期刊文献+
共找到60篇文章
< 1 2 3 >
每页显示 20 50 100
Optimizing Grey Wolf Optimization: A Novel Agents’ Positions Updating Technique for Enhanced Efficiency and Performance
1
作者 Mahmoud Khatab Mohamed El-Gamel +2 位作者 Ahmed I. Saleh Asmaa H. Rabie Atallah El-Shenawy 《Open Journal of Optimization》 2024年第1期21-30,共10页
Grey Wolf Optimization (GWO) is a nature-inspired metaheuristic algorithm that has gained popularity for solving optimization problems. In GWO, the success of the algorithm heavily relies on the efficient updating of ... Grey Wolf Optimization (GWO) is a nature-inspired metaheuristic algorithm that has gained popularity for solving optimization problems. In GWO, the success of the algorithm heavily relies on the efficient updating of the agents’ positions relative to the leader wolves. In this paper, we provide a brief overview of the Grey Wolf Optimization technique and its significance in solving complex optimization problems. Building upon the foundation of GWO, we introduce a novel technique for updating agents’ positions, which aims to enhance the algorithm’s effectiveness and efficiency. To evaluate the performance of our proposed approach, we conduct comprehensive experiments and compare the results with the original Grey Wolf Optimization technique. Our comparative analysis demonstrates that the proposed technique achieves superior optimization outcomes. These findings underscore the potential of our approach in addressing optimization challenges effectively and efficiently, making it a valuable contribution to the field of optimization algorithms. 展开更多
关键词 grey wolf optimization (GWO) Metaheuristic algorithm optimization Problems Agents’ Positions Leader Wolves optimal Fitness Values optimization Challenges
下载PDF
Enhancing Cancer Classification through a Hybrid Bio-Inspired Evolutionary Algorithm for Biomarker Gene Selection 被引量:1
2
作者 Hala AlShamlan Halah AlMazrua 《Computers, Materials & Continua》 SCIE EI 2024年第4期675-694,共20页
In this study,our aim is to address the problem of gene selection by proposing a hybrid bio-inspired evolutionary algorithm that combines Grey Wolf Optimization(GWO)with Harris Hawks Optimization(HHO)for feature selec... In this study,our aim is to address the problem of gene selection by proposing a hybrid bio-inspired evolutionary algorithm that combines Grey Wolf Optimization(GWO)with Harris Hawks Optimization(HHO)for feature selection.Themotivation for utilizingGWOandHHOstems fromtheir bio-inspired nature and their demonstrated success in optimization problems.We aimto leverage the strengths of these algorithms to enhance the effectiveness of feature selection in microarray-based cancer classification.We selected leave-one-out cross-validation(LOOCV)to evaluate the performance of both two widely used classifiers,k-nearest neighbors(KNN)and support vector machine(SVM),on high-dimensional cancer microarray data.The proposed method is extensively tested on six publicly available cancer microarray datasets,and a comprehensive comparison with recently published methods is conducted.Our hybrid algorithm demonstrates its effectiveness in improving classification performance,Surpassing alternative approaches in terms of precision.The outcomes confirm the capability of our method to substantially improve both the precision and efficiency of cancer classification,thereby advancing the development ofmore efficient treatment strategies.The proposed hybridmethod offers a promising solution to the gene selection problem in microarray-based cancer classification.It improves the accuracy and efficiency of cancer diagnosis and treatment,and its superior performance compared to other methods highlights its potential applicability in realworld cancer classification tasks.By harnessing the complementary search mechanisms of GWO and HHO,we leverage their bio-inspired behavior to identify informative genes relevant to cancer diagnosis and treatment. 展开更多
关键词 Bio-inspired algorithms BIOINFORMATICS cancer classification evolutionary algorithm feature selection gene expression grey wolf optimizer harris hawks optimization k-nearest neighbor support vector machine
下载PDF
Grey Wolf Optimizer to Real Power Dispatch with Non-Linear Constraints
3
作者 G.R.Venkatakrishnan R.Rengaraj S.Salivahanan 《Computer Modeling in Engineering & Sciences》 SCIE EI 2018年第4期25-45,共21页
A new and efficient Grey Wolf Optimization(GWO)algorithm is implemented to solve real power economic dispatch(RPED)problems in this paper.The nonlinear RPED problem is one the most important and fundamental optimizati... A new and efficient Grey Wolf Optimization(GWO)algorithm is implemented to solve real power economic dispatch(RPED)problems in this paper.The nonlinear RPED problem is one the most important and fundamental optimization problem which reduces the total cost in generating real power without violating the constraints.Conventional methods can solve the ELD problem with good solution quality with assumptions assigned to fuel cost curves without which these methods lead to suboptimal or infeasible solutions.The behavior of grey wolves which is mimicked in the GWO algorithm are leadership hierarchy and hunting mechanism.The leadership hierarchy is simulated using four types of grey wolves.In addition,searching,encircling and attacking of prey are the social behaviors implemented in the hunting mechanism.The GWO algorithm has been applied to solve convex RPED problems considering the all possible constraints.The results obtained from GWO algorithm are compared with other state-ofthe-art algorithms available in the recent literatures.It is found that the GWO algorithm is able to provide better solution quality in terms of cost,convergence and robustness for the considered ELD problems. 展开更多
关键词 grey wolf optimization(GWO) constraints power generation DISPATCH EVOLUTIONARY computation computational COMPLEXITY algorithms
下载PDF
VGWO: Variant Grey Wolf Optimizer with High Accuracy and Low Time Complexity
4
作者 Junqiang Jiang Zhifang Sun +3 位作者 Xiong Jiang Shengjie Jin Yinli Jiang Bo Fan 《Computers, Materials & Continua》 SCIE EI 2023年第11期1617-1644,共28页
The grey wolf optimizer(GWO)is a swarm-based intelligence optimization algorithm by simulating the steps of searching,encircling,and attacking prey in the process of wolf hunting.Along with its advantages of simple pr... The grey wolf optimizer(GWO)is a swarm-based intelligence optimization algorithm by simulating the steps of searching,encircling,and attacking prey in the process of wolf hunting.Along with its advantages of simple principle and few parameters setting,GWO bears drawbacks such as low solution accuracy and slow convergence speed.A few recent advanced GWOs are proposed to try to overcome these disadvantages.However,they are either difficult to apply to large-scale problems due to high time complexity or easily lead to early convergence.To solve the abovementioned issues,a high-accuracy variable grey wolf optimizer(VGWO)with low time complexity is proposed in this study.VGWO first uses the symmetrical wolf strategy to generate an initial population of individuals to lay the foundation for the global seek of the algorithm,and then inspired by the simulated annealing algorithm and the differential evolution algorithm,a mutation operation for generating a new mutant individual is performed on three wolves which are randomly selected in the current wolf individuals while after each iteration.A vectorized Manhattan distance calculation method is specifically designed to evaluate the probability of selecting the mutant individual based on its status in the current wolf population for the purpose of dynamically balancing global search and fast convergence capability of VGWO.A series of experiments are conducted on 19 benchmark functions from CEC2014 and CEC2020 and three real-world engineering cases.For 19 benchmark functions,VGWO’s optimization results place first in 80%of comparisons to the state-of-art GWOs and the CEC2020 competition winner.A further evaluation based on the Friedman test,VGWO also outperforms all other algorithms statistically in terms of robustness with a better average ranking value. 展开更多
关键词 Intelligence optimization algorithm grey wolf optimizer(GWO) manhattan distance symmetric coordinates
下载PDF
Hybridized Intelligent Neural Network Optimization Model for Forecasting Prices of Rubber in Malaysia
5
作者 Shehab Abdulhabib Alzaeemi Saratha Sathasivam +2 位作者 Majid Khan bin Majahar Ali K.G.Tay Muraly Velavan 《Computer Systems Science & Engineering》 SCIE EI 2023年第11期1471-1491,共21页
Rubber producers,consumers,traders,and those who are involved in the rubber industry face major risks of rubber price fluctuations.As a result,decision-makers are required to make an accurate estimation of the price o... Rubber producers,consumers,traders,and those who are involved in the rubber industry face major risks of rubber price fluctuations.As a result,decision-makers are required to make an accurate estimation of the price of rubber.This paper aims to propose hybrid intelligent models,which can be utilized to forecast the price of rubber in Malaysia by employing monthly Malaysia’s rubber pricing data,spanning from January 2016 to March 2021.The projected hybrid model consists of different algorithms with the symbolic Radial Basis Functions Neural Network k-Satisfiability Logic Mining(RBFNN-kSAT).These algorithms,including Grey Wolf Optimization Algorithm,Artificial Bee Colony Algorithm,and Particle Swarm Optimization Algorithm were utilized in the forecasting data analysis.Several factors,which affect the monthly price of rubber,such as rubber production,total exports of rubber,total imports of rubber,stocks of rubber,currency exchange rate,and crude oil prices were also considered in the analysis.To evaluate the results of the introduced model,a comparison has been conducted for each model to identify the most optimum model for forecasting the price of rubber.The findings showed that GWO with RBFNN-kSAT represents the most accurate and efficient model compared with ABC with RBFNNkSAT and PSO with RBFNN-kSAT in forecasting the price of rubber.The GWO with RBFNN-kSAT obtained the greatest average accuracy(92%),with a better correlation coefficient R=0.983871 than ABC with RBFNN-kSAT and PSO with RBFNN-kSAT.Furthermore,the empirical results of this study provided several directions for policymakers to make the right decision in terms of devising proper measures in the industry to address frequent price changes so that the Malaysian rubber industry maintains dominance in the international markets. 展开更多
关键词 Rubber prices in Malaysia grey wolf optimization algorithm radial basis functions neural network k-satisfiability commodity prices
下载PDF
Enhancing rock fragmentation prediction in mining operations:A hybrid GWO-RF model with SHAP interpretability 被引量:1
6
作者 ZHANG Yu-lin QIU Yin-gui +2 位作者 ARMAGHANI Danial Jahed MONJEZI Masoud ZHOU Jian 《Journal of Central South University》 SCIE EI CAS CSCD 2024年第8期2916-2929,共14页
In the mining industry,precise forecasting of rock fragmentation is critical for optimising blasting processes.In this study,we address the challenge of enhancing rock fragmentation assessment by developing a novel hy... In the mining industry,precise forecasting of rock fragmentation is critical for optimising blasting processes.In this study,we address the challenge of enhancing rock fragmentation assessment by developing a novel hybrid predictive model named GWO-RF.This model combines the grey wolf optimization(GWO)algorithm with the random forest(RF)technique to predict the D_(80)value,a critical parameter in evaluating rock fragmentation quality.The study is conducted using a dataset from Sarcheshmeh Copper Mine,employing six different swarm sizes for the GWO-RF hybrid model construction.The GWO-RF model’s hyperparameters are systematically optimized within established bounds,and its performance is rigorously evaluated using multiple evaluation metrics.The results show that the GWO-RF hybrid model has higher predictive skills,exceeding traditional models in terms of accuracy.Furthermore,the interpretability of the GWO-RF model is enhanced through the utilization of SHapley Additive exPlanations(SHAP)values.The insights gained from this research contribute to optimizing blasting operations and rock fragmentation outcomes in the mining industry. 展开更多
关键词 BLASTING rock fragmentation random forest grey wolf optimization hybrid tree-based technique
下载PDF
A Hybrid of Grey Wolf Optimization and Genetic Algorithm for Optimization of Hybrid Wind and Solar Renewable Energy System
7
作者 Diriba Kajela Geleta Mukhdeep Singh Manshahia 《Journal of the Operations Research Society of China》 EI CSCD 2022年第4期749-762,共14页
In this paper,a hybrid of grey wolf optimization(GWO)and genetic algorithm(GA)has been implemented to minimize the annual cost of hybrid of wind and solar renewable energy system.It was named as hybrid of grey wolf op... In this paper,a hybrid of grey wolf optimization(GWO)and genetic algorithm(GA)has been implemented to minimize the annual cost of hybrid of wind and solar renewable energy system.It was named as hybrid of grey wolf optimization and genetic algorithm(HGWOGA).HGWOGA was applied to this hybrid problem through three procedures.First,the balance between the exploration and the exploitation process was done by grey wolf optimizer algorithm.Then,we divided the population into subpopulation and used the arithmetical crossover operator to utilize the dimension reduction and the population partitioning processes.At last,mutation operator was applied in the whole population in order to refrain from the premature convergence and trapping in local minima.MATLAB code was designed to implement the proposed methodology.The result of this algorithm is compared with the results of iteration method,GWO,GA,artificial bee colony(ABC)and particle swarm optimization(PSO)techniques.The results obtained by this algorithm are better when compared with those mentioned in the text. 展开更多
关键词 hybrid renewable energy optimization Nature-inspired algorithm grey wolf optimization Genetic algorithm
原文传递
Swarm-Based Extreme Learning Machine Models for Global Optimization
8
作者 Mustafa Abdul Salam Ahmad Taher Azar Rana Hussien 《Computers, Materials & Continua》 SCIE EI 2022年第3期6339-6363,共25页
Extreme Learning Machine(ELM)is popular in batch learning,sequential learning,and progressive learning,due to its speed,easy integration,and generalization ability.While,Traditional ELM cannot train massive data rapid... Extreme Learning Machine(ELM)is popular in batch learning,sequential learning,and progressive learning,due to its speed,easy integration,and generalization ability.While,Traditional ELM cannot train massive data rapidly and efficiently due to its memory residence,high time and space complexity.In ELM,the hidden layer typically necessitates a huge number of nodes.Furthermore,there is no certainty that the arrangement of weights and biases within the hidden layer is optimal.To solve this problem,the traditional ELM has been hybridized with swarm intelligence optimization techniques.This paper displays five proposed hybrid Algorithms“Salp Swarm Algorithm(SSA-ELM),Grasshopper Algorithm(GOA-ELM),Grey Wolf Algorithm(GWO-ELM),Whale optimizationAlgorithm(WOA-ELM)andMoth Flame Optimization(MFO-ELM)”.These five optimizers are hybridized with standard ELM methodology for resolving the tumor type classification using gene expression data.The proposed models applied to the predication of electricity loading data,that describes the energy use of a single residence over a fouryear period.In the hidden layer,Swarm algorithms are used to pick a smaller number of nodes to speed up the execution of ELM.The best weights and preferences were calculated by these algorithms for the hidden layer.Experimental results demonstrated that the proposed MFO-ELM achieved 98.13%accuracy and this is the highest model in accuracy in tumor type classification gene expression data.While in predication,the proposed GOA-ELM achieved 0.397which is least RMSE compared to the other models. 展开更多
关键词 Extreme learning machine salp swarm optimization algorithm grasshopper optimization algorithm grey wolf optimization algorithm moth flame optimization algorithm bio-inspired optimization classification model and whale optimization algorithm
下载PDF
Smart Fraud Detection in E-Transactions Using Synthetic Minority Oversampling and Binary Harris Hawks Optimization
9
作者 Chandana Gouri Tekkali Karthika Natarajan 《Computers, Materials & Continua》 SCIE EI 2023年第5期3171-3187,共17页
Fraud Transactions are haunting the economy of many individuals with several factors across the globe.This research focuses on developing a mechanism by integrating various optimized machine-learning algorithms to ens... Fraud Transactions are haunting the economy of many individuals with several factors across the globe.This research focuses on developing a mechanism by integrating various optimized machine-learning algorithms to ensure the security and integrity of digital transactions.This research proposes a novel methodology through three stages.Firstly,Synthetic Minority Oversampling Technique(SMOTE)is applied to get balanced data.Secondly,SMOTE is fed to the nature-inspired Meta Heuristic(MH)algorithm,namely Binary Harris Hawks Optimization(BinHHO),Binary Aquila Optimization(BAO),and Binary Grey Wolf Optimization(BGWO),for feature selection.BinHHO has performed well when compared with the other two.Thirdly,features from BinHHO are fed to the supervised learning algorithms to classify the transactions such as fraud and non-fraud.The efficiency of BinHHO is analyzed with other popular MH algorithms.The BinHHO has achieved the highest accuracy of 99.95%and demonstrates amore significant positive effect on the performance of the proposed model. 展开更多
关键词 Metaheuristic algorithms K-nearest-neighbour binary aquila optimization binary grey wolf optimization BinHHO optimization support vector machine
下载PDF
Biological Network Modeling Based on Hill Function and Hybrid Evolutionary Algorithm
10
作者 Sanrong Liu Haifeng Wang 《国际计算机前沿大会会议论文集》 2019年第2期192-194,共3页
Gene regulatory network inference helps understand the regulatory mechanism among genes, predict the functions of unknown genes, comprehend the pathogenesis of disease and speed up drug development. In this paper, a H... Gene regulatory network inference helps understand the regulatory mechanism among genes, predict the functions of unknown genes, comprehend the pathogenesis of disease and speed up drug development. In this paper, a Hill function-based ordinary differential equation (ODE) model is proposed to infer gene regulatory network (GRN). A hybrid evolutionary algorithm based on binary grey wolf optimization (BGWO) and grey wolf optimization (GWO) is proposed to identify the structure and parameters of the Hill function-based model. In order to restrict the search space and eliminate the redundant regulatory relationships, L1 regularizer was added to the fitness function. SOS repair network was used to test the proposed method. The experimental results show that this method can infer gene regulatory network more accurately than state of the art methods. 展开更多
关键词 Gene REGULATORY network HILL FUNCTION grey wolf optimization hybrid EVOLUTIONARY algorithm Ordinary differential equation
下载PDF
Correction of array failure using grey wolf optimizer hybridized with an interior point algorithm 被引量:2
11
作者 Shafqat Ullah KHAN M.K.A.RAHIM Liaqat ALI 《Frontiers of Information Technology & Electronic Engineering》 SCIE EI CSCD 2018年第9期1191-1202,共12页
We design a grey wolf optimizer hybridized with an interior point algorithm to correct a faulty antenna array. If a single sensor fails, the radiation power pattern of the entire array is disturbed in terms of sidelob... We design a grey wolf optimizer hybridized with an interior point algorithm to correct a faulty antenna array. If a single sensor fails, the radiation power pattern of the entire array is disturbed in terms of sidelobe level(SLL) and null depth level(NDL), and nulls are damaged and shifted from their original locations. All these issues can be solved by designing a new fitness function to reduce the error between the preferred and expected radiation power patterns and the null limitations. The hybrid algorithm has been designed to control the array's faulty radiation power pattern. Antenna arrays composed of 21 sensors are used in an example simulation scenario. The MATLAB simulation results confirm the good performance of the proposed method, compared with the existing methods in terms of SLL and NDL. 展开更多
关键词 Failure correction grey wolf optimizer Interior point algorithm SIDELOBES Deeper null depth level
原文传递
Q-Learning-Based Teaching-Learning Optimization for Distributed Two-Stage Hybrid Flow Shop Scheduling with Fuzzy Processing Time 被引量:7
12
作者 Bingjie Xi Deming Lei 《Complex System Modeling and Simulation》 2022年第2期113-129,共17页
Two-stage hybrid flow shop scheduling has been extensively considered in single-factory settings.However,the distributed two-stage hybrid flow shop scheduling problem(DTHFSP)with fuzzy processing time is seldom invest... Two-stage hybrid flow shop scheduling has been extensively considered in single-factory settings.However,the distributed two-stage hybrid flow shop scheduling problem(DTHFSP)with fuzzy processing time is seldom investigated in multiple factories.Furthermore,the integration of reinforcement learning and metaheuristic is seldom applied to solve DTHFSP.In the current study,DTHFSP with fuzzy processing time was investigated,and a novel Q-learning-based teaching-learning based optimization(QTLBO)was constructed to minimize makespan.Several teachers were recruited for this study.The teacher phase,learner phase,teacher’s self-learning phase,and learner’s self-learning phase were designed.The Q-learning algorithm was implemented by 9 states,4 actions defined as combinations of the above phases,a reward,and an adaptive action selection,which were applied to dynamically adjust the algorithm structure.A number of experiments were conducted.The computational results demonstrate that the new strategies of QTLBO are effective;furthermore,it presents promising results on the considered DTHFSP. 展开更多
关键词 teaching-learning based optimization Q-learning algorithm two-stage hybrid flow shop scheduling fuzzy processing time
原文传递
Medical Image Segmentation using PCNN based on Multi-feature Grey Wolf Optimizer Bionic Algorithm 被引量:7
13
作者 Xue Wang Zhanshan Li +2 位作者 Heng Kang Yongping Huang Di Gai 《Journal of Bionic Engineering》 SCIE EI CSCD 2021年第3期711-720,共10页
Medical image segmentation is a challenging task especially in multimodality medical image analysis.In this paper,an improved pulse coupled neural network based on multiple hybrid features grey wolf optimizer(MFGWO-PC... Medical image segmentation is a challenging task especially in multimodality medical image analysis.In this paper,an improved pulse coupled neural network based on multiple hybrid features grey wolf optimizer(MFGWO-PCNN)is proposed for multimodality medical image segmentation.Specifically,a two-stage medical image segmentation method based on bionic algorithm is presented,including image fusion and image segmentation.The image fusion stage fuses rich information from different modalities by utilizing a multimodality medical image fusion model based on maximum energy region.In the stage of image segmentation,an improved PCNN model based on MFGWO is proposed,which can adaptively set the parameters of PCNN according to the features of the image.Two modalities of FLAIR and TIC brain MRIs are applied to verify the effectiveness of the proposed MFGWO-PCNN algorithm.The experimental results demonstrate that the proposed method outperforms the other seven algorithms in subjective vision and objective evaluation indicators. 展开更多
关键词 grey wolf optimizer pulse coupled neural network bionic algorithm medical image segmentation
原文传递
Three Dimensional Optimum Node Localization in Dynamic Wireless Sensor Networks 被引量:1
14
作者 Gagandeep Singh Walia Parulpreet Singh +5 位作者 Manwinder Singh Mohamed Abouhawwash Hyung Ju Park Byeong-Gwon Kang Shubham Mahajan Amit Kant Pandit 《Computers, Materials & Continua》 SCIE EI 2022年第1期305-321,共17页
Location information plays an important role in most of the applications in Wireless Sensor Network(WSN).Recently,many localization techniques have been proposed,while most of these deals with two Dimensional applicat... Location information plays an important role in most of the applications in Wireless Sensor Network(WSN).Recently,many localization techniques have been proposed,while most of these deals with two Dimensional applications.Whereas,in Three Dimensional applications the task is complex and there are large variations in the altitude levels.In these 3D environments,the sensors are placed in mountains for tracking and deployed in air for monitoring pollution level.For such applications,2D localization models are not reliable.Due to this,the design of 3D localization systems in WSNs faces new challenges.In this paper,in order to find unknown nodes in Three-Dimensional environment,only single anchor node is used.In the simulation-based environment,the nodes with unknown locations are moving at middle&lower layers whereas the top layer is equipped with single anchor node.A novel soft computing technique namely Adaptive Plant Propagation Algorithm(APPA)is introduced to obtain the optimized locations of these mobile nodes.Thesemobile target nodes are heterogeneous and deployed in an anisotropic environment having an Irregularity(Degree of Irregularity(DOI))value set to 0.01.The simulation results present that proposed APPAalgorithm outperforms as tested among other meta-heuristic optimization techniques in terms of localization error,computational time,and the located sensor nodes. 展开更多
关键词 Wireless sensor networks LOCALIZATION particle swarm optimization h-best particle swarm optimization biogeography-based optimization grey wolf optimizer firefly algorithm adaptive plant propagation algorithm
下载PDF
Bio-inspired Hybrid Feature Selection Model for Intrusion Detection
15
作者 Adel Hamdan Mohammad Tariq Alwada’n +2 位作者 Omar Almomani Sami Smadi Nidhal ElOmari 《Computers, Materials & Continua》 SCIE EI 2022年第10期133-150,共18页
Intrusion detection is a serious and complex problem.Undoubtedly due to a large number of attacks around the world,the concept of intrusion detection has become very important.This research proposes a multilayer bioin... Intrusion detection is a serious and complex problem.Undoubtedly due to a large number of attacks around the world,the concept of intrusion detection has become very important.This research proposes a multilayer bioinspired feature selection model for intrusion detection using an optimized genetic algorithm.Furthermore,the proposed multilayer model consists of two layers(layers 1 and 2).At layer 1,three algorithms are used for the feature selection.The algorithms used are Particle Swarm Optimization(PSO),Grey Wolf Optimization(GWO),and Firefly Optimization Algorithm(FFA).At the end of layer 1,a priority value will be assigned for each feature set.At layer 2 of the proposed model,the Optimized Genetic Algorithm(GA)is used to select one feature set based on the priority value.Modifications are done on standard GA to perform optimization and to fit the proposed model.The Optimized GA is used in the training phase to assign a priority value for each feature set.Also,the priority values are categorized into three categories:high,medium,and low.Besides,the Optimized GA is used in the testing phase to select a feature set based on its priority.The feature set with a high priority will be given a high priority to be selected.At the end of phase 2,an update for feature set priority may occur based on the selected features priority and the calculated F-Measures.The proposed model can learn and modify feature sets priority,which will be reflected in selecting features.For evaluation purposes,two well-known datasets are used in these experiments.The first dataset is UNSW-NB15,the other dataset is the NSL-KDD.Several evaluation criteria are used,such as precision,recall,and F-Measure.The experiments in this research suggest that the proposed model has a powerful and promising mechanism for the intrusion detection system. 展开更多
关键词 Intrusion detection Machine learning optimized Genetic algorithm(GA) Particle Swarm optimization algorithms(PSO) grey wolf optimization algorithms(GWO) FireFly optimization algorithms(FFA) Genetic algorithm(GA)
下载PDF
Optimized Controller Gains Using Grey Wolf Algorithm for Grid Tied Solar Power Generation with Improved Dynamics and Power Quality
16
作者 Veramalla Rajagopal Danthurthi Sharath +3 位作者 Gundeboina Vishwas Jampana Bangarraju Sabha Raj Arya Challa Venkatesh 《Chinese Journal of Electrical Engineering》 CSCD 2022年第2期75-85,共11页
This study proposes a control algorithm based on synchronous reference frame theory with unit templates instead of a phase locked loop for grid-connected photovoltaic(PV)solar system,comprising solar PV panels,DC-DC c... This study proposes a control algorithm based on synchronous reference frame theory with unit templates instead of a phase locked loop for grid-connected photovoltaic(PV)solar system,comprising solar PV panels,DC-DC converter,controller for maximum power point tracking,resistance capacitance ripple filter,insulated-gate bipolar transistor based controller,interfacing inductor,linear and nonlinear loads.The dynamic performance of the grid connected solar system depends on the effect operation of the control algorithm,comprising two proportional-integral controllers.These controllers estimate the reference solar-grid currents,which in turn generate pulses for the three-leg voltage source converter.The grey wolf optimization algorithm is used to optimize the controller gains of the proportional-integral controllers,resulting in excellent performance compared to that of existing optimization algorithms.The compensation for neutral current is provided by a star-delta transformer(non-isolated),and the proposed solar PV grid system provides zero voltage regulation and eliminates harmonics,in addition to load balancing.Maximum power extraction from the solar panel is achieved using the incremental conductance algorithm for the DC-DC converter supplying solar power to the DC bus capacitor,which in turn supplies this power to the grid with improved dynamics and quality.The solar system along with the control algorithm and controller is modeled using Simulink in Matlab 2019. 展开更多
关键词 Control algorithm solar power generation DC-DC converter star-delta transformer maximum power point tracking power quality grey wolf optimization algorithm
原文传递
燃料电池船复合储能容量优化与配置经济性分析
17
作者 李昕 张靖凯 +3 位作者 汤旭晶 黄江帆 石宇涵 杨祥国 《中国航海》 CSCD 北大核心 2024年第3期55-64,共10页
复合储能系统可改善由船舶负载功率波动引起的燃料电池寿命损耗问题,但配置成本限制了其在燃料电池船上的广泛应用。为合理配置储能容量,使船舶动力系统设计具备长期的可靠性,提出了一种计及复合储能系统全寿命周期的容量优化配置方法... 复合储能系统可改善由船舶负载功率波动引起的燃料电池寿命损耗问题,但配置成本限制了其在燃料电池船上的广泛应用。为合理配置储能容量,使船舶动力系统设计具备长期的可靠性,提出了一种计及复合储能系统全寿命周期的容量优化配置方法。在构建各电源系统模型的基础上,建立包括购置成本、维护成本、置换成本和能耗成本的复合储能系统全寿命周期成本模型,并采用雨流计数法来评估储能的置换成本。最后依据“Alsterwasser”号燃料电池船的典型功率需求数据,以储能设备的容量参数、燃料电池的输出功率和电源系统的运行参数为优化变量,采用灰狼优化算法进行求解。通过不同储能类型和优化目标下的配置方案对比,验证了所提方法的经济性。 展开更多
关键词 燃料电池船 复合储能系统 容量优化配置 全寿命周期成本 灰狼优化算法
下载PDF
含不相关机的多目标混合流水车间调度
18
作者 轩华 关潇风 王薛苑 《计算机工程与设计》 北大核心 2024年第1期315-320,F0003,共7页
考虑不相关机和传送等因素的多阶段混合流水车间问题,以最小化最大完工时间和总能耗为优化目标建立整数规划模型。针对该问题,提出一种多目标离散灰狼优化算法来求解。设计基于机器分配码和速度选择码的编码方式和基于最短处理时间原则... 考虑不相关机和传送等因素的多阶段混合流水车间问题,以最小化最大完工时间和总能耗为优化目标建立整数规划模型。针对该问题,提出一种多目标离散灰狼优化算法来求解。设计基于机器分配码和速度选择码的编码方式和基于最短处理时间原则的解码方案;采用反向学习策略改进初始灰狼种群质量;将基于多点变异的自走模式和基于均匀两点交叉与多点交叉的跟随模式结合构成搜索模式以协调开发和搜索能力;引入精英保留策略确保优良个体不丢失。通过一系列的仿真实验验证了该算法的有效性。 展开更多
关键词 多阶段混合流水车间 离散灰狼优化算法 不相关机 多目标优化 绿色调度 最小化最大完工时间 传送时间
下载PDF
局部阴影下基于GWO-P&O混合算法的光伏最大功率点跟踪
19
作者 赵峰 肖成锐 +1 位作者 陈小强 王英 《Journal of Measurement Science and Instrumentation》 CAS CSCD 2024年第1期64-71,共8页
针对局部遮阴环境下传统灰狼优化(Gray wolf optimization,GWO)算法在跟踪最大功率点时P-U特性曲线出现多峰值、后期收敛速度慢、稳态精度低等问题,结合灰狼优化算法和扰动观察法(Perturbation and observation,P&O)各自的优势,提... 针对局部遮阴环境下传统灰狼优化(Gray wolf optimization,GWO)算法在跟踪最大功率点时P-U特性曲线出现多峰值、后期收敛速度慢、稳态精度低等问题,结合灰狼优化算法和扰动观察法(Perturbation and observation,P&O)各自的优势,提出了基于GWO-P&O的混合优化最大功率点跟踪(Maximum power point tracking,MPPT)算法。首先,采用灰狼优化算法逐渐向光伏的全局最大功率点靠近。其次,在灰狼优化算法收敛后期引入P&O法,既保持了灰狼优化算法较高的稳态精度,又能以较快速度寻找到局部最大功率点。最后,在不同环境工况下,将所提出的GWO-P&O方法与传统GWO算法进行对比。结果表明,改进的GWO-P&O算法在保证良好稳态性能的同时,一定程度上提高了GWO算法后期跟踪最大功率时的收敛速度。 展开更多
关键词 灰狼优化算法 扰动观察法 局部遮阴 混合优化最大功率点跟踪算法 全局最大功率点
下载PDF
无人机遥感反演小麦地上生物量模型的特征选择
20
作者 吴立峰 徐文浩 韩宜秀 《南昌工程学院学报》 CAS 2024年第4期56-62,共7页
无人机多光谱技术能快速、无损地测定小麦地上生物量(AGB)。然而,多光谱方法在计算植被特征时会产生大量具有高度相关的重复特征。因此,建立结构简单、精度高的模型对特征进行筛选具有重要意义。本文提出了一种可以同时实现特征筛选与... 无人机多光谱技术能快速、无损地测定小麦地上生物量(AGB)。然而,多光谱方法在计算植被特征时会产生大量具有高度相关的重复特征。因此,建立结构简单、精度高的模型对特征进行筛选具有重要意义。本文提出了一种可以同时实现特征筛选与参数优化的混合编码灰狼粒子群优化算法(CGWOPSO)。同时,为评估基于该算法驱动的极限梯度提升模型(CGWOPSO-XGB)的性能,将其及基于两种流行特征筛选方法(Pearson和SHAP方法)的模型(P-XGB和S-XGB)的反演AGB表现进行了对比。结果表明,S-XGB模型优于P-XGB模型,前者均方根误差(RMSE)比后者低3.0%~16.3%;而CGWOPSO-XGB模型精度高于S-XGB模型,前者RMSE比后者低16.0%。 展开更多
关键词 混合编码 灰狼粒子群优化算法 SHAP 特征筛选 植被指数
下载PDF
上一页 1 2 3 下一页 到第
使用帮助 返回顶部