To promote and develop green buildings,a standardized,applicable and easily operable index system for the assessment of such buildings was established on the basis of life cycle cost effectiveness.From the perspective...To promote and develop green buildings,a standardized,applicable and easily operable index system for the assessment of such buildings was established on the basis of life cycle cost effectiveness.From the perspectives of environment-friendly materials,water resource environment,energy and environment,quality of indoor and outdoor environment,operation and management,and economical efficiency of life cycle,a modified index system was built,AHP was applied to obtain weights of indexes,evaluation methods of the grey system were used to evaluate green buildings,case study was adopted to verify the practicability and scientificity of the method.The results showed that Grey Clustering Method was an objective and reliable tool to evaluate green buildings,the calculation was simple,practical and easily operable,and moreover,the assessment process could be optimized by computer programming to improve its efficiency and precision.展开更多
A novel grey Markov chain predictive model is discussed to reduce drift influence on the output of fiber optical gyroscopes (FOGs) and to improve FOGs' measurement precision. The proposed method possesses advantag...A novel grey Markov chain predictive model is discussed to reduce drift influence on the output of fiber optical gyroscopes (FOGs) and to improve FOGs' measurement precision. The proposed method possesses advantages of grey model and Markov chain. It makes good use of dynamic modeling idea of the grey model to predict general trend of original data. Then according to the trend, states are divided so that it can overcome the disadvantage of high computational cost of state transition probability matrix in Markov chain. Moreover, the presented approach expands the applied scope of the grey model and makes it be fit for prediction of random data with bigger fluctuation. The numerical results of real drift data from a certain type FOG verify the effectiveness of the proposed grey Markov chain model powerfully. The Markov chain is also investigated to provide a comparison with the grey Markov chain model. It is shown that the hybrid grey Markov chain prediction model has higher modeling precision than Markov chain itself, which prove this proposed method is very applicable and effective.展开更多
In this paper,we present a new method of intelligent back analysis(IBA)using grey Verhulst model(GVM)to identify geotechnical parameters of rock mass surrounding tunnel,and validate it via a test for a main openings o...In this paper,we present a new method of intelligent back analysis(IBA)using grey Verhulst model(GVM)to identify geotechnical parameters of rock mass surrounding tunnel,and validate it via a test for a main openings of−600 m level in Coal Mine“6.13”,Democratic People's Republic of Korea.The displacement components used for back analysis are the crown settlement and sidewalls convergence monitored at the end of the openings excavation,and the final closures predicted by GVM.The non-linear relation between displacements and back analysis parameters was obtained by artificial neural network(ANN)and Burger-creep viscoplastic(CVISC)model of FLAC3D.Then,the optimal parameters were determined for rock mass surrounding tunnel by genetic algorithm(GA)with both groups of measured displacements at the end of the final excavation and closures predicted by GVM.The maximum absolute error(MAE)and standard deviation(Std)between calculated displacements by numerical simulation with back analysis parameters and in situ ones were less than 6 and 2 mm,respectively.Therefore,it was found that the proposed method could be successfully applied to determining design parameters and stability for tunnels and underground cavities,as well as mine openings and stopes.展开更多
Numerical simulation technology was applied for optimizing the casting design and conditions in large cast iron castings for marine engine. By the simulation of mold filling and solidification sequences the problems o...Numerical simulation technology was applied for optimizing the casting design and conditions in large cast iron castings for marine engine. By the simulation of mold filling and solidification sequences the problems of the previous casting conditions were analyzed and marked improvements for large cylinder liner parts were derived from these results. Especially the amount and positions of chills were optimized to increase the mechanical properties and to minimize the shrinkage and microporosity in the castings. Ultrasonic testing, penetration testing and mechanical property testing were carried out for the parts with the modified casting conditions. It showed that no defects in the castings were found and the productivity could be distinctly increased. The mechanical properties satisfied also the specification demanded.展开更多
Electroless nickel coatings are very popular for their corrosion resistant actions. The present article attempts to study the corrosion behaviour of electroless Ni-B coatings by varying the coating parameters viz. bat...Electroless nickel coatings are very popular for their corrosion resistant actions. The present article attempts to study the corrosion behaviour of electroless Ni-B coatings by varying the coating parameters viz. bath temperature, reducing agent concentration and nickel source concentration together with the annealing temperature. The electrochemical parameters viz., corrosion potential and corrosion current density are evaluated with the help of potentiodynamic polarization experimentation. Taguchi based Grey analysis is employed in order to optimize this multiple response problem and the optimal combination of parameters for maximum corrosion resistance for Ni-B coatings is presented. Moreover, analysis of variance reveals that bath temperature and concentration of nickel source have significant influence on the corrosion performance of the coating. The microstructure characterization of the coating is also conducted with the help of scanning electron microscopy, energy dispersive X-ray analysis and X-ray diffraction analysis. The Ni-B coating in general exhibits a nodular structure and turns crystalline with heat treatment. The corroded surface exhibits cracks and black spots which imply the occurrence of localized corrosion.展开更多
In order to prevent and control the water inflow of mines, this paper built a new initial GM(1, 1) model to torecast the maximum water inflow according to the principle of new information. The effect of the new init...In order to prevent and control the water inflow of mines, this paper built a new initial GM(1, 1) model to torecast the maximum water inflow according to the principle of new information. The effect of the new initial GM(1, 1) model is not ideal by the concrete example. Then according to the principle of making the sum of the squares of the difference between the calculated sequences and the original sequences, an optimized GM(1, I) model was established. The result shows that this method is a new prediction method which can predict the maximum water inflow accurately. It not only conforms to the guide- line of prevention primarily, but also provides reference standards to managers on making prevention measures.展开更多
为探索GS1 Digital Link技术在产品物流中的应用潜力,分析研究了GS1系统和GS1 Digital Link的基本结构、编码特点以及技术优势,充分利用GS1 Digital Link技术可以为产品从源头到零售整个物流过程提供相关对象的Web地址编码的特点,以鲜...为探索GS1 Digital Link技术在产品物流中的应用潜力,分析研究了GS1系统和GS1 Digital Link的基本结构、编码特点以及技术优势,充分利用GS1 Digital Link技术可以为产品从源头到零售整个物流过程提供相关对象的Web地址编码的特点,以鲜活大闸蟹物流过程为例,构建了基于GS1 Digital Link的鲜活大闸蟹Web编码,为实现产品营销与追溯提供了标准化、动态化、多样化的编码数据支撑。展开更多
Background Chicken is one of the most numerous and widely distributed species around the world,and many studies support the multiple ancestral origins of domestic chickens.The research regarding the yellow skin phenot...Background Chicken is one of the most numerous and widely distributed species around the world,and many studies support the multiple ancestral origins of domestic chickens.The research regarding the yellow skin phenotype in domestic chickens(regulated by BCO2)likely originating from the grey junglefowl serves as crucial evidence for demonstrating the multiple origins of chickens.However,beyond the BCO2 gene region,much remains unknown about the introgression from the grey junglefowl into domestic chickens.Therefore,in this study,based on wholegenome data of 149 samples including 4 species of wild junglefowls and 13 local domestic chicken breeds,we explored the introgression events from the grey junglefowl to domestic chickens.Results We successfully detected introgression regions besides BCO2,including two associated with growth trait(IGFBP2 and TKT),one associated with angiogenesis(TIMP3)and two members of the heat shock protein family(HSPB2 and CRYAB).Our findings suggest that the introgression from the grey junglefowl may impact the growth performance of chickens.Furthermore,we revealed introgression events from grey junglefowl at the BCO2 region in multiple domestic chicken breeds,indicating a phenomenon where the yellow skin phenotype likely underwent strong selection and was retained.Additionally,our haplotype analysis shed light on BCO2 introgression event from different sources of grey junglefowl into domestic chickens,possibly suggesting multiple genetic flows between the grey junglefowl and domestic chickens.Conclusions In summary,our findings provide evidences of the grey junglefowl contributing to the genetic diversity of domestic chickens,laying the foundation for a deeper understanding of the genetic composition within domestic chickens,and offering new perspectives on the impact of introgression on domestic chickens.展开更多
To solve the problem of long response time when users obtain suitable cutting parameters through the Internet based platform,a case-based reasoning framework is proposed.Specifically,a Hamming distance and Euclidean d...To solve the problem of long response time when users obtain suitable cutting parameters through the Internet based platform,a case-based reasoning framework is proposed.Specifically,a Hamming distance and Euclidean distance combined method is designed to measure the similarity of case features which have both numeric and category properties.In addition,AHP(Analytic Hierarchy Process)and entropy weight method are integrated to provide features weight,where both user preferences and comprehensive impact of the index have been concerned.Grey relation analysis is used to obtain the similarity of a new problem and alternative cases.Finally,a platform is also developed on Visual Studio 2015,and a case study is demonstrated to verify the practicality and efficiency of the proposed method.This method can obtain cutting parameters which is suitable without iterative calculation.Compared with the traditional PSO(Particle swarm optimization algorithm)and GA(Genetic algorithm),it can obtain faster response speed.This method can provide ideas for selecting processing parameters in industrial production.While guaranteeing the characteristic information is similar,this approach can select processing parameters which is the most appropriate for the production process and a lot of time can be saved.展开更多
Hyperspectral(HS)image classification plays a crucial role in numerous areas including remote sensing(RS),agriculture,and the monitoring of the environment.Optimal band selection in HS images is crucial for improving ...Hyperspectral(HS)image classification plays a crucial role in numerous areas including remote sensing(RS),agriculture,and the monitoring of the environment.Optimal band selection in HS images is crucial for improving the efficiency and accuracy of image classification.This process involves selecting the most informative spectral bands,which leads to a reduction in data volume.Focusing on these key bands also enhances the accuracy of classification algorithms,as redundant or irrelevant bands,which can introduce noise and lower model performance,are excluded.In this paper,we propose an approach for HS image classification using deep Q learning(DQL)and a novel multi-objective binary grey wolf optimizer(MOBGWO).We investigate the MOBGWO for optimal band selection to further enhance the accuracy of HS image classification.In the suggested MOBGWO,a new sigmoid function is introduced as a transfer function to modify the wolves’position.The primary objective of this classification is to reduce the number of bands while maximizing classification accuracy.To evaluate the effectiveness of our approach,we conducted experiments on publicly available HS image datasets,including Pavia University,Washington Mall,and Indian Pines datasets.We compared the performance of our proposed method with several state-of-the-art deep learning(DL)and machine learning(ML)algorithms,including long short-term memory(LSTM),deep neural network(DNN),recurrent neural network(RNN),support vector machine(SVM),and random forest(RF).Our experimental results demonstrate that the Hybrid MOBGWO-DQL significantly improves classification accuracy compared to traditional optimization and DL techniques.MOBGWO-DQL shows greater accuracy in classifying most categories in both datasets used.For the Indian Pine dataset,the MOBGWO-DQL architecture achieved a kappa coefficient(KC)of 97.68%and an overall accuracy(OA)of 94.32%.This was accompanied by the lowest root mean square error(RMSE)of 0.94,indicating very precise predictions with minimal error.In the case of the Pavia University dataset,the MOBGWO-DQL model demonstrated outstanding performance with the highest KC of 98.72%and an impressive OA of 96.01%.It also recorded the lowest RMSE at 0.63,reinforcing its accuracy in predictions.The results clearly demonstrate that the proposed MOBGWO-DQL architecture not only reaches a highly accurate model more quickly but also maintains superior performance throughout the training process.展开更多
Strawberry (Fragaria × ananassa Duch.) is a significant global soft fruit crop, prized for its nutrient content and pleasant flavor. However, diseases, particularly grey mold caused by Botrytis cinerea Pers. Fr. ...Strawberry (Fragaria × ananassa Duch.) is a significant global soft fruit crop, prized for its nutrient content and pleasant flavor. However, diseases, particularly grey mold caused by Botrytis cinerea Pers. Fr. poses major constraints to strawberry production and productivity. Grey mold severely impacts fruit quality and quantity, diminishing market value. This study evaluated five B. cinerea isolates from various locations in the Ri-Bhoi district of Meghalaya. All isolates were pathogenic, with isolate SGM 2 identified as highly virulent. Host range studies showed the pathogen-producing symptoms in the fava bean pods, marigold, gerbera, and chrysanthemum flowers and in the fava bean, gerbera, and lettuce leaves. In vitro tests revealed that neem extract (15% w/v) achieved the highest mycelial growth inhibition at 76.66%, while black turmeric extract (5% w/v) had the lowest inhibition at 9.62%. Dual culture methods with bio-control agents indicated that Bacillus subtilis recorded the highest mean inhibition at 77.03%, while Pseudomonas fluorescens had the lowest at 20.36% against the two virulent isolates. Pot evaluations demonstrated that B. subtilis resulted in the lowest percent disease index at 20.59%, followed by neem extract at 23.31%, with the highest disease index in the control group at 42.51%. Additionally, B. subtilis significantly improved plant growth, yielding an average of 0.32 kg compared to 0.14 kg in the control. The promising results of B. subtilis and neem leaf extract from this study suggest their potential for eco-friendly managing grey mold in strawberries under field conditions.展开更多
In the economic development of Beijing,although the share of the total amount of agricultural industry in the overall economy is relatively low,it has an important impact on the daily life of residents,social stabilit...In the economic development of Beijing,although the share of the total amount of agricultural industry in the overall economy is relatively low,it has an important impact on the daily life of residents,social stability and the development of other industries.Changping District,as an important agricultural production base of Beijing,its agricultural development has an indispensable strategic significance for the stability and growth of the entire regional economy.Therefore,it is very important to study the structure of agricultural industry in Changping District.Based on the detailed analysis of the agricultural industrial structure of Changping District,this paper uses the grey relation theory to analyze the different industries in the agricultural industrial structure of Changping District,including planting,forestry,animal husbandry,fishery and agricultural,forestry,service industries,in order to reveal the impact of these industries on the agricultural industrial structure of Changping District.Through this study,it comes up with specific and feasible suggestions for the optimization of agricultural industrial structure in Changping District,and provides valuable reference for the agricultural development of other areas in Beijing.展开更多
The distributed flexible job shop scheduling problem(DFJSP)has attracted great attention with the growth of the global manufacturing industry.General DFJSP research only considers machine constraints and ignores worke...The distributed flexible job shop scheduling problem(DFJSP)has attracted great attention with the growth of the global manufacturing industry.General DFJSP research only considers machine constraints and ignores worker constraints.As one critical factor of production,effective utilization of worker resources can increase productivity.Meanwhile,energy consumption is a growing concern due to the increasingly serious environmental issues.Therefore,the distributed flexible job shop scheduling problem with dual resource constraints(DFJSP-DRC)for minimizing makespan and total energy consumption is studied in this paper.To solve the problem,we present a multi-objective mathematical model for DFJSP-DRC and propose a Q-learning-based multi-objective grey wolf optimizer(Q-MOGWO).In Q-MOGWO,high-quality initial solutions are generated by a hybrid initialization strategy,and an improved active decoding strategy is designed to obtain the scheduling schemes.To further enhance the local search capability and expand the solution space,two wolf predation strategies and three critical factory neighborhood structures based on Q-learning are proposed.These strategies and structures enable Q-MOGWO to explore the solution space more efficiently and thus find better Pareto solutions.The effectiveness of Q-MOGWO in addressing DFJSP-DRC is verified through comparison with four algorithms using 45 instances.The results reveal that Q-MOGWO outperforms comparison algorithms in terms of solution quality.展开更多
基金Supported by Foundation of the Construction Department of Zhejiang Province:Study on Economic Efficiency of Water-Saving and Reclaimed Water Reuse of Green Buildings(2008009)~~
文摘To promote and develop green buildings,a standardized,applicable and easily operable index system for the assessment of such buildings was established on the basis of life cycle cost effectiveness.From the perspectives of environment-friendly materials,water resource environment,energy and environment,quality of indoor and outdoor environment,operation and management,and economical efficiency of life cycle,a modified index system was built,AHP was applied to obtain weights of indexes,evaluation methods of the grey system were used to evaluate green buildings,case study was adopted to verify the practicability and scientificity of the method.The results showed that Grey Clustering Method was an objective and reliable tool to evaluate green buildings,the calculation was simple,practical and easily operable,and moreover,the assessment process could be optimized by computer programming to improve its efficiency and precision.
文摘A novel grey Markov chain predictive model is discussed to reduce drift influence on the output of fiber optical gyroscopes (FOGs) and to improve FOGs' measurement precision. The proposed method possesses advantages of grey model and Markov chain. It makes good use of dynamic modeling idea of the grey model to predict general trend of original data. Then according to the trend, states are divided so that it can overcome the disadvantage of high computational cost of state transition probability matrix in Markov chain. Moreover, the presented approach expands the applied scope of the grey model and makes it be fit for prediction of random data with bigger fluctuation. The numerical results of real drift data from a certain type FOG verify the effectiveness of the proposed grey Markov chain model powerfully. The Markov chain is also investigated to provide a comparison with the grey Markov chain model. It is shown that the hybrid grey Markov chain prediction model has higher modeling precision than Markov chain itself, which prove this proposed method is very applicable and effective.
基金Project(32-41)supported by the National Science and Technical Development Foundation of DPR of Korea。
文摘In this paper,we present a new method of intelligent back analysis(IBA)using grey Verhulst model(GVM)to identify geotechnical parameters of rock mass surrounding tunnel,and validate it via a test for a main openings of−600 m level in Coal Mine“6.13”,Democratic People's Republic of Korea.The displacement components used for back analysis are the crown settlement and sidewalls convergence monitored at the end of the openings excavation,and the final closures predicted by GVM.The non-linear relation between displacements and back analysis parameters was obtained by artificial neural network(ANN)and Burger-creep viscoplastic(CVISC)model of FLAC3D.Then,the optimal parameters were determined for rock mass surrounding tunnel by genetic algorithm(GA)with both groups of measured displacements at the end of the final excavation and closures predicted by GVM.The maximum absolute error(MAE)and standard deviation(Std)between calculated displacements by numerical simulation with back analysis parameters and in situ ones were less than 6 and 2 mm,respectively.Therefore,it was found that the proposed method could be successfully applied to determining design parameters and stability for tunnels and underground cavities,as well as mine openings and stopes.
文摘Numerical simulation technology was applied for optimizing the casting design and conditions in large cast iron castings for marine engine. By the simulation of mold filling and solidification sequences the problems of the previous casting conditions were analyzed and marked improvements for large cylinder liner parts were derived from these results. Especially the amount and positions of chills were optimized to increase the mechanical properties and to minimize the shrinkage and microporosity in the castings. Ultrasonic testing, penetration testing and mechanical property testing were carried out for the parts with the modified casting conditions. It showed that no defects in the castings were found and the productivity could be distinctly increased. The mechanical properties satisfied also the specification demanded.
文摘Electroless nickel coatings are very popular for their corrosion resistant actions. The present article attempts to study the corrosion behaviour of electroless Ni-B coatings by varying the coating parameters viz. bath temperature, reducing agent concentration and nickel source concentration together with the annealing temperature. The electrochemical parameters viz., corrosion potential and corrosion current density are evaluated with the help of potentiodynamic polarization experimentation. Taguchi based Grey analysis is employed in order to optimize this multiple response problem and the optimal combination of parameters for maximum corrosion resistance for Ni-B coatings is presented. Moreover, analysis of variance reveals that bath temperature and concentration of nickel source have significant influence on the corrosion performance of the coating. The microstructure characterization of the coating is also conducted with the help of scanning electron microscopy, energy dispersive X-ray analysis and X-ray diffraction analysis. The Ni-B coating in general exhibits a nodular structure and turns crystalline with heat treatment. The corroded surface exhibits cracks and black spots which imply the occurrence of localized corrosion.
文摘In order to prevent and control the water inflow of mines, this paper built a new initial GM(1, 1) model to torecast the maximum water inflow according to the principle of new information. The effect of the new initial GM(1, 1) model is not ideal by the concrete example. Then according to the principle of making the sum of the squares of the difference between the calculated sequences and the original sequences, an optimized GM(1, I) model was established. The result shows that this method is a new prediction method which can predict the maximum water inflow accurately. It not only conforms to the guide- line of prevention primarily, but also provides reference standards to managers on making prevention measures.
文摘为探索GS1 Digital Link技术在产品物流中的应用潜力,分析研究了GS1系统和GS1 Digital Link的基本结构、编码特点以及技术优势,充分利用GS1 Digital Link技术可以为产品从源头到零售整个物流过程提供相关对象的Web地址编码的特点,以鲜活大闸蟹物流过程为例,构建了基于GS1 Digital Link的鲜活大闸蟹Web编码,为实现产品营销与追溯提供了标准化、动态化、多样化的编码数据支撑。
基金supported by the earmarked fund for the Beijing Agriculture Innovation Consortium(BAIC06-2023-G01)open project of Xinjiang Production&Construction Corps Key Laboratory of Protection and Utilization of Biological Resources in Tarim Basin(BRZD2104)Fuyang Normal University Provincial and Ministerial Open Platform Fund(FSKFKT026D).
文摘Background Chicken is one of the most numerous and widely distributed species around the world,and many studies support the multiple ancestral origins of domestic chickens.The research regarding the yellow skin phenotype in domestic chickens(regulated by BCO2)likely originating from the grey junglefowl serves as crucial evidence for demonstrating the multiple origins of chickens.However,beyond the BCO2 gene region,much remains unknown about the introgression from the grey junglefowl into domestic chickens.Therefore,in this study,based on wholegenome data of 149 samples including 4 species of wild junglefowls and 13 local domestic chicken breeds,we explored the introgression events from the grey junglefowl to domestic chickens.Results We successfully detected introgression regions besides BCO2,including two associated with growth trait(IGFBP2 and TKT),one associated with angiogenesis(TIMP3)and two members of the heat shock protein family(HSPB2 and CRYAB).Our findings suggest that the introgression from the grey junglefowl may impact the growth performance of chickens.Furthermore,we revealed introgression events from grey junglefowl at the BCO2 region in multiple domestic chicken breeds,indicating a phenomenon where the yellow skin phenotype likely underwent strong selection and was retained.Additionally,our haplotype analysis shed light on BCO2 introgression event from different sources of grey junglefowl into domestic chickens,possibly suggesting multiple genetic flows between the grey junglefowl and domestic chickens.Conclusions In summary,our findings provide evidences of the grey junglefowl contributing to the genetic diversity of domestic chickens,laying the foundation for a deeper understanding of the genetic composition within domestic chickens,and offering new perspectives on the impact of introgression on domestic chickens.
基金the Sichuan Science and Technology Program(Nos.23ZHCG0049,2023YFG0078,23ZHCG0030,2021ZDZX0007)SCU-SUINING Project(2022CDSN-14).
文摘To solve the problem of long response time when users obtain suitable cutting parameters through the Internet based platform,a case-based reasoning framework is proposed.Specifically,a Hamming distance and Euclidean distance combined method is designed to measure the similarity of case features which have both numeric and category properties.In addition,AHP(Analytic Hierarchy Process)and entropy weight method are integrated to provide features weight,where both user preferences and comprehensive impact of the index have been concerned.Grey relation analysis is used to obtain the similarity of a new problem and alternative cases.Finally,a platform is also developed on Visual Studio 2015,and a case study is demonstrated to verify the practicality and efficiency of the proposed method.This method can obtain cutting parameters which is suitable without iterative calculation.Compared with the traditional PSO(Particle swarm optimization algorithm)and GA(Genetic algorithm),it can obtain faster response speed.This method can provide ideas for selecting processing parameters in industrial production.While guaranteeing the characteristic information is similar,this approach can select processing parameters which is the most appropriate for the production process and a lot of time can be saved.
文摘Hyperspectral(HS)image classification plays a crucial role in numerous areas including remote sensing(RS),agriculture,and the monitoring of the environment.Optimal band selection in HS images is crucial for improving the efficiency and accuracy of image classification.This process involves selecting the most informative spectral bands,which leads to a reduction in data volume.Focusing on these key bands also enhances the accuracy of classification algorithms,as redundant or irrelevant bands,which can introduce noise and lower model performance,are excluded.In this paper,we propose an approach for HS image classification using deep Q learning(DQL)and a novel multi-objective binary grey wolf optimizer(MOBGWO).We investigate the MOBGWO for optimal band selection to further enhance the accuracy of HS image classification.In the suggested MOBGWO,a new sigmoid function is introduced as a transfer function to modify the wolves’position.The primary objective of this classification is to reduce the number of bands while maximizing classification accuracy.To evaluate the effectiveness of our approach,we conducted experiments on publicly available HS image datasets,including Pavia University,Washington Mall,and Indian Pines datasets.We compared the performance of our proposed method with several state-of-the-art deep learning(DL)and machine learning(ML)algorithms,including long short-term memory(LSTM),deep neural network(DNN),recurrent neural network(RNN),support vector machine(SVM),and random forest(RF).Our experimental results demonstrate that the Hybrid MOBGWO-DQL significantly improves classification accuracy compared to traditional optimization and DL techniques.MOBGWO-DQL shows greater accuracy in classifying most categories in both datasets used.For the Indian Pine dataset,the MOBGWO-DQL architecture achieved a kappa coefficient(KC)of 97.68%and an overall accuracy(OA)of 94.32%.This was accompanied by the lowest root mean square error(RMSE)of 0.94,indicating very precise predictions with minimal error.In the case of the Pavia University dataset,the MOBGWO-DQL model demonstrated outstanding performance with the highest KC of 98.72%and an impressive OA of 96.01%.It also recorded the lowest RMSE at 0.63,reinforcing its accuracy in predictions.The results clearly demonstrate that the proposed MOBGWO-DQL architecture not only reaches a highly accurate model more quickly but also maintains superior performance throughout the training process.
文摘Strawberry (Fragaria × ananassa Duch.) is a significant global soft fruit crop, prized for its nutrient content and pleasant flavor. However, diseases, particularly grey mold caused by Botrytis cinerea Pers. Fr. poses major constraints to strawberry production and productivity. Grey mold severely impacts fruit quality and quantity, diminishing market value. This study evaluated five B. cinerea isolates from various locations in the Ri-Bhoi district of Meghalaya. All isolates were pathogenic, with isolate SGM 2 identified as highly virulent. Host range studies showed the pathogen-producing symptoms in the fava bean pods, marigold, gerbera, and chrysanthemum flowers and in the fava bean, gerbera, and lettuce leaves. In vitro tests revealed that neem extract (15% w/v) achieved the highest mycelial growth inhibition at 76.66%, while black turmeric extract (5% w/v) had the lowest inhibition at 9.62%. Dual culture methods with bio-control agents indicated that Bacillus subtilis recorded the highest mean inhibition at 77.03%, while Pseudomonas fluorescens had the lowest at 20.36% against the two virulent isolates. Pot evaluations demonstrated that B. subtilis resulted in the lowest percent disease index at 20.59%, followed by neem extract at 23.31%, with the highest disease index in the control group at 42.51%. Additionally, B. subtilis significantly improved plant growth, yielding an average of 0.32 kg compared to 0.14 kg in the control. The promising results of B. subtilis and neem leaf extract from this study suggest their potential for eco-friendly managing grey mold in strawberries under field conditions.
文摘In the economic development of Beijing,although the share of the total amount of agricultural industry in the overall economy is relatively low,it has an important impact on the daily life of residents,social stability and the development of other industries.Changping District,as an important agricultural production base of Beijing,its agricultural development has an indispensable strategic significance for the stability and growth of the entire regional economy.Therefore,it is very important to study the structure of agricultural industry in Changping District.Based on the detailed analysis of the agricultural industrial structure of Changping District,this paper uses the grey relation theory to analyze the different industries in the agricultural industrial structure of Changping District,including planting,forestry,animal husbandry,fishery and agricultural,forestry,service industries,in order to reveal the impact of these industries on the agricultural industrial structure of Changping District.Through this study,it comes up with specific and feasible suggestions for the optimization of agricultural industrial structure in Changping District,and provides valuable reference for the agricultural development of other areas in Beijing.
基金supported by the Natural Science Foundation of Anhui Province(Grant Number 2208085MG181)the Science Research Project of Higher Education Institutions in Anhui Province,Philosophy and Social Sciences(Grant Number 2023AH051063)the Open Fund of Key Laboratory of Anhui Higher Education Institutes(Grant Number CS2021-ZD01).
文摘The distributed flexible job shop scheduling problem(DFJSP)has attracted great attention with the growth of the global manufacturing industry.General DFJSP research only considers machine constraints and ignores worker constraints.As one critical factor of production,effective utilization of worker resources can increase productivity.Meanwhile,energy consumption is a growing concern due to the increasingly serious environmental issues.Therefore,the distributed flexible job shop scheduling problem with dual resource constraints(DFJSP-DRC)for minimizing makespan and total energy consumption is studied in this paper.To solve the problem,we present a multi-objective mathematical model for DFJSP-DRC and propose a Q-learning-based multi-objective grey wolf optimizer(Q-MOGWO).In Q-MOGWO,high-quality initial solutions are generated by a hybrid initialization strategy,and an improved active decoding strategy is designed to obtain the scheduling schemes.To further enhance the local search capability and expand the solution space,two wolf predation strategies and three critical factory neighborhood structures based on Q-learning are proposed.These strategies and structures enable Q-MOGWO to explore the solution space more efficiently and thus find better Pareto solutions.The effectiveness of Q-MOGWO in addressing DFJSP-DRC is verified through comparison with four algorithms using 45 instances.The results reveal that Q-MOGWO outperforms comparison algorithms in terms of solution quality.