Based on the optimization method, a new modified GM (1,1) model is presented, which is characterized by more accuracy prediction for the grey modeling.
Trend forecasting is an important aspect in fault diagnosis and work state supervision. The principle, where Grey theory is applied in fault forecasting, is that the forecast system is considered as a Grey system; the...Trend forecasting is an important aspect in fault diagnosis and work state supervision. The principle, where Grey theory is applied in fault forecasting, is that the forecast system is considered as a Grey system; the existing known information is used to infer the unknown information's character, state and development trend in a fault pattern, and to make possible forecasting and decisions for future development. It involves the whitenization of a Grey process. But the traditional equal time interval Grey GM (1,1) model requires equal interval data and needs to bring about accumulating addition generation and reversion calculations. Its calculation is very complex. However, the non equal interval Grey GM (1,1) model decreases the condition of the primitive data when establishing a model, but its requirement is still higher and the data were pre processed. The abrasion primitive data of plant could not always satisfy these modeling requirements. Therefore, it establishes a division method suited for general data modeling and estimating parameters of GM (1,1), the standard error coefficient that was applied to judge accuracy height of the model was put forward; further, the function transform to forecast plant abrasion trend and assess GM (1,1) parameter was established. These two models need not pre process the primitive data. It is not only suited for equal interval data modeling, but also for non equal interval data modeling. Its calculation is simple and convenient to use. The oil spectrum analysis acted as an example. The two GM (1,1) models put forward in this paper and the new information model and its comprehensive usage were investigated. The example shows that the two models are simple and practical, and worth expanding and applying in plant fault diagnosis.展开更多
The data on the coal production and consumption in Jilin Province for the last ten years were collected,and the Grey System GM( 1,1) model and unary linear regression model were applied to predict the coal consumption...The data on the coal production and consumption in Jilin Province for the last ten years were collected,and the Grey System GM( 1,1) model and unary linear regression model were applied to predict the coal consumption of Jilin Production in 2014 and 2015. Through calculation,the predictive value on the coal consumption of Jilin Province was attained,namely consumption of 2014 is 114. 84 × 106 t and of 2015 is 117. 98 ×106t,respectively. Analysis of error data indicated that the predicted accuracy of Grey System GM( 1,1) model on the coal consumption in Jilin Province improved 0. 21% in comparison to unary linear regression model.展开更多
Because the impacts of the factors such as some disturbances are graduallyadded into the system, the grey forecast results will deviate from the systemtrue value. To improve the forecast precision, Pro-Dens Julons pro...Because the impacts of the factors such as some disturbances are graduallyadded into the system, the grey forecast results will deviate from the systemtrue value. To improve the forecast precision, Pro-Dens Julons provided twomethfor-But they had not consider the impact of artificial disturbance. LiZhihua et al. of Qinghua Univ. presented another method. This paper revisesthe method and make it be a spocial case.展开更多
For the classical GM(1,1)model,the prediction accuracy is not high,and the optimization of the initial and background values is one-sided.In this paper,the Lagrange mean value theorem is used to construct the backgrou...For the classical GM(1,1)model,the prediction accuracy is not high,and the optimization of the initial and background values is one-sided.In this paper,the Lagrange mean value theorem is used to construct the background value as a variable related to k.At the same time,the initial value is set as a variable,and the corresponding optimal parameter and the time response formula are determined according to the minimum value of mean relative error(MRE).Combined with the domestic natural gas annual consumption data,the classical model and the improved GM(1,1)model are applied to the calculation and error comparison respectively.It proves that the improved model is better than any other models.展开更多
A new method to improve prediction precision of GM(1,1) model with unequal time interval is presented.The grey derivative is multiplied by a parameter to guarantee the time response function satisfying approximately...A new method to improve prediction precision of GM(1,1) model with unequal time interval is presented.The grey derivative is multiplied by a parameter to guarantee the time response function satisfying approximately exponential function distribution.To simplify the process of parametric estimation,an approximate value is taken for the multiplied parameter.Then the estimators of coefficient of development and grey action quantity can be derived.At the same time,the principle of the new information priority is also considered.We take the last item of the first-order accumulated generation operator(1-AGO) on raw data sequence as the initial condition in the time response function.Then the new information can be taken full advantage of through the improved initial condition.Some properties of this new model are also discussed.The presented method is actually a combination of improvement of grey derivative and improvement of the initial condition.The results of an example indicate that the proposed method can improve prediction precision prominently.展开更多
The major advantage of grey system theory is that both incomplete information and unclear problems can be processed precisely. Considering that the modeling of grey model(GM) depends on the preprocessing of the origin...The major advantage of grey system theory is that both incomplete information and unclear problems can be processed precisely. Considering that the modeling of grey model(GM) depends on the preprocessing of the original data,the fractional-order accumulation calculus could be used to do preprocessing. In this paper, the residual sequence represented by Fourier series is used to ameliorate performance of the fractionalorder accumulation GM(1,1) and improve the accuracy of predictor. The state space model of optimally modified GM(1,1)predictor is given and genetic algorithm(GA) is used to find the smallest relative error during the modeling step. Furthermore,the fractional form of continuous GM(1,1) is given to enlarge the content of prediction model. The simulation results illustrated that the fractional-order calculus could be used to depict the GM precisely with more degrees of freedom. Meanwhile, the ranges of the parameters and model application could be enlarged with better performance. The method of modified GM predictor using optimal fractional-order accumulation calculus is expected to be widely used in data processing, model theory, prediction control and related fields.展开更多
The grey forecasting model has been successfully applied to many fields. However, the precision of GM(1,1) model is not high. In order to remove the seasonal fluctuations in monitoring series before building GM(1,1) m...The grey forecasting model has been successfully applied to many fields. However, the precision of GM(1,1) model is not high. In order to remove the seasonal fluctuations in monitoring series before building GM(1,1) model, the forecasting series of GM(1,1) was built, and an inverse process was used to resume the seasonal fluctuations. Two deseasonalization methods were presented , i.e., seasonal index-based deseasonalization and standard normal distribution-based deseasonalization. They were combined with the GM(1,1) model to form hybrid grey models. A simple but practical method to further improve the forecasting results was also suggested. For comparison, a conventional periodic function model was investigated. The concept and algorithms were tested with four years monthly monitoring data. The results show that on the whole the seasonal index-GM(1,1) model outperform the conventional periodic function model and the conventional periodic function model outperform the SND-GM(1,1) model. The mean Absolute error and mean square error of seasonal index-GM(1,1) are 30.69% and 54.53% smaller than that of conventional periodic function model, respectively. The high accuracy, straightforward and easy implementation natures of the proposed hybrid seasonal index-grey model make it a powerful analysis technique for seasonal monitoring series.展开更多
As a special product, the cultivation and production of grain directly affect the consumption of people, which has an important influence on the development of social economy and the national economy and people’s liv...As a special product, the cultivation and production of grain directly affect the consumption of people, which has an important influence on the development of social economy and the national economy and people’s livelihood. Firstly, the present situation of grain production is analyzed, and the problems facing the structural reform of grain supply side in China are analyzed from grain output and its import and export volume. Secondly, we use grey GM (1, 1) model to predict grain output and consumption, grain import and export volume and all kinds of grain crops output in China, and then analyze the future trend of grain production in China. Finally, we put forward construction of grain branding, rational allocation of grain planting varieties, construction of traceability system for grain production, further grain processing and development of “Internet agriculture” industrial model to promote structural reform of grain supply side.展开更多
he Grey system theory -was applied in reliability analysis of mechanical equip-ment. It is a new theory and method in reliability engineering of mechanical engineering of mechanical equipment. Through the Grey forecas...he Grey system theory -was applied in reliability analysis of mechanical equip-ment. It is a new theory and method in reliability engineering of mechanical engineering of mechanical equipment. Through the Grey forecast of reliability parameters and the reliability forecast of parts and systems, decisions were made in the real operative state of e-quipment in real time. It replaced the old method that required mathematics and physical statistics in a large base of test data to obtain a pre-check , and it was used in a practical problem. Because of applying the data of practical operation state in real time, it could much more approach the real condition of equipment; it-was applied to guide the procedure and had rather considerable economic and social benefits.展开更多
GM(1,1)models have been widely used in various fields due to their high performance in time series prediction.However,some hypotheses of the existing GM(1,1)model family may reduce their prediction performance in some...GM(1,1)models have been widely used in various fields due to their high performance in time series prediction.However,some hypotheses of the existing GM(1,1)model family may reduce their prediction performance in some cases.To solve this problem,this paper proposes a self-adaptive GM(1,1)model,termed as SAGM(1,1)model,which aims to solve the defects of the existing GM(1,1)model family by deleting their modeling hypothesis.Moreover,a novel multi-parameter simultaneous optimization scheme based on firefly algorithm is proposed,the proposed multi-parameter optimization scheme adopts machine learning ideas,takes all adjustable parameters of SAGM(1,1)model as input variables,and trains it with firefly algorithm.And Sobol’sensitivity indices are applied to study global sensitivity of SAGM(1,1)model parameters,which provides an important reference for model parameter calibration.Finally,forecasting capability of SAGM(1,1)model is illustrated by Anhui electricity consumption dataset.Results show that prediction accuracy of SAGM(1,1)model is significantly better than other models,and it is shown that the proposed approach enhances the prediction performance of GM(1,1)model significantly.展开更多
文摘Based on the optimization method, a new modified GM (1,1) model is presented, which is characterized by more accuracy prediction for the grey modeling.
文摘Trend forecasting is an important aspect in fault diagnosis and work state supervision. The principle, where Grey theory is applied in fault forecasting, is that the forecast system is considered as a Grey system; the existing known information is used to infer the unknown information's character, state and development trend in a fault pattern, and to make possible forecasting and decisions for future development. It involves the whitenization of a Grey process. But the traditional equal time interval Grey GM (1,1) model requires equal interval data and needs to bring about accumulating addition generation and reversion calculations. Its calculation is very complex. However, the non equal interval Grey GM (1,1) model decreases the condition of the primitive data when establishing a model, but its requirement is still higher and the data were pre processed. The abrasion primitive data of plant could not always satisfy these modeling requirements. Therefore, it establishes a division method suited for general data modeling and estimating parameters of GM (1,1), the standard error coefficient that was applied to judge accuracy height of the model was put forward; further, the function transform to forecast plant abrasion trend and assess GM (1,1) parameter was established. These two models need not pre process the primitive data. It is not only suited for equal interval data modeling, but also for non equal interval data modeling. Its calculation is simple and convenient to use. The oil spectrum analysis acted as an example. The two GM (1,1) models put forward in this paper and the new information model and its comprehensive usage were investigated. The example shows that the two models are simple and practical, and worth expanding and applying in plant fault diagnosis.
基金Supported by project of National Natural Science Foundation of China(No.41272360)
文摘The data on the coal production and consumption in Jilin Province for the last ten years were collected,and the Grey System GM( 1,1) model and unary linear regression model were applied to predict the coal consumption of Jilin Production in 2014 and 2015. Through calculation,the predictive value on the coal consumption of Jilin Province was attained,namely consumption of 2014 is 114. 84 × 106 t and of 2015 is 117. 98 ×106t,respectively. Analysis of error data indicated that the predicted accuracy of Grey System GM( 1,1) model on the coal consumption in Jilin Province improved 0. 21% in comparison to unary linear regression model.
文摘Because the impacts of the factors such as some disturbances are graduallyadded into the system, the grey forecast results will deviate from the systemtrue value. To improve the forecast precision, Pro-Dens Julons provided twomethfor-But they had not consider the impact of artificial disturbance. LiZhihua et al. of Qinghua Univ. presented another method. This paper revisesthe method and make it be a spocial case.
基金supported by the National Natural Science Foundation of China (71871106)the Blue and Green Project in Jiangsu Provincethe Six Talent Peaks Project in Jiangsu Province (2016-JY-011)
文摘For the classical GM(1,1)model,the prediction accuracy is not high,and the optimization of the initial and background values is one-sided.In this paper,the Lagrange mean value theorem is used to construct the background value as a variable related to k.At the same time,the initial value is set as a variable,and the corresponding optimal parameter and the time response formula are determined according to the minimum value of mean relative error(MRE).Combined with the domestic natural gas annual consumption data,the classical model and the improved GM(1,1)model are applied to the calculation and error comparison respectively.It proves that the improved model is better than any other models.
基金supported by the National Natural Science Foundation of China (7090103471071077)+2 种基金the National Educational Sciences Planning Key Project of Ministry of Education (DFA090215)the Fundamental Research Funds for the Central Universities (JUSRP21146JUSRP31107)
文摘A new method to improve prediction precision of GM(1,1) model with unequal time interval is presented.The grey derivative is multiplied by a parameter to guarantee the time response function satisfying approximately exponential function distribution.To simplify the process of parametric estimation,an approximate value is taken for the multiplied parameter.Then the estimators of coefficient of development and grey action quantity can be derived.At the same time,the principle of the new information priority is also considered.We take the last item of the first-order accumulated generation operator(1-AGO) on raw data sequence as the initial condition in the time response function.Then the new information can be taken full advantage of through the improved initial condition.Some properties of this new model are also discussed.The presented method is actually a combination of improvement of grey derivative and improvement of the initial condition.The results of an example indicate that the proposed method can improve prediction precision prominently.
基金supported by the National Natural Science Foundation of China(61174145)
文摘The major advantage of grey system theory is that both incomplete information and unclear problems can be processed precisely. Considering that the modeling of grey model(GM) depends on the preprocessing of the original data,the fractional-order accumulation calculus could be used to do preprocessing. In this paper, the residual sequence represented by Fourier series is used to ameliorate performance of the fractionalorder accumulation GM(1,1) and improve the accuracy of predictor. The state space model of optimally modified GM(1,1)predictor is given and genetic algorithm(GA) is used to find the smallest relative error during the modeling step. Furthermore,the fractional form of continuous GM(1,1) is given to enlarge the content of prediction model. The simulation results illustrated that the fractional-order calculus could be used to depict the GM precisely with more degrees of freedom. Meanwhile, the ranges of the parameters and model application could be enlarged with better performance. The method of modified GM predictor using optimal fractional-order accumulation calculus is expected to be widely used in data processing, model theory, prediction control and related fields.
文摘The grey forecasting model has been successfully applied to many fields. However, the precision of GM(1,1) model is not high. In order to remove the seasonal fluctuations in monitoring series before building GM(1,1) model, the forecasting series of GM(1,1) was built, and an inverse process was used to resume the seasonal fluctuations. Two deseasonalization methods were presented , i.e., seasonal index-based deseasonalization and standard normal distribution-based deseasonalization. They were combined with the GM(1,1) model to form hybrid grey models. A simple but practical method to further improve the forecasting results was also suggested. For comparison, a conventional periodic function model was investigated. The concept and algorithms were tested with four years monthly monitoring data. The results show that on the whole the seasonal index-GM(1,1) model outperform the conventional periodic function model and the conventional periodic function model outperform the SND-GM(1,1) model. The mean Absolute error and mean square error of seasonal index-GM(1,1) are 30.69% and 54.53% smaller than that of conventional periodic function model, respectively. The high accuracy, straightforward and easy implementation natures of the proposed hybrid seasonal index-grey model make it a powerful analysis technique for seasonal monitoring series.
文摘As a special product, the cultivation and production of grain directly affect the consumption of people, which has an important influence on the development of social economy and the national economy and people’s livelihood. Firstly, the present situation of grain production is analyzed, and the problems facing the structural reform of grain supply side in China are analyzed from grain output and its import and export volume. Secondly, we use grey GM (1, 1) model to predict grain output and consumption, grain import and export volume and all kinds of grain crops output in China, and then analyze the future trend of grain production in China. Finally, we put forward construction of grain branding, rational allocation of grain planting varieties, construction of traceability system for grain production, further grain processing and development of “Internet agriculture” industrial model to promote structural reform of grain supply side.
文摘he Grey system theory -was applied in reliability analysis of mechanical equip-ment. It is a new theory and method in reliability engineering of mechanical engineering of mechanical equipment. Through the Grey forecast of reliability parameters and the reliability forecast of parts and systems, decisions were made in the real operative state of e-quipment in real time. It replaced the old method that required mathematics and physical statistics in a large base of test data to obtain a pre-check , and it was used in a practical problem. Because of applying the data of practical operation state in real time, it could much more approach the real condition of equipment; it-was applied to guide the procedure and had rather considerable economic and social benefits.
基金supported by the National Natural Science Foundation of China(72171116,71671090)the Fundamental Research Funds for the Central Universities(NP2020022)+1 种基金the Key Research Projects of Humanities and Social Sciences in Anhui Education Department(SK2021A1018)Qinglan Project for Excellent Youth or Middlea ged Academic Leaders in Jiangsu Province,China.
文摘GM(1,1)models have been widely used in various fields due to their high performance in time series prediction.However,some hypotheses of the existing GM(1,1)model family may reduce their prediction performance in some cases.To solve this problem,this paper proposes a self-adaptive GM(1,1)model,termed as SAGM(1,1)model,which aims to solve the defects of the existing GM(1,1)model family by deleting their modeling hypothesis.Moreover,a novel multi-parameter simultaneous optimization scheme based on firefly algorithm is proposed,the proposed multi-parameter optimization scheme adopts machine learning ideas,takes all adjustable parameters of SAGM(1,1)model as input variables,and trains it with firefly algorithm.And Sobol’sensitivity indices are applied to study global sensitivity of SAGM(1,1)model parameters,which provides an important reference for model parameter calibration.Finally,forecasting capability of SAGM(1,1)model is illustrated by Anhui electricity consumption dataset.Results show that prediction accuracy of SAGM(1,1)model is significantly better than other models,and it is shown that the proposed approach enhances the prediction performance of GM(1,1)model significantly.