In order to realize the accurate prediction of the total output value of construction industry in the future,the grey prediction model is used to compare the measured value with the predicted value from 2012 to 2021,a...In order to realize the accurate prediction of the total output value of construction industry in the future,the grey prediction model is used to compare the measured value with the predicted value from 2012 to 2021,and based on the existing data,the total output value of construction industry in Jiangxi Province in the next five years is predicted.The results show that the grey prediction model has a good prediction effect,and the error between the predicted value and the measured value is within 14%,which provides a basis for policy adjustment and resource optimization.展开更多
In order to deeply research the structure discrepancy and modeling mechanism among different grey prediction models, the equivalence and unbiasedness of grey prediction models are analyzed and verified. The results sh...In order to deeply research the structure discrepancy and modeling mechanism among different grey prediction models, the equivalence and unbiasedness of grey prediction models are analyzed and verified. The results show that all the grey prediction models that are strictly derived from x^(0)(k) +az^(1)(k) = b have the identical model structure and simulation precision. Moreover, the unbiased simulation for the homogeneous exponential sequence can be accomplished. However, the models derived from dx^(1)/dt + ax^(1)= b are only close to those derived from x^(0)(k) + az^(1)(k) = b provided that |a| has to satisfy|a| 0.1; neither could the unbiased simulation for the homogeneous exponential sequence be achieved. The above conclusions are proved and verified through some theorems and examples.展开更多
[Objective] The research aimed to study the yield prediction model of processing tomato based on the grey system theory.[Method] The variation trend of processing tomato yield was studied by using the grey system theo...[Objective] The research aimed to study the yield prediction model of processing tomato based on the grey system theory.[Method] The variation trend of processing tomato yield was studied by using the grey system theory,and GM(1,1)grey model of processing tomato yield prediction was established.The processing tomato yield in Xinjiang during 2001-2009 was as the example to carry out the instance analysis.[Result] The model had the high forecast accuracy and strong generalization ability,and was reliable for the prediction of recent processing tomato yield.[Conclusion] The research provided the reference for the macro-control of tomato industry,the processing and storage of tomato in Xinjiang.展开更多
Most of the existing multivariable grey models are based on the 1-order derivative and 1-order accumulation, which makes the parameters unable to be adjusted according to the data characteristics of the actual problem...Most of the existing multivariable grey models are based on the 1-order derivative and 1-order accumulation, which makes the parameters unable to be adjusted according to the data characteristics of the actual problems. The results about fractional derivative multivariable grey models are very few at present. In this paper, a multivariable Caputo fractional derivative grey model with convolution integral CFGMC(q, N) is proposed. First, the Caputo fractional difference is used to discretize the model, and the least square method is used to solve the parameters. The orders of accumulations and differential equations are determined by using particle swarm optimization(PSO). Then, the analytical solution of the model is obtained by using the Laplace transform, and the convergence and divergence of series in analytical solutions are also discussed. Finally, the CFGMC(q, N) model is used to predict the municipal solid waste(MSW). Compared with other competition models, the model has the best prediction effect. This study enriches the model form of the multivariable grey model, expands the scope of application, and provides a new idea for the development of fractional derivative grey model.展开更多
Grey modeling can be used to predict the behavioral development of a system and find out the lead control values of the system. By using fuzzy inference, PID parameters can be adjusted on line by the fuzzy controller ...Grey modeling can be used to predict the behavioral development of a system and find out the lead control values of the system. By using fuzzy inference, PID parameters can be adjusted on line by the fuzzy controller with PID parameters self-tuning. According to the characteristics of target tracking system in a robot weapon, grey prediction theory and fuzzy PID control ideas are combined. A grey prediction mathematical model is constructed and a fuzzy PID controller with grey prediction was developed. Simulation result shows fuzzy PID control algorithm with grey prediction is an efficient method that can improve the control equality and robustness of traditional PID control and fuzzy PID control, and has much better performance for target tracking.展开更多
Based on the theory of grey system, established GM (1, 1) grey catastrophe predict model for the first time in order to forecast the catastrophe periods of mine water inflowing (not the volume of water inflowing)....Based on the theory of grey system, established GM (1, 1) grey catastrophe predict model for the first time in order to forecast the catastrophe periods of mine water inflowing (not the volume of water inflowing). After establishing the grey predict system of the catastrophe regularity of 10 month-average volume of water inflowing, the grey forewarning for mine water inflowing catastrophe periods was established which was used to analyze water disaster in 400 meter level of Wennan Colliery. Based on residual analysis, it shows that the result of grey predict system is almost close to the actual value. And the scene actual result also shows the reliability of prediction. Both the theoretical analysis and the scene actual result indicate feasibility and reliability of the method of grey catastrophe predict system.展开更多
A new combined model is proposed to obtain predictive data value applied in state estimation for radial power distribution networks. The time delay part of the model is calculated by a recursive least squares algorith...A new combined model is proposed to obtain predictive data value applied in state estimation for radial power distribution networks. The time delay part of the model is calculated by a recursive least squares algorithm of system identification, which can gradually forget past information. The grey series part of the model uses an equal dimension new information model (EDNIM) and it applies 3 points smoothing method to preprocess the original data and modify remnant difference by GM(1,1). Through the optimization of the coefficient of the model, we are able to minimize the error variance of predictive data. A case study shows that the proposed method achieved high calculation precision and speed and it can be used to obtain the predictive value in real time state estimation of power distribution networks.展开更多
The average relative simulation and prediction percentage errors of the new model are only 0.092%and 3.023%,respectively.The simulation and prediction errors obtained from the classical GM(1,1)and the DGM(1,1)models a...The average relative simulation and prediction percentage errors of the new model are only 0.092%and 3.023%,respectively.The simulation and prediction errors obtained from the classical GM(1,1)and the DGM(1,1)models are,respectively,2.064%and 6.980%in the first case,and 1.942%and 7.360%in the second.The findings show that the GM(1,1,4)model has the best performance,which confirms the effectiveness of the structure improvement.The new model can enhance the smoothness of the background value and weaken the effects of extreme values in the raw sequence in the model’s performance.Therefore,the simulation and prediction performances of the GM(1,1,4)model are better than those of the traditional grey prediction models.The prediction show that the ownership for automobiles in China will grow rapidly in future.Findings could help the government in formulating adjustments to the industrial structures,and facilitate making rational yield plans for automobile firms.展开更多
The new energy vehicle(NEV)subsidy policy introduced in China in 2013 has significantly boosted the adoption and sales of NEVs,with sales increasing more than 40-fold.However,the mechanisms by which subsidy policies i...The new energy vehicle(NEV)subsidy policy introduced in China in 2013 has significantly boosted the adoption and sales of NEVs,with sales increasing more than 40-fold.However,the mechanisms by which subsidy policies influence the diffusion of NEVs in China remain unclear,posing challenges for governments to design future strategies.Thus,the primary objective of this paper is to empirically examine the impact of subsidy policy on the diffusion of new energy vehicles and to forecast future development trends using the grey Bass model,a predictive model suited for new product adoption forecasting.Our findings suggest that while the sales of NEVs in China will continue to rise,the growth rate will slow.Key milestones include the first inflection points for new energy vehicles and battery electric vehicles,anticipated in 2025 and 2024 respectively,with peak sales expected in 2028 and 2027.These insights are crucial for manufacturers,enabling them to adjust their production strategies timely and enhance their resilience in the market.展开更多
文摘In order to realize the accurate prediction of the total output value of construction industry in the future,the grey prediction model is used to compare the measured value with the predicted value from 2012 to 2021,and based on the existing data,the total output value of construction industry in Jiangxi Province in the next five years is predicted.The results show that the grey prediction model has a good prediction effect,and the error between the predicted value and the measured value is within 14%,which provides a basis for policy adjustment and resource optimization.
基金supported by the National Natural Science Foundation of China(1147105951375517+5 种基金71271226)the China Postdoctoral Science Foundation Funded Project(2014M560712)Chongqing Frontier and Applied Basic Research Project(cstc2014jcyj A00024)the Ministry of Education of Humanities and Social Sciences Youth Foundation(14YJAZH033)the Chongqing Municipal Education Scientific Planning Project(2012-GX-142)the Higher School Teaching Reform Research Project in Chongqing(1202010)
文摘In order to deeply research the structure discrepancy and modeling mechanism among different grey prediction models, the equivalence and unbiasedness of grey prediction models are analyzed and verified. The results show that all the grey prediction models that are strictly derived from x^(0)(k) +az^(1)(k) = b have the identical model structure and simulation precision. Moreover, the unbiased simulation for the homogeneous exponential sequence can be accomplished. However, the models derived from dx^(1)/dt + ax^(1)= b are only close to those derived from x^(0)(k) + az^(1)(k) = b provided that |a| has to satisfy|a| 0.1; neither could the unbiased simulation for the homogeneous exponential sequence be achieved. The above conclusions are proved and verified through some theorems and examples.
基金Supported by National Natural Science Fund Item(61064005)~~
文摘[Objective] The research aimed to study the yield prediction model of processing tomato based on the grey system theory.[Method] The variation trend of processing tomato yield was studied by using the grey system theory,and GM(1,1)grey model of processing tomato yield prediction was established.The processing tomato yield in Xinjiang during 2001-2009 was as the example to carry out the instance analysis.[Result] The model had the high forecast accuracy and strong generalization ability,and was reliable for the prediction of recent processing tomato yield.[Conclusion] The research provided the reference for the macro-control of tomato industry,the processing and storage of tomato in Xinjiang.
基金supported by the National Natural Science Foundation of China (51479151,61403288)。
文摘Most of the existing multivariable grey models are based on the 1-order derivative and 1-order accumulation, which makes the parameters unable to be adjusted according to the data characteristics of the actual problems. The results about fractional derivative multivariable grey models are very few at present. In this paper, a multivariable Caputo fractional derivative grey model with convolution integral CFGMC(q, N) is proposed. First, the Caputo fractional difference is used to discretize the model, and the least square method is used to solve the parameters. The orders of accumulations and differential equations are determined by using particle swarm optimization(PSO). Then, the analytical solution of the model is obtained by using the Laplace transform, and the convergence and divergence of series in analytical solutions are also discussed. Finally, the CFGMC(q, N) model is used to predict the municipal solid waste(MSW). Compared with other competition models, the model has the best prediction effect. This study enriches the model form of the multivariable grey model, expands the scope of application, and provides a new idea for the development of fractional derivative grey model.
基金the Ministerial Level Advanced Research Foundation (061103)
文摘Grey modeling can be used to predict the behavioral development of a system and find out the lead control values of the system. By using fuzzy inference, PID parameters can be adjusted on line by the fuzzy controller with PID parameters self-tuning. According to the characteristics of target tracking system in a robot weapon, grey prediction theory and fuzzy PID control ideas are combined. A grey prediction mathematical model is constructed and a fuzzy PID controller with grey prediction was developed. Simulation result shows fuzzy PID control algorithm with grey prediction is an efficient method that can improve the control equality and robustness of traditional PID control and fuzzy PID control, and has much better performance for target tracking.
文摘Based on the theory of grey system, established GM (1, 1) grey catastrophe predict model for the first time in order to forecast the catastrophe periods of mine water inflowing (not the volume of water inflowing). After establishing the grey predict system of the catastrophe regularity of 10 month-average volume of water inflowing, the grey forewarning for mine water inflowing catastrophe periods was established which was used to analyze water disaster in 400 meter level of Wennan Colliery. Based on residual analysis, it shows that the result of grey predict system is almost close to the actual value. And the scene actual result also shows the reliability of prediction. Both the theoretical analysis and the scene actual result indicate feasibility and reliability of the method of grey catastrophe predict system.
文摘A new combined model is proposed to obtain predictive data value applied in state estimation for radial power distribution networks. The time delay part of the model is calculated by a recursive least squares algorithm of system identification, which can gradually forget past information. The grey series part of the model uses an equal dimension new information model (EDNIM) and it applies 3 points smoothing method to preprocess the original data and modify remnant difference by GM(1,1). Through the optimization of the coefficient of the model, we are able to minimize the error variance of predictive data. A case study shows that the proposed method achieved high calculation precision and speed and it can be used to obtain the predictive value in real time state estimation of power distribution networks.
基金supported by National Natural Science Foundation of China(71771033)Foundation Research and Frontier Exploration in Chongqing of China(cstc2019jcyjmsxm1385)+2 种基金the Ministry of Education Humanities and Social Sciences Planning Project of China(18XJC630003)Chongqing Municipal Educational Science for the 13th-Five Year Planning Project of China(2017-GX-304)Science and technology research project of Chongqing Education Commission(KJQN201800805).
文摘The average relative simulation and prediction percentage errors of the new model are only 0.092%and 3.023%,respectively.The simulation and prediction errors obtained from the classical GM(1,1)and the DGM(1,1)models are,respectively,2.064%and 6.980%in the first case,and 1.942%and 7.360%in the second.The findings show that the GM(1,1,4)model has the best performance,which confirms the effectiveness of the structure improvement.The new model can enhance the smoothness of the background value and weaken the effects of extreme values in the raw sequence in the model’s performance.Therefore,the simulation and prediction performances of the GM(1,1,4)model are better than those of the traditional grey prediction models.The prediction show that the ownership for automobiles in China will grow rapidly in future.Findings could help the government in formulating adjustments to the industrial structures,and facilitate making rational yield plans for automobile firms.
基金Supported by the National Social Science Foundation of China(23BTJ021)the National Natural Science Foundation of China(71971194)。
文摘The new energy vehicle(NEV)subsidy policy introduced in China in 2013 has significantly boosted the adoption and sales of NEVs,with sales increasing more than 40-fold.However,the mechanisms by which subsidy policies influence the diffusion of NEVs in China remain unclear,posing challenges for governments to design future strategies.Thus,the primary objective of this paper is to empirically examine the impact of subsidy policy on the diffusion of new energy vehicles and to forecast future development trends using the grey Bass model,a predictive model suited for new product adoption forecasting.Our findings suggest that while the sales of NEVs in China will continue to rise,the growth rate will slow.Key milestones include the first inflection points for new energy vehicles and battery electric vehicles,anticipated in 2025 and 2024 respectively,with peak sales expected in 2028 and 2027.These insights are crucial for manufacturers,enabling them to adjust their production strategies timely and enhance their resilience in the market.