)=+13.1–+16.9;ε_(Nd)(t)=+6.9–+7.1),transitional mafic rocks(ε_(Hf)(t)=+1.8–+16.9;ε_(Nd)(t)=+0.8–+5.5),enriched and alkaline mafic rocks(ε_(Hf)(t)=+0.5–+5.4;ε_(Nd)(t)=1.5 to+1.9)and picritic ultramafic rocks(ε_(Hf)(t)=+14.9–+17.2;ε_(Nd)(t)=+7.8–+9.0)are similar to those of N-MORB,E-MORB,OIB and depleted-type picritic mafic rocks in other oceanic plateaus,respectively.The geochemical characteristics of the depleted and tholeiitic mafic rocks suggest that they formed by partial melting of depleted spinel lherzolite in a mid-ocean ridge setting,whereas the picritic ultramafic rocks suggest a high degree of partial melting of depleted lherzolite in a hot mantle plume head.The transitional mafic rocks formed by partial melting of moderately enriched garnet lherzolite.The youngest rocks(enriched and alkaline mafic rocks)formed by partial melting of a more enriched garnet lherzolite(compared to transitional mafic rocks)at relatively low temperatures.We propose that the depleted and tholeiitic mafic rocks represent normal oceanic crust of the Sumdo Paleo-Tethys Ocean and the transitional mafic rocks,enriched and alkaline mafic rocks and picritic ultramafic rocks are the fragments of the oceanic plateau,which were related to middle–late Permian mantle plume activity in the Sumdo Paleo-Tethys Ocean.We further suggest that the majority of the Tangjia–Sumdo greenstone belt represents a middle–late Permian oceanic plateau that reflects a previously unrecognized middle–late Permian mantle plume.展开更多
The Banfora’s birimian greenstones belt is located in the western part of Burkina Faso (west Africa). Recent petrographic and lithogeochemical studies have highlighted plutons intruding the metasedimentary and metavo...The Banfora’s birimian greenstones belt is located in the western part of Burkina Faso (west Africa). Recent petrographic and lithogeochemical studies have highlighted plutons intruding the metasedimentary and metavolcanic series. These plutonic rocks are composed of leucogranites belonging to the so-called Ferkessedougou’s or Ferké’s batholith, granites, granodiorites, monzodiorites and quartz monzonites. From the lithogeochemical studies, these plutonic rocks have a calc-alkaline and peraluminous character. The rare earth elements spectra of the Ferké’s leucogranites let distinguished two sub-facies. One of the sub-facies is composed of quartz monzonite to granite, while the other is granitic sensu stricto. However, all these plutonic rocks were emplaced in a geodynamic context of subduction followed by collision.展开更多
The Elogo complex is a greenstone belt portion located on the Eastern edge of the Archean Congo craton at the junction with the Paleoproterozoic to Neoproterozoic Sembe Ouesso basin. This study was carried out on this...The Elogo complex is a greenstone belt portion located on the Eastern edge of the Archean Congo craton at the junction with the Paleoproterozoic to Neoproterozoic Sembe Ouesso basin. This study was carried out on this complex to determine the context of the placement of basaltic rocks. Metaluminous tholeiitic basalts (basic and ultrabasic), calc-alkaline basalts, andesitic basalts, and peraluminous calc-alkaline dacites represent greenstones. Tholeiitic and calc-alkaline basalts come from deep enriched and depleted mantle sources, including garnet in fusion residues [Al<sub>2</sub>O<sub>3</sub>/TiO<sub>2</sub> > 16 (16.5 to 35.12) and in some samples between 12.45 to 14.48;CaO/Al<sub>2</sub>O<sub>3</sub> 1 (1.04 to 1.35) in ten samples and (Gb/Yb)<sub>PM</sub> > 1]. The calc-alkaline dacites come from a shallow depleted mantle source [Al<sub>2</sub>O<sub>3</sub>/TiO<sub>2</sub> > 16;CaO/Al<sub>2</sub>O<sub>3</sub> 1]. Tholeiitic and calc-alkaline basalts have a negative Rb, Ba, Ce, and Nb anomaly without negative Ti anomaly, positive Ta, Pb anomalies, and a lack of significant REE [(La/Yb)n = 0.36 to 0.97 and 1 to 2.15;(Ce/Yb)n = 0.27 to 0.96 and 1.04 to 1.72, respectively] fractionation. High Nb/Th (2 to 10) and Nb/U (1.82 to 26) ratios and low La/Ta (5 to 27) ratios are characteristic of divergent margin magmatic sources. Tholeiitic and calc-alkaline basalts correspond to an extensive back-arc basin-type tectonic setting. Calc-alkaline andesitic basalts and dacites show positive Ba, U, Th, K, La, Ce, Pb, and Li anomalies and negative Nb, Ta, and Ti anomalies reflecting crustal contamination and hydrothermal alteration in a compressive tectonic context as a volcanic arc in a subduction regime marking the interruption of the meso-neoarchean Elogo’s opening. Elogo’s opening and closing are probably associated with the emplacement of the greenstone of the meso-neoarchean Gabon Belinga group and the relics of the Mesoarchean greenstones of the Cameroun Ntem complex.展开更多
文摘In the Mangodara area within the Banfora greenstone belts (Baoulé-Mossi domain of the West African Craton), our study focused on geochemical assessment of the mobility of major and trace elements. Gold and base metal occurrences are hosted in highly metamorphic felsic (metarhyolite) and intermediate (metadacite and metaandesite) formations. Common mineral assemblages made up of staurolite - kyanite - pyrophyllite are interpreted to represent the metamorphosed equivalent of aluminous hydrothermal alteration. Associated felsic and intermediate volcanic rocks are enriched in Fe<sub>2</sub>O<sub>3</sub>, K<sub>2</sub>O (metaandesite, metarhyolite) and depleted in MgO, Al<sub>2</sub>O<sub>3</sub>, CaO, P<sub>2</sub>O<sub>5</sub>, Na<sub>2</sub>O (metarhyolite) and Fe<sub>2</sub>O<sub>3</sub>, MgO, CaO (metaandesite). Al<sub>2</sub>O<sub>3</sub> depletion in mineralized kyanite-staurotide bearing metarhyolites suggests corroded minerals. Mineralized metarhyolites show enrichment in Au, Ag, Ba, Bi, Cr, Cu, Eu, La, Mo, Ni, Pb, S, Sc, V and depletion in As Sb Co, Sn, Zn while mineralized metaandesites show enrichment in Au, Ag, As, Mo, S, Sb and depletion in Co, Sn, Zn, Bi, Cr, Cu, Eu, Ni, Pb, Sc. Ba, La, V are immobile in metaandesites. Finally, Ag, As, Sn appear as geochemical vectors for gold exploration in the study area since gold mineralization is characterized by Au + Ba + Cu + Eu + La + Mo + Ni + S association in metarhyolites and Au + S + Sb + As + Ag + Bi in metaandesites.
文摘Mount Fouimba and Mount Goma (Seguela) greenstone belts petro-structural studies combine remote sensing, geophysics, petrography and structural analysis. In view of establishing mapping details of paleoproterozoic geological formations, geological setting rocks observed are essentially magmatic formations, such as two-mica granite, granodiorites, and porphyritic basalts;and a few metamorphics which are metatonalite, amphibolites and amphibo-lopyroxenites. Remote sensing, such as Landsat 8 OLI satellite imagery and geophysical data, has been combined to show regional NNE-SW shear zone. Tectonic structures and microstructures have enabled to identify two main deformation phases: D1 phase corresponding to compression, and D2 is a transpression phase. Mechanisms responsible for deformations are respectively flattening and transpression. Geological formations derived from mantle origin but contain crustal components, and their tectonic setting occurred during subduction.
文摘Greenstone rocks, which include Banded Iron Formations (BIFs), tuffs, volcanic flows (basalt, andesite and rhyolite), and clastic sedimentary rocks (shale-mudstone, greywacke-sandstone and conglomerate), crop out around Geita Hills and are flanked by granites and granodiorites. BIFs and tuffs occupy larger area than other lithological units, which crop out as patches. Structural analysis indicates that layers of green-stone rocks are folded and display a regional fold axis with an attitude of 320o/40o. Low-grade metamorphic mineral assemblages (actinolite-epidote-chlorite in basalts and muscovite-epidote-chlorite in granitoids) are common in these rocks;this indicates a regional metamorphism at greenschist facies. However, BIFs and basalts are locally metamorphosed to epidote-amphibolite and amphibolite facies. Basalts belong to the tholeiite series whereas granites, diorites and rhyolites belong to the calcalkaline series. Chondrite normalized rare earth element pattern of basalt is flat and plot slightly below the average N-MORB values suggesting the enrichment of the light rare earth elements, which means that mantle magma source was an E-MORB. Granitoids and rhyolites have strong affinities to the continental arc source magma displaying strong enrichments in the LREEs with (La/Sm)N values ranging between 2.53 and 3.95 in rhyolites and between 4.08 and 5.40 in granitoids. The granitoids are classified as the I-type synorogenic metaluminous granites and granodiorites. Geochemical signatures suggest that the Geita Hills basalts erupted at the enriched mid ocean ridge setting of the back arc setting, and the granites, granodiorite and rhyolite formed in a volcanic arc setting particularly the continental arc.
文摘Chinese Achaean greenstone belts are mainly distributed along the northern and southwestern margins of the North China platform. In terms of their geological characteristics, the greenstone belts in China are comparable to those in other countries but at the same time have unique features of their own. In view of their geochemistry, the Chinese greenstone belts may be grouped into three types: the Jiapigou type, Qingyuan type and Xiaoqinling type. The greenstone belts were formed possibly in a rift-type palaeo-tectonic setting, similar to that of the modern island are-continental margin mobile belts.
基金the financial support from UGC,Govt.of India in the form of a research project F.No.40-304/2011(SR)the Department of Science and Technology,Govt.of India for financial support in the form of a Research Project(SR/S4/ES-180/2005)。
文摘A comparative study of the Precambrian Sonakhan(SGB)and Mahakoshal(MGB)greenstones belts of Central India has been undertaken to decipher their provenance,paleoweathering,paleogeography,and tectonics.As compared to the Upper Continental Crust(UCC),the MGB samples are enriched while the SGB samples are depleted in mafic elements indicating the presence of mafic rocks in the source of the MGB.This is complemented by the Ni–Cr diagram.The REE concentrations,LREE fractionated patterns and negative Eu anomalies of the MGB and SGB samples indicate derivation of sediments from a highly fractionated granitic source.Since MGB samples also contain the geochemical signature of mafic rocks,it is,therefore proposed that the MGB clastic load were derived from two sources(mafic+felsic)with arc character.This is attested by Cr and Zr relationships,and LILE enrichment,and HFSE depletion.These features suggest that the SGB developed as autochthonous while the MGB developed as an allochthonous belt.The chemical alteration indices such as chemical index of alteration(CIA),plagioclase index of alteration(PIA),and index of compositional variability for MGB samples indicate that they were dominantly derived as the first cycle(with minor recycled)sediments from bimodal sources(dominantly continental arcs)by intense chemical weathering as compared to the SGB samples,which were derived from felsic sources(dominantly cratonic rocks),and partly by recycling through a low chemical weathering.The CIA and PIA values of the samples reveal a change in the climatic conditions from Late Archean to Late Paleoproterozoic.Such change is interpreted in terms of migration of the Indian plate from high latitudes in the Late Archean to lower latitudes during the Late Paleoproterozoic.This is consistent with the paleomagnetic data that placed India in the configuration of 2.45 Ga Ur and 1.78 Ga Columbia supercontinents.
文摘The Filabusi greenstone belt (FGB), Zimbabwe craton, has been geologically remapped relatively recently but its regional tectonic setting and subsurface structure have, until now, remained unresolved. This paper presents gravity and aeromagnetic studies that have been undertaken to provide this important information, and also extend mapping to areas of poor exposure. Several new NNW-trending dykes and structures cutting across the greenstone belt have been revealed, as well as a major extension of one of the metakomatiitic-BIF units, the Shamba Range. ESE-trending dykes identified in the southeast appear on a regional scale to be part of the giant Okavango dyke swarm in northern Botswana. An ~3 km wide NNE-striking magnetic low occurs over the Irisvale-Lancaster shear zone (ILSZ) on the extreme west of the FGB where it roughly marks the boundary with the Bulawayo greenstone belt. Magnetic anomaly trends over ultramafic schists are consistent with strike-slip movement along the ILSZ, and together with the gravity anomalies, support northeasterly directed detachment of the adjacent Fort Rixon belt from the Bulawayo-Filabusi belt. The Bouguer gravity anomaly map shows that the FGB is characterised by a well defined positive anomaly up to 37 mGal, whose symmetry and extent confirm the postulated synclinal structure of the belt. Isolated oval shaped small gravity lows generally correlate with sub-/out-cropping K-rich post-volcanic granite plutons. 2.5D gravity models along three profiles across the greenstone belt show a simple “basin shape” with a possible maximum depth extent of only 4.5 km, compared to an estimated stratigraphic thickness of about 9.0 km. This suggests a truncation at shallow depth of the structurally repeated lithologies. Gravity data and models support the proposed FGB model;deposition of volcanics in an extensional, structurally determined, evolving basin. This autochthonous setting is consistent with other greenstone belts in the Zimbabwe craton and other parts of the world.
基金jointly supported through the Foreign Expert grant from China University of Geosciences(Beijing)the Professorial position at the University of Adelaide, Australia to M.Santosh
文摘Tectonic processes involving amalgamations of microblocks along zones of ocean closure represented by granite-greenstone belts(GGB) were fundamental in building the Earth's early continents. The crustal growth and cratonization of the North China Craton(NCC) are correlated to the amalgamation of microblocks welded by 2.75-2.6 Ga and ~2.5 Ga GGBs. The lithological assemblages in the GGBs are broadly represented by volcano-sedimentary sequences, subduction-collision related granitoids and bimodal volcanic rocks(basalt and dacite) interlayered with minor komatiites and calc-alkalic volcanic rocks(basalt, andesite and felsic rock). The geochemical features of meta-basalts in the major GGBs of the NCC display affinity with N-MORB, E-MORB, OIB and calc-alkaline basalt, suggesting that the microblocks were separated by oceanic realm. The granitoid rocks display arc signature with enrichment of LILE(K,Rb, Sr, Ba) and LREE, and depletion of HFSE(Nb, Ta, Th, U, Ti) and HREE, and fall in the VAG field. The major mineralization includes Neoarchean BIF-type iron and VMS-type Cu-Zb deposits and these,together with the associated supracrustal rocks possibly formed in back-arc basins or arc-related oceanic slab subduction setting with or without input from mantle plumes. The 2.75-2.60 Ga TTG rocks,komatiites, meta-basalts and metasedimentary rocks in the Yanlingguan GGB are correlated to the upwelling mantle plume with eruption close to the continental margin within an ocean basin. The volcanosedimentary rocks and granitoid rocks in the late Neoarchean GGBs display formation ages of 2.60-2.48 Ga, followed by metamorphism at 2.52-2.47 Ga, corresponding to a typical modern-style subduction-collision system operating at the dawn of Proterozoic. The late Neoarchean komatiite(Dongwufenzi GGB), sanukitoid(Dongwufenzi GGB and Western Shandong GGB), BIF(Zunhua GGB) and VMS deposit(Hongtoushan-Qingyuan-Helong GGB) have closer connection to a combined process of oceanic slab subduction and mantle plume. The Neoarchean cratonization of the NCC appears to have involved two stages of tectonic process along the 2.75-2.6 Ga GGB and ~2.5 Ga GGBs, the former involve plume-arc interaction process, and the latter involving oceanic lithospheric subduction, with or without arcplume interaction.
基金funding from the European Research Council(ERC StG 279828)
文摘Greenstone basalts and komatiites provide a means to track both mantle composition and magma generation temperature with time. Four types of mantle are characterized from incompatible element distributions in basalts and komatiites: depleted, hydrated, enriched and mantle from which komatiites are derived. Our most important observation is the recognition for the first time of what we refer to as a Great Thermal Divergence within the mantle beginning near the end of the Archean, which we ascribe to thermal and convective evolution. Prior to 2.5 Ga, depleted and enriched mantle have indistinguishable thermal histories, whereas at 2.5-2.0 Ga a divergence in mantle magma generation temperature begins between these two types of mantle. Major and incompatible element distributions and calculated magma generation temperatures suggest that Archean enriched mantle did not come from mantle plumes, but was part of an undifferentiated or well-mixed mantle similar in composition to calculated primitive mantle. During this time, however, high-temperature mantle plumes from dominantly depleted sources gave rise to komatiites and associated basalts. Recycling of oceanic crust into the deep mantle after the Archean may have contributed to enrichment ofTi, A1, Ca and Na in basalts derived from enriched mantle sources. After 2.5 Ga, increases in Mg# in basalts from depleted mantle and decreases in Fe and Mn reflect some combination of growing depletion and cooling of depleted mantle with time. A delay in cooling of depleted mantle until after the Archean probably reflects a combination of greater radiogenic heat sources in the Archean mantle and the propagation of plate tectonics after 3 Ga.
基金funded by Geological Survey Project grants from the China Geological Survey(grant numbers DD20160056, 121201103000150002)
文摘The Maevatanana greenstone belt in north-central Madagascar contains widespread exposures of tonalite-trondhjemite-granodiorite (TTG) gneisses, and is important for its concentrations of various metal deposits (e.g., chromium, niekle, iron, gold). In this paper we report on the petrography, and major and trace element compositions of the TTG gneisses within the Berere Complex of the Maevatanana area, as well as LA-ICP-MS U-Pb ages and Lu-Hf isotopic compositions of zircons from the gneisses. The gneisses consist mainly of granitoid gneiss and biotite (± hornblende) plagiogneiss, and analysis of thin sections provides evidence of crushing, recrystallization, and metasomatism related to dynamic metamorphism. Samples have large variations in their major and trace element contents, with SiO2 = 55.87-68.06 wt%, Al2O3 = 13.9-17.8 wt%, and Na2O/K2O= 0.97-2.13. Geochemically, the granitoid gneisses and biotite plagiogneisses fall on a low-Al trondhjemite to granodiorite trend, while the biotite-hornblende plagiogneisses represent a high-Al tonalite TTG assemblage. Zircon U-Pb dating shows that the Berere Complex TTG gneisses formed at 2.5-2.4 Ga. Most εHf(t) values of zircons from the biotite (q- hornblende) plagiogneisses are positive, while most εHf(t) values from the granitoid gneisses are negative, suggesting a degree of crustal contamination. Two-stage Hf model ages suggest that the age of the protolith of the TTG gneisses was ca. 3.4-2.6 Ga, representing a period of paleocontinent formation in the Mesoarchean. Geothermometries indicate the temperature of metamorphism of the TTG gneisses was 522-612℃. Based on these data, the protolith of the TTG gneisses is inferred to have formed during the development of a Mesoarchean paleocontinent that is now widely exposed as a TTG gneiss belt (mostly lower amphibolite facies) in the Maevatanana area, and which records a geological evolution related to the subduction of an ancient oceanic crust and the collision of microcontinents during the formation of the Rodinia supercontinent. The lithological similarity of Precambrian basement, the close ages of metamorphism within greenstone belts and the comparable distribution of metamorphic grade all show a pronounced Precambrian geology similarity between Madagascar and India, which can provide significative clues in understanding the possible Precambrian Supercontinent tectonics, and also important constraints on the correlation of the two continental fragments.
基金supported by the Ministry of Science and Technology of China for the National Key Research and Development Program(Grand No.2016YFC0600106)the National Natural Science Foundation of China(Grand Nos.41602028 and 90914002)contributed to the 1000 Talent Award to M.Santosh from the Chinese Government
文摘The Wutai greenstone belt in central North China Craton(NCC) hosts a number of Precambrian gold deposits and ore occurrences. Based on the host rock association, these can be divided into Banded Iron Formation(BIF), meta-volcano-sedimentary and meta-conglomerate types. The two former types formed during ~2.5-2.3 Ga and the third one at ~1.85 Ga. The characteristics of these Precambrian gold deposits are broadly similar with those of the orogenic gold deposits. Based on available geochronological data, here we reconstruct the major tectonic events and their relationship with gold mineralization in the Wutai-Hengshan-Fuping region during Neoarchean to Paleoproterozoic as follows.(1)~2.6-2.5 Ga: widespread intrusion of tonalite-trondhjemite-granodiorite(TTG) magmas in the Hengshan terrane and Fuping continental arc, formation of the Wutai volcanic arc in the southern margin of Hengshan terrane with granitoids emplacement, and the Hengshan-Wutai intra-oceanic arc accretion to the Fuping arc at the end of Neoarchean.(2) ~ 2.5-2.3 Ga: the subduction of Hengshan arc from north leading to persistent magmatism and orogenic gold mineralization.(3)~2.2-2.1 Ga:extension leading to the formation of graben structure in the Wutai and Fuping region, deposition of the Hutuo and Wanzi Group sediments, formation of placer gold through erosion of the orogenic gold deposits.(4)~2.2-2.0 Ga: widespread magmatism in the Wutai-Hengshan-Fuping region.(5)~1.95-1.8 Ga: regional metamorphism associated with collision of the Western and Eastern Blocks of the NCC and associated orogenic gold deposits. The multiple subduction-accretion-collision history and subsequent deep erosion has significantly affected most of the Precambrian gold deposits in the Wutai greenstone belt.
基金the funds from Council of Scientific and Industrial Research (CSIR)Ministry of Earth Sciences, Government of India for the financial support(MoES/P.O.(Geosci)/4/2013)
文摘The Neoarchean Bundelkhand greenstone sequences at Mauranipur and Babina areas within the Bundelkhand Gneissic Complex preserve a variety of magmatic rocks such as komatiitic basalts, basalts,felsic volcanic rocks and high-Mg andesites belonging to the Baragaon, Raspahari and Koti Formations.The intrusive and extrusive komatiitic basalts are characterized by low SiO_2(39-53 wt.%), high MgO(18-25 wt.%).moderately high Fe_2O_3(7.1-11.6 wt.%), Al_2O_3(4.5-12.0 wt.%), and TiO_2(0.4-1.23 wt.%)with super to subchondritic(Gd/Yb)N ratios indicating garnet control on the melts. The intrusive komatiitic suite of Ti-enriched and Al-depleted type possesses predominant negative Eu and positive Nb, Ti and Y anomalies. The chemical composition of basalts classifies them into three types with varying SiO_2, TiO_2, MgO, Fe_2O_3, Al_2O_3 and CaO. At similar SiO_2 content of type Ⅰ and Ⅲ basalts, the type II basalts show slightly high Al_2O_3 and Fe_2O_3 contents. Significant negative anomalies of Nb, Zr, Hf and Ti, slightly enriched LREE with relatively flat HREE and low ∑REE contents are observed in type Ⅰ and Ⅱ basalts. TypeⅢ basalts show high Zr/Nb ratios(9.8-10.4), TiO_2(1.97-2.04 wt.%), but possess strikingly flat Zr, Hf, Y and Yb and are uncontaminated. Andesites from Agar and Koti have high SiO_2(55-64 wt.%), moderate TiO_2(0.4-0.7 wt.%), slightly low Al_2O_3(7-11.9 wt.%), medium to high MgO(3-8 wt.%) and CaO contents(10-17 wt.%). Anomalously high Cr, Co and Ni contents are observed in the Koti rhyolites. Tholeiitic to calc alkaline affinity of mafic-felsic volcanic rocks and basalt-andesite dacite-rhyolite differentiation indicate a mature arc and thickened crust during the advanced stage of the evolution of Neoarchean Bundelkhand greenstone belt in a convergent tectonic setting where the melts were derived from partial melting of thick basaltic crust metamorphosed to amphibolite-eclogite facies. The trace element systematics suggest the presence of arc-back arc association with varying magnitudes of crust-mantle interaction. La/Sm, La/Ta,Nb/Th, high MgO contents(>20 wt.%), CaO/Al_2O_3 and(Gd/Yb)_N > 1 along with the positive Nb anomalies of the komatiite basalts reflect a mantle plume source for their origin contaminated by subductionmetasomatized mantle lithosphere. The overall geochemical signatures of the ultramafic-mafic and felsic volcanic rocks endorse the Neoarchean plume-arc accretion tectonics in the Bundelkhand greenstone belt.
基金the Brazilian National Council for Scientific and Technological Development(CNPq)for financial support(grants 163459/2013-4 and 202267/2014-8 for G.S Teles and 305053/2014-0 for F.Chemale Jr.)the Australian Research Council(ARC)(grant DP140103393 for T.R.Ireland)。
文摘Greenstone belts contain several clues about the evolutionary history of primitive Earth.Here,we describe the volcano-sedimentary rock association exposed along the eastern margin of the Gavião Block,named the Northern Mundo Novo Greenstone Belt(N-MNGB),and present data collected with different techniques,including U–Pb–Hf–O isotopes of zircon and multiple sulfur isotopes(^(32)S,^(33)S,^(34)S,and ^(36)S)of pyrite from this supracrustal sequence.A pillowed metabasalt situated in the upper section of the N-MNGB is 3337±25 Ma old and has zircon with ε_(Hf)(t)=2.47 to1.40,Hf model ages between 3.75 Ga and 3.82 Ga,and δ^(18)O=+3.6‰to+7.3‰.These isotopic data,together with compiled whole-rock trace element data,suggest that the mafic metavolcanic rocks formed in a subduction-related setting,likely a back-arc basin juxtaposed to a continental arc.In this context,the magma interacted with older Eoarchean crustal components from the Gavião Block.Detrital zircons from the overlying quartzites of the Jacobina Group are sourced from Paleoarchean rocks,in accordance with previous studies,yielding a maximum depositional age of 3353±22 Ma.These detrital zircons have ε_(Hf)(t)=5.40 to0.84,Hf model ages between 3.66 Ga and 4.30 Ga,and δ^(18)O=+4.8‰to+6.4‰.The pyrite multiple sulfur isotope investigation of the 3.3 Ga supracrustal rocks from the N-MNGB enabled a further understanding of Paleoarchean sulfur cycling.The samples have diverse isotopic compositions that indicate sulfur sourced from distinct reservoirs.Significantly,they preserve the signal of the anoxic Archean atmosphere,expressed by MIF-S signatures(Δ^(33)S between1.3‰to+1.4‰)and a Δ^(36)S/Δ^(33)S slope of0.81 that is indistinguishable from the so-called Archean array.A BIF sample has a magmatic origin of sulfur,as indicated by the limited Δ^(34)S range(0 to+2‰),Δ^(33)S~0‰,and Δ^(36)S~0‰.A carbonaceous schist shows positive Δ^(34)S(2.1‰–3.5‰)and elevated Δ^(33)S(1.2‰–1.4‰)values,with corresponding negative Δ^(36)S between1.2‰to0.2‰,which resemble the isotopic composition of Archean black shales and suggest a source from the photolytic reduction of elemental sulfur.The pillowed metabasalt displays heterogeneous Δ^(34)S,Δ^(33)S,and Δ^(36)S signatures that reflect assimilation of both magmatic sulfur and photolytic sulfate during hydrothermal seafloor alteration.Lastly,pyrite in a massive sulfide lens is isotopically similar to barite of several Paleoarchean deposits worldwide,which might indicate mass dependent sulfur processing from a global and well-mixed sulfate reservoir at this time.
基金A project (4870204) funded jointly by the National Natural Science Foundation of China and the Geological Science and Technology Development Foundation.
文摘Experiments were conducted on the leaching of gold from greenstone by chloride solution under the temperature of 200—550℃ and the pressure of 60 MPa. During part of the experiments, the oxygen fugacity was controlled. The results show that the leaching rate of gold is related to temperature, composition of the solution, pH and oxygen fugacity. In the experiment with oxidative acidic solution, the leaching rate was up to 50% or more. It is known that the leaching of gold is restricted by the reaction in which the gold is dissolved from the rock to form gold chloride complex. Therefore, the authors hold that the acidic chloride solution derived from granite magma has caused the remobilization-migration of gold from greenstone and its enrichment into ore.
基金funded by DST,Government of India in the form of Transect Project(ESS/16/334/2007/dated 14-10-2008) and DU R & D Programme
文摘We present field, petrographic, major and trace element data for komatiites and komatiite basalts from Sargur Group Nagamangala greenstone belt, western Dharwar craton. Field evidences such as crude pillow structure indicate their eruption in a marine environment whilst spinifex texture reveals their komatiite nature. Petrographic data suggest that the primary mineralogy has been completely altered during post-magmatic processes associated with metamorphism corresponding to greenschist to lower amphibolite facies conditions. The studied komatiites contain serpentine, talc, tremolite, actinolite and chlorite whilst tremolite, actinolite with minor plagioclase in komatiitic basalts. Based on the published Sm-Nd whole rock isochron ages of adjoining Banasandra komatiites (northern extension of Naga- mangala belt) and further northwest in Nuggihafli belt and Kalyadi belt we speculate ca. 3.2-3.15 Ga for komatiite eruption in Nagamangala belt. Trace element characteristics particularly HFSE and REE patterns suggest that most of the primary geochemical characteristics are preserved with minor influ- ence of post-magmatic alteration and[or contamination. About 1[3 of studied komatiites show AI- depletion whilst remaining komatiites and komatiite basalts are Al-undepleted. Several samples despite high MgO, (Gd]Yb)N ratios show low CaO/AI203 ratios. Such anomalous values could be related to removal of CaO from komatiites during fluid-driven hydrothermal alteration, thus lowering CaOJAI203 ratios. The elemental characteristics of Al-depleted komatiites such as higher (Gd/Yb)N (〉 1.0), CaO/AI203 (〉1.0), Al203frio2 (〈18) together with lower HREE, Y, Zr and Hf indicate their derivation from deeper upper mantle with minor garnet (majorite?) involvement in residue whereas lower (GdIYb)N (〈1.0), CaO/AI203 (〈0.9), higher A1203]TiO2 (〉18) together with higher HREE, Y, Zr suggest their derivation from shallower upper mantle without garnet involvement in residue. The observed chemical characteristics (CaO/AI203, AI203]TiO2, MgO, Ni, Cr, Nb, Zr, Y, Hf, and REE) indicate derivation of the komatiite and komatiite basalt magmas from heterogeneous mantle (depleted to primitive mantle) at different depths in hot spot environments possibly with a rising plume. The low content of incompatible elements in studied komatiites suggest existence of depleted mantle during ca. 3.2 Ga which in turn imply an earlier episode of mantle differentiation, greenstone volcanism and continental growth probably during ca. 3.6-3.3 Ga which is substantiated by Nd and Pb isotope data of gneisses and komatiites in western Dharwar craton (WDC).
基金funded by the National Natural Science Foundation of China(Grant number 42172226)the Indepen-dent research fund of Key Laboratory of Mineral Resources Evaluation in Northeast Asia,Department of Natural Resources(DBYZZ-18-06).
文摘Studies of accreted oceanic plateau sections provide crucial information on their structures,compositions,and origins.We investigate the petrogenesis of ultramafic–mafic rocks in the Tangjia–Sumdo greenstone belt of southeast Tibet using petrography,whole-rock geochemistry,and U-Pb zircon geochronology.These rocks are divided into four groups based on geochemical characteristics that include depleted and tholeiitic mafic rocks,transitional mafic rocks,enriched and alkaline mafic rocks,and picritic ultramafic rocks.Depleted and tholeiitic mafic rocks have the oldest crystallization ages(-272 Ma),followed by picritic ultramafic rocks(-270 Ma),transitional mafic rocks(267–254 Ma),and enriched and alkaline mafic rocks(252–250 Ma).Hafnium and neodymium isotope ratios of depleted and tholeiitic mafic rocks(ε_(Hf)(t)=+13.1–+16.9;ε_(Nd)(t)=+6.9–+7.1),transitional mafic rocks(ε_(Hf)(t)=+1.8–+16.9;ε_(Nd)(t)=+0.8–+5.5),enriched and alkaline mafic rocks(ε_(Hf)(t)=+0.5–+5.4;ε_(Nd)(t)=1.5 to+1.9)and picritic ultramafic rocks(ε_(Hf)(t)=+14.9–+17.2;ε_(Nd)(t)=+7.8–+9.0)are similar to those of N-MORB,E-MORB,OIB and depleted-type picritic mafic rocks in other oceanic plateaus,respectively.The geochemical characteristics of the depleted and tholeiitic mafic rocks suggest that they formed by partial melting of depleted spinel lherzolite in a mid-ocean ridge setting,whereas the picritic ultramafic rocks suggest a high degree of partial melting of depleted lherzolite in a hot mantle plume head.The transitional mafic rocks formed by partial melting of moderately enriched garnet lherzolite.The youngest rocks(enriched and alkaline mafic rocks)formed by partial melting of a more enriched garnet lherzolite(compared to transitional mafic rocks)at relatively low temperatures.We propose that the depleted and tholeiitic mafic rocks represent normal oceanic crust of the Sumdo Paleo-Tethys Ocean and the transitional mafic rocks,enriched and alkaline mafic rocks and picritic ultramafic rocks are the fragments of the oceanic plateau,which were related to middle–late Permian mantle plume activity in the Sumdo Paleo-Tethys Ocean.We further suggest that the majority of the Tangjia–Sumdo greenstone belt represents a middle–late Permian oceanic plateau that reflects a previously unrecognized middle–late Permian mantle plume.
文摘The Banfora’s birimian greenstones belt is located in the western part of Burkina Faso (west Africa). Recent petrographic and lithogeochemical studies have highlighted plutons intruding the metasedimentary and metavolcanic series. These plutonic rocks are composed of leucogranites belonging to the so-called Ferkessedougou’s or Ferké’s batholith, granites, granodiorites, monzodiorites and quartz monzonites. From the lithogeochemical studies, these plutonic rocks have a calc-alkaline and peraluminous character. The rare earth elements spectra of the Ferké’s leucogranites let distinguished two sub-facies. One of the sub-facies is composed of quartz monzonite to granite, while the other is granitic sensu stricto. However, all these plutonic rocks were emplaced in a geodynamic context of subduction followed by collision.
文摘The Elogo complex is a greenstone belt portion located on the Eastern edge of the Archean Congo craton at the junction with the Paleoproterozoic to Neoproterozoic Sembe Ouesso basin. This study was carried out on this complex to determine the context of the placement of basaltic rocks. Metaluminous tholeiitic basalts (basic and ultrabasic), calc-alkaline basalts, andesitic basalts, and peraluminous calc-alkaline dacites represent greenstones. Tholeiitic and calc-alkaline basalts come from deep enriched and depleted mantle sources, including garnet in fusion residues [Al<sub>2</sub>O<sub>3</sub>/TiO<sub>2</sub> > 16 (16.5 to 35.12) and in some samples between 12.45 to 14.48;CaO/Al<sub>2</sub>O<sub>3</sub> 1 (1.04 to 1.35) in ten samples and (Gb/Yb)<sub>PM</sub> > 1]. The calc-alkaline dacites come from a shallow depleted mantle source [Al<sub>2</sub>O<sub>3</sub>/TiO<sub>2</sub> > 16;CaO/Al<sub>2</sub>O<sub>3</sub> 1]. Tholeiitic and calc-alkaline basalts have a negative Rb, Ba, Ce, and Nb anomaly without negative Ti anomaly, positive Ta, Pb anomalies, and a lack of significant REE [(La/Yb)n = 0.36 to 0.97 and 1 to 2.15;(Ce/Yb)n = 0.27 to 0.96 and 1.04 to 1.72, respectively] fractionation. High Nb/Th (2 to 10) and Nb/U (1.82 to 26) ratios and low La/Ta (5 to 27) ratios are characteristic of divergent margin magmatic sources. Tholeiitic and calc-alkaline basalts correspond to an extensive back-arc basin-type tectonic setting. Calc-alkaline andesitic basalts and dacites show positive Ba, U, Th, K, La, Ce, Pb, and Li anomalies and negative Nb, Ta, and Ti anomalies reflecting crustal contamination and hydrothermal alteration in a compressive tectonic context as a volcanic arc in a subduction regime marking the interruption of the meso-neoarchean Elogo’s opening. Elogo’s opening and closing are probably associated with the emplacement of the greenstone of the meso-neoarchean Gabon Belinga group and the relics of the Mesoarchean greenstones of the Cameroun Ntem complex.