The agronomic traits of the new wheat variety Anmai 1241 were comprehensively evaluated,in order to provide comprehensive and objective theoretical basis for further improvement and production utilization of this vari...The agronomic traits of the new wheat variety Anmai 1241 were comprehensively evaluated,in order to provide comprehensive and objective theoretical basis for further improvement and production utilization of this variety.The winter water production test results of Anmai 1241 in 14 pilot sites of Henan Seed Management Station from 2016 to 2017 were summarized.The comprehensive performance of 11 agronomic traits of Anmai 1241 in different tests sites in Henan Province was evaluated by the grey correlation analysis and clustering analysis methods.The results showed that among the observed values of 11 traits,the variation coefficient,correlation degree and weight of black embryo rate were 181.64%,0.6679 and 0.1051,respectively.The clustering analysis showed that the 11 traits could be divided into 3 groups.The first type of traits(yield,number of grains per ear and 1000-grain weight)and the third group of traits(percentage of earbearing tillers,number of productive tillers and volume weight)belonged to the yield factor traits,and the sum of their weights was 0.5242.Yield and its related factors played an important role in the variety evaluation of Anmai 1241,and the effect of black embryo on yield should be eliminated in variety improvement.展开更多
An efficient and accurate prediction of a precise tidal level in estuaries and coastal areas is indispensable for the management and decision-making of human activity in the field wok of marine engineering. The variat...An efficient and accurate prediction of a precise tidal level in estuaries and coastal areas is indispensable for the management and decision-making of human activity in the field wok of marine engineering. The variation of the tidal level is a time-varying process. The time-varying factors including interference from the external environment that cause the change of tides are fairly complicated. Furthermore, tidal variations are affected not only by periodic movement of celestial bodies but also by time-varying interference from the external environment. Consequently, for the efficient and precise tidal level prediction, a neuro-fuzzy hybrid technology based on the combination of harmonic analysis and adaptive network-based fuzzy inference system(ANFIS)model is utilized to construct a precise tidal level prediction system, which takes both advantages of the harmonic analysis method and the ANFIS network. The proposed prediction model is composed of two modules: the astronomical tide module caused by celestial bodies’ movement and the non-astronomical tide module caused by various meteorological and other environmental factors. To generate a fuzzy inference system(FIS) structure,three approaches which include grid partition(GP), fuzzy c-means(FCM) and sub-clustering(SC) are used in the ANFIS network constructing process. Furthermore, to obtain the optimal ANFIS based prediction model, large numbers of simulation experiments are implemented for each FIS generating approach. In this tidal prediction study, the optimal ANFIS model is used to predict the non-astronomical tide module, while the conventional harmonic analysis model is used to predict the astronomical tide module. The final prediction result is performed by combining the estimation outputs of the harmonious analysis model and the optimal ANFIS model. To demonstrate the applicability and capability of the proposed novel prediction model, measured tidal level samples of Fort Pulaski tidal station are selected as the testing database. Simulation and experimental results confirm that the proposed prediction approach can achieve precise predictions for the tidal level with high accuracy, satisfactory convergence and stability.展开更多
In the case of unknown weights, theories of multi-attributed decision making based on interval numbers and grey related analysis were used to optimize mining methods. As the representative of independence for the indi...In the case of unknown weights, theories of multi-attributed decision making based on interval numbers and grey related analysis were used to optimize mining methods. As the representative of independence for the indicator, the smaller the correlation of indicators is, the greater the weight is. Hence, the weights of interval numbers of indicators were determined by using correlation coefficient. Relative closeness based on positive and negative ideal methods was calculated by introducing distance between interval numbers, which made decision making more rational and comprehensive. A new method of ranking interval numbers based on normal distribution was proposed for the optimization of mining methods, whose basic properties were discussed. Finally, the feasibility and effectiveness of this method were verified by theories and practice.展开更多
The fuzzy C-means clustering algorithm(FCM) to the fuzzy kernel C-means clustering algorithm(FKCM) to effectively perform cluster analysis on the diversiform structures are extended, such as non-hyperspherical data, d...The fuzzy C-means clustering algorithm(FCM) to the fuzzy kernel C-means clustering algorithm(FKCM) to effectively perform cluster analysis on the diversiform structures are extended, such as non-hyperspherical data, data with noise, data with mixture of heterogeneous cluster prototypes, asymmetric data, etc. Based on the Mercer kernel, FKCM clustering algorithm is derived from FCM algorithm united with kernel method. The results of experiments with the synthetic and real data show that the FKCM clustering algorithm is universality and can effectively unsupervised analyze datasets with variform structures in contrast to FCM algorithm. It is can be imagined that kernel-based clustering algorithm is one of important research direction of fuzzy clustering analysis.展开更多
The complex relationships between indicators and water conditions cause fuzzy and gray uncertainties in evaluation of water quality. Compared to conventional single-factor evaluation methods, the combination evaluatio...The complex relationships between indicators and water conditions cause fuzzy and gray uncertainties in evaluation of water quality. Compared to conventional single-factor evaluation methods, the combination evaluation method can consider these two uncertainties to produce more objective and reasonable evaluation results. In this paper, we propose a combination evaluation method with two main parts:(1) the use of fuzzy comprehensive evaluation and gray correlation analysis as submodels with which to consider the fuzzy and gray uncertainties and(2) the establishment of a combination model based on minimum bias squares. In addition, using this method, we evaluate the water quality of a ditch in a typical rice–wheat system of Yixing city in the Taihu Lake Basin during three rainfall events. The results show that the ditch water quality is not good and we found the chemical oxygen demand to be the key indicator that affects water quality most significantly. The proposed combination evaluation method is more accurate and practical than single-factor evaluation methods in that it considers the uncertainties of fuzziness and grayness.展开更多
An evaluation index is a prerequisite for the scientific evaluation of a public meteorological service.This paper aims to explore a technical method for determining and screening evaluation indicators.Based on public ...An evaluation index is a prerequisite for the scientific evaluation of a public meteorological service.This paper aims to explore a technical method for determining and screening evaluation indicators.Based on public satisfaction survey data obtained in Wafangdian,China in 2010,this study investigates the suitability of fuzzy clustering analysis method in establishing an evaluation index.Through quantitative analysis of multilayer fuzzy clustering of various evaluation indicators,correlation analysis indicates that if the results of clustering were identical for two evaluation indicators in the same sub-evaluation layer,then one indicator could be removed,or the two indicators merged.For evaluation indicators in different sub-evaluation layers,although clustering reveals attribute correlations,these indicators may not be substituted for one another.Analysis of the applicability of the fuzzy clustering method shows that it plays a certain role in the establishment and correction of an evaluation index.展开更多
Glass is the precious material evidence of the trade of the early Silk Road. The ancient glass was easily affected by the environmental impact and weathering, and the change of composition ratios affected the correct ...Glass is the precious material evidence of the trade of the early Silk Road. The ancient glass was easily affected by the environmental impact and weathering, and the change of composition ratios affected the correct judgment of its category. In this paper, mathematical models and methods such as Chi-square test, weighted average method, principal component analysis, cluster analysis, binary classification model and grey correlation analysis were used comprehensively to analyze the data of sample glass products combined with their categories. The results showed that the weathered high-potassium glass could be divided into 12, 9, 10 and 27, 7, 22 and so on.展开更多
The Yellow River Basin of China is a key region that contains myriad interactions between human activities and natural environment.Industrialization and urbanization promote social-economic development,but they also h...The Yellow River Basin of China is a key region that contains myriad interactions between human activities and natural environment.Industrialization and urbanization promote social-economic development,but they also have generated a series of environmental and ecological issues in this basin.Previous researches have evaluated urban resilience at the national,regional,urban agglomeration,city,and prefecture levels,but not at the watershed level.To address this research gap and elevate the Yellow River Basin’s urban resilience level,we constructed an urban resilience evaluation index system from five dimensions:industrial resilience,social resilience,environmental resilience,technological resilience,and organizational resilience.The entropy weight method was used to comprehensively evaluate urban resilience in the Yellow River Basin.The exploratory spatial data analysis method was employed to study the spatiotemporal differences in urban resilience in the Yellow River Basin in 2010,2015,and 2020.Furthermore,the grey correlation analysis method was utilized to explore the influencing factors of these differences.The results of this study are as follows:(1)the overall level of urban resilience in the Yellow River Basin was relatively low but showed an increasing trend during 2010–2015,and significant spatial distribution differences were observed,with a higher resilience level in the eastern region and a low-medium resilience level in the western region;(2)the differences in urban resilience were noticeable,with industrial resilience and social resilience being relatively highly developed,whereas organizational resilience and environmental resilience were relatively weak;and(3)the correlation ranking of resilience influencing factors was as follows:science and technology level>administrative power>openness>market forces.This research can provide a basis for improving the resilience level of cities in the Yellow River Basin and contribute to the high-quality development of the region.展开更多
On the process of power system black start after an accident, it can help to optimize the resources allocation and accelerate the recovery process that decomposing the power system into several independent partitions ...On the process of power system black start after an accident, it can help to optimize the resources allocation and accelerate the recovery process that decomposing the power system into several independent partitions for parallel recovery. On the basis of adequate consideration of fuzziness of black-start zone partitioning, a new algorithm based on fuzzy clustering analysis is presented. Characteristic indexes are extracted fully and accurately. The raw data matrix is made up of the electrical distance between every nodes and blackstart resources. Closure transfer method is utilized to get the dynamic clustering. The availability and feasibility of the proposed algorithm are verified on the New-England 39 bus system at last.展开更多
According to the data from Henan Statistical Yearbook from 2002 to 2008, from production capital, production conditions, labour inputs and financial support, this paper selects 11 variables influencing comprehensive p...According to the data from Henan Statistical Yearbook from 2002 to 2008, from production capital, production conditions, labour inputs and financial support, this paper selects 11 variables influencing comprehensive productivity of agriculture in Henan Province. Through calculation and analysis of grey correlation of variables and comprehensive productivity of agriculture, this paper determines the impact of different variables on comprehensive productivity of agriculture. The results show that the agricultural capital has become the most important factor influencing comprehensive productivity of agriculture in Henan Province, while the impact of production conditions, labour inputs and financial support on comprehensive productivity of agriculture in Henan Province diminishes in turn. Corresponding countermeasures and suggestions are put forward to promote the sustainable development of comprehensive productivity of agriculture in Henan Province as follows: strengthen agricultural financial system building, and ensure agricultural production expenditure; scientifically arrange allocation of agricultural resources, and improve agricultural production conditions; carry out training of agricultural skills, and elevate the quality of agricultural labour forces; increase financial expenditure for agricultural production, and optimize financial expenditure structure.展开更多
In order to make a scientific pavement maintenance decision, a grey-theory-based prediction methodological framework is proposed to predict pavement performance. Based on the field pavement rutting data,analysis of va...In order to make a scientific pavement maintenance decision, a grey-theory-based prediction methodological framework is proposed to predict pavement performance. Based on the field pavement rutting data,analysis of variance (ANOVA)was first used to study the influence of different factors on pavement rutting. Cluster analysis was then employed to investigate the rutting development trend.Based on the clustering results,the grey theory was applied to build pavement rutting models for each cluster, which can effectively reduce the complexity of the predictive model.The results show that axial load and asphalt binder type play important roles in rutting development.The prediction model is capable of capturing the uncertainty in the pavement performance prediction process and can meet the requirements of highway pavement maintenance,and,therefore,has a wide application prospects.展开更多
Based on the analysis of the grain supply and demand gap’s current situation in China, this paper establishes an indicator system for the influence factors of grain supply and demand gap. Then this paper calculates t...Based on the analysis of the grain supply and demand gap’s current situation in China, this paper establishes an indicator system for the influence factors of grain supply and demand gap. Then this paper calculates the correlation degree between the main grain varieties’ supply and demand gap and its influence factors. The results show that sown area and unit yield have the greatest impact on wheat supply and demand gap;per capita disposable income and unit yield have the greatest impact on corn supply and demand gap;per capita disposable income and agricultural mechanization level have the greatest impact on the supply and demand gap of soybean and rice. From the analysis results, we can obtain the difference between the factors affecting the grain supply and demand gap, and provide a certain theoretical basis and new ideas for the balance of grain supply and demand in China.展开更多
Two-year-old Medicago sativa at budding initial stage was taken as research materials.Five methods were used to make green hay,including flatting stems + spraying 2.5% K2CO3,flatting stems,sun curing,drying in shade ...Two-year-old Medicago sativa at budding initial stage was taken as research materials.Five methods were used to make green hay,including flatting stems + spraying 2.5% K2CO3,flatting stems,sun curing,drying in shade and drying under 105 ℃ condition(CK).Besides,effects of different green hay making methods on dry characteristics and nutritional quality of M.sativa green hay were studied,and a comprehensive evaluation of M.sativa green hays was conducted.Results showed that,except CK,the drying rates in other making methods were all fast at first,and then slow down.Both of drying under 105 ℃ condition and flatting stems + spraying K2CO3 could speed up drying rate and reduce nutritional losses of green hay.Sun curing could also speed up drying rate,but it could not maintain the quality of green hay.The results of Grey Relational Analysis on five green hay making methods indicated that CK had the best comprehensive performance,followed by green hays made by flatting stems + spraying K2CO3.Therefore,flatting stems + spraying K2CO3 was a quick and easy method to make green hay,and it was worth to be recommended in practical production.展开更多
文摘The agronomic traits of the new wheat variety Anmai 1241 were comprehensively evaluated,in order to provide comprehensive and objective theoretical basis for further improvement and production utilization of this variety.The winter water production test results of Anmai 1241 in 14 pilot sites of Henan Seed Management Station from 2016 to 2017 were summarized.The comprehensive performance of 11 agronomic traits of Anmai 1241 in different tests sites in Henan Province was evaluated by the grey correlation analysis and clustering analysis methods.The results showed that among the observed values of 11 traits,the variation coefficient,correlation degree and weight of black embryo rate were 181.64%,0.6679 and 0.1051,respectively.The clustering analysis showed that the 11 traits could be divided into 3 groups.The first type of traits(yield,number of grains per ear and 1000-grain weight)and the third group of traits(percentage of earbearing tillers,number of productive tillers and volume weight)belonged to the yield factor traits,and the sum of their weights was 0.5242.Yield and its related factors played an important role in the variety evaluation of Anmai 1241,and the effect of black embryo on yield should be eliminated in variety improvement.
基金The National Natural Science Foundation of China under contract No.51379002the Fundamental Research Funds for the Central Universities of China under contract Nos 3132016322 and 3132016314the Applied Basic Research Project Fund of the Chinese Ministry of Transport of China under contract No.2014329225010
文摘An efficient and accurate prediction of a precise tidal level in estuaries and coastal areas is indispensable for the management and decision-making of human activity in the field wok of marine engineering. The variation of the tidal level is a time-varying process. The time-varying factors including interference from the external environment that cause the change of tides are fairly complicated. Furthermore, tidal variations are affected not only by periodic movement of celestial bodies but also by time-varying interference from the external environment. Consequently, for the efficient and precise tidal level prediction, a neuro-fuzzy hybrid technology based on the combination of harmonic analysis and adaptive network-based fuzzy inference system(ANFIS)model is utilized to construct a precise tidal level prediction system, which takes both advantages of the harmonic analysis method and the ANFIS network. The proposed prediction model is composed of two modules: the astronomical tide module caused by celestial bodies’ movement and the non-astronomical tide module caused by various meteorological and other environmental factors. To generate a fuzzy inference system(FIS) structure,three approaches which include grid partition(GP), fuzzy c-means(FCM) and sub-clustering(SC) are used in the ANFIS network constructing process. Furthermore, to obtain the optimal ANFIS based prediction model, large numbers of simulation experiments are implemented for each FIS generating approach. In this tidal prediction study, the optimal ANFIS model is used to predict the non-astronomical tide module, while the conventional harmonic analysis model is used to predict the astronomical tide module. The final prediction result is performed by combining the estimation outputs of the harmonious analysis model and the optimal ANFIS model. To demonstrate the applicability and capability of the proposed novel prediction model, measured tidal level samples of Fort Pulaski tidal station are selected as the testing database. Simulation and experimental results confirm that the proposed prediction approach can achieve precise predictions for the tidal level with high accuracy, satisfactory convergence and stability.
基金Project(50774095) supported by the National Natural Science Foundation of ChinaProject(200449) supported by the National Outstanding Doctoral Dissertations Special Funds of China
文摘In the case of unknown weights, theories of multi-attributed decision making based on interval numbers and grey related analysis were used to optimize mining methods. As the representative of independence for the indicator, the smaller the correlation of indicators is, the greater the weight is. Hence, the weights of interval numbers of indicators were determined by using correlation coefficient. Relative closeness based on positive and negative ideal methods was calculated by introducing distance between interval numbers, which made decision making more rational and comprehensive. A new method of ranking interval numbers based on normal distribution was proposed for the optimization of mining methods, whose basic properties were discussed. Finally, the feasibility and effectiveness of this method were verified by theories and practice.
文摘The fuzzy C-means clustering algorithm(FCM) to the fuzzy kernel C-means clustering algorithm(FKCM) to effectively perform cluster analysis on the diversiform structures are extended, such as non-hyperspherical data, data with noise, data with mixture of heterogeneous cluster prototypes, asymmetric data, etc. Based on the Mercer kernel, FKCM clustering algorithm is derived from FCM algorithm united with kernel method. The results of experiments with the synthetic and real data show that the FKCM clustering algorithm is universality and can effectively unsupervised analyze datasets with variform structures in contrast to FCM algorithm. It is can be imagined that kernel-based clustering algorithm is one of important research direction of fuzzy clustering analysis.
基金supported by the National Key Research and Development Program of China (No. 2017YFC0405006)the Innovative Research Groups of the National Natural Science Foundation of China (No. 51621092)the Natural Science Foundation of Tianjin (No. 16JCYBJC23100)
文摘The complex relationships between indicators and water conditions cause fuzzy and gray uncertainties in evaluation of water quality. Compared to conventional single-factor evaluation methods, the combination evaluation method can consider these two uncertainties to produce more objective and reasonable evaluation results. In this paper, we propose a combination evaluation method with two main parts:(1) the use of fuzzy comprehensive evaluation and gray correlation analysis as submodels with which to consider the fuzzy and gray uncertainties and(2) the establishment of a combination model based on minimum bias squares. In addition, using this method, we evaluate the water quality of a ditch in a typical rice–wheat system of Yixing city in the Taihu Lake Basin during three rainfall events. The results show that the ditch water quality is not good and we found the chemical oxygen demand to be the key indicator that affects water quality most significantly. The proposed combination evaluation method is more accurate and practical than single-factor evaluation methods in that it considers the uncertainties of fuzziness and grayness.
基金National Science Foundation of China(91637105,41775048 and 41475041)National Key R&D Program of China(2018YFC1507800)Research on Tourism Traffic Meteorological Service Products in Heilongjiang Province(HQZD2017004)
文摘An evaluation index is a prerequisite for the scientific evaluation of a public meteorological service.This paper aims to explore a technical method for determining and screening evaluation indicators.Based on public satisfaction survey data obtained in Wafangdian,China in 2010,this study investigates the suitability of fuzzy clustering analysis method in establishing an evaluation index.Through quantitative analysis of multilayer fuzzy clustering of various evaluation indicators,correlation analysis indicates that if the results of clustering were identical for two evaluation indicators in the same sub-evaluation layer,then one indicator could be removed,or the two indicators merged.For evaluation indicators in different sub-evaluation layers,although clustering reveals attribute correlations,these indicators may not be substituted for one another.Analysis of the applicability of the fuzzy clustering method shows that it plays a certain role in the establishment and correction of an evaluation index.
文摘Glass is the precious material evidence of the trade of the early Silk Road. The ancient glass was easily affected by the environmental impact and weathering, and the change of composition ratios affected the correct judgment of its category. In this paper, mathematical models and methods such as Chi-square test, weighted average method, principal component analysis, cluster analysis, binary classification model and grey correlation analysis were used comprehensively to analyze the data of sample glass products combined with their categories. The results showed that the weathered high-potassium glass could be divided into 12, 9, 10 and 27, 7, 22 and so on.
基金supported by the Institute of Geographic Sciences and Natural Resources Research,Chinese Academy of Sciences.
文摘The Yellow River Basin of China is a key region that contains myriad interactions between human activities and natural environment.Industrialization and urbanization promote social-economic development,but they also have generated a series of environmental and ecological issues in this basin.Previous researches have evaluated urban resilience at the national,regional,urban agglomeration,city,and prefecture levels,but not at the watershed level.To address this research gap and elevate the Yellow River Basin’s urban resilience level,we constructed an urban resilience evaluation index system from five dimensions:industrial resilience,social resilience,environmental resilience,technological resilience,and organizational resilience.The entropy weight method was used to comprehensively evaluate urban resilience in the Yellow River Basin.The exploratory spatial data analysis method was employed to study the spatiotemporal differences in urban resilience in the Yellow River Basin in 2010,2015,and 2020.Furthermore,the grey correlation analysis method was utilized to explore the influencing factors of these differences.The results of this study are as follows:(1)the overall level of urban resilience in the Yellow River Basin was relatively low but showed an increasing trend during 2010–2015,and significant spatial distribution differences were observed,with a higher resilience level in the eastern region and a low-medium resilience level in the western region;(2)the differences in urban resilience were noticeable,with industrial resilience and social resilience being relatively highly developed,whereas organizational resilience and environmental resilience were relatively weak;and(3)the correlation ranking of resilience influencing factors was as follows:science and technology level>administrative power>openness>market forces.This research can provide a basis for improving the resilience level of cities in the Yellow River Basin and contribute to the high-quality development of the region.
文摘On the process of power system black start after an accident, it can help to optimize the resources allocation and accelerate the recovery process that decomposing the power system into several independent partitions for parallel recovery. On the basis of adequate consideration of fuzziness of black-start zone partitioning, a new algorithm based on fuzzy clustering analysis is presented. Characteristic indexes are extracted fully and accurately. The raw data matrix is made up of the electrical distance between every nodes and blackstart resources. Closure transfer method is utilized to get the dynamic clustering. The availability and feasibility of the proposed algorithm are verified on the New-England 39 bus system at last.
文摘According to the data from Henan Statistical Yearbook from 2002 to 2008, from production capital, production conditions, labour inputs and financial support, this paper selects 11 variables influencing comprehensive productivity of agriculture in Henan Province. Through calculation and analysis of grey correlation of variables and comprehensive productivity of agriculture, this paper determines the impact of different variables on comprehensive productivity of agriculture. The results show that the agricultural capital has become the most important factor influencing comprehensive productivity of agriculture in Henan Province, while the impact of production conditions, labour inputs and financial support on comprehensive productivity of agriculture in Henan Province diminishes in turn. Corresponding countermeasures and suggestions are put forward to promote the sustainable development of comprehensive productivity of agriculture in Henan Province as follows: strengthen agricultural financial system building, and ensure agricultural production expenditure; scientifically arrange allocation of agricultural resources, and improve agricultural production conditions; carry out training of agricultural skills, and elevate the quality of agricultural labour forces; increase financial expenditure for agricultural production, and optimize financial expenditure structure.
基金The Major Scientific and Technological Special Project of Jiangsu Provincial Communications Department(No.2011Y/02-G1)
文摘In order to make a scientific pavement maintenance decision, a grey-theory-based prediction methodological framework is proposed to predict pavement performance. Based on the field pavement rutting data,analysis of variance (ANOVA)was first used to study the influence of different factors on pavement rutting. Cluster analysis was then employed to investigate the rutting development trend.Based on the clustering results,the grey theory was applied to build pavement rutting models for each cluster, which can effectively reduce the complexity of the predictive model.The results show that axial load and asphalt binder type play important roles in rutting development.The prediction model is capable of capturing the uncertainty in the pavement performance prediction process and can meet the requirements of highway pavement maintenance,and,therefore,has a wide application prospects.
文摘Based on the analysis of the grain supply and demand gap’s current situation in China, this paper establishes an indicator system for the influence factors of grain supply and demand gap. Then this paper calculates the correlation degree between the main grain varieties’ supply and demand gap and its influence factors. The results show that sown area and unit yield have the greatest impact on wheat supply and demand gap;per capita disposable income and unit yield have the greatest impact on corn supply and demand gap;per capita disposable income and agricultural mechanization level have the greatest impact on the supply and demand gap of soybean and rice. From the analysis results, we can obtain the difference between the factors affecting the grain supply and demand gap, and provide a certain theoretical basis and new ideas for the balance of grain supply and demand in China.
基金Supported by Tibet High Quality Freeze Resistance Bluegrass Varieties Breeding(Z2013C02N02_02)National Wool Sheep Grazing Grassland Ecological Position of Scientific Research Project(CARS-40-09B)
文摘Two-year-old Medicago sativa at budding initial stage was taken as research materials.Five methods were used to make green hay,including flatting stems + spraying 2.5% K2CO3,flatting stems,sun curing,drying in shade and drying under 105 ℃ condition(CK).Besides,effects of different green hay making methods on dry characteristics and nutritional quality of M.sativa green hay were studied,and a comprehensive evaluation of M.sativa green hays was conducted.Results showed that,except CK,the drying rates in other making methods were all fast at first,and then slow down.Both of drying under 105 ℃ condition and flatting stems + spraying K2CO3 could speed up drying rate and reduce nutritional losses of green hay.Sun curing could also speed up drying rate,but it could not maintain the quality of green hay.The results of Grey Relational Analysis on five green hay making methods indicated that CK had the best comprehensive performance,followed by green hays made by flatting stems + spraying K2CO3.Therefore,flatting stems + spraying K2CO3 was a quick and easy method to make green hay,and it was worth to be recommended in practical production.