In wind power generation system the grid-connected inverter is an important section for energy conversion and transmission, of which the performance has a direct influence on the entire wind power generation system. T...In wind power generation system the grid-connected inverter is an important section for energy conversion and transmission, of which the performance has a direct influence on the entire wind power generation system. The mathematical model of the grid-connected inverter is deduced firstly. Then, the space vector pulse width modulation (SVPWM) is analyzed. The power factor can be controlled close to unity, leading or lagging, which is realized based on H-type current controller and grid voltage vector-oriented control. The control strategy is verified by the simulation and experimental results with a good sinusoidal current, a small harmonic component and a fast dynamic response.展开更多
The brushless doubly-fed wind power system based on conventional power control strategies lacks ‘inertia’ and the ability to support grid,which leads to the decline of grid stability.Therefore,a control strategy of ...The brushless doubly-fed wind power system based on conventional power control strategies lacks ‘inertia’ and the ability to support grid,which leads to the decline of grid stability.Therefore,a control strategy of brushless doubly-fed reluctance generator(BDFRG) based on virtual synchronous generator(VSG) control is proposed to solve the problem in this paper.The output characteristics of BDFRG based on VSG are similar to a synchronous generator(SG),which can support the grid frequency and increase the system ‘inertia’.According to the mathematical model of BDFRG,the inner loop voltage source control of BDFRG is derived.In addition,the specific structure and parameter selection principle of outer loop VSG control are expounded.The voltage source control inner loop of BDFRG is combined with the VSG control outer loop to establish the overall architecture of BDFRG-VSG control strategy.Finally,the effectiveness and feasibility of the proposed strategy are verified in the simulation.展开更多
This paper proposes a robust dichotomy-based model predictive control(DS-MPC)with a fixed switching frequency for the grid-connected inverter(GCI).The proposed fast dichotomy algorithm can select and deduce the optima...This paper proposes a robust dichotomy-based model predictive control(DS-MPC)with a fixed switching frequency for the grid-connected inverter(GCI).The proposed fast dichotomy algorithm can select and deduce the optimal voltage vector dynamically through the space vector plane.Therefore,the proposed DS-MPC strategy could ensure dynamic performance and steady-state performance as well.Also,the current control robustness can be improved through DS-MPC with disturbance observer(DO)based on the extended Kalman filter(EKF).The novelty of this control is that the current control with fast dynamic response can be realized in the weak grid,even if the grid voltages are greatly distorted.Simulation and hardware experiments on the weak grid validate the effectiveness of the proposed DS-MPC with the EKF observer approach.展开更多
Determination of Shear Bond strength(SBS)at interlayer of double-layer asphalt concrete is crucial in flexible pavement structures.The study used three Machine Learning(ML)models,including K-Nearest Neighbors(KNN),Ext...Determination of Shear Bond strength(SBS)at interlayer of double-layer asphalt concrete is crucial in flexible pavement structures.The study used three Machine Learning(ML)models,including K-Nearest Neighbors(KNN),Extra Trees(ET),and Light Gradient Boosting Machine(LGBM),to predict SBS based on easily determinable input parameters.Also,the Grid Search technique was employed for hyper-parameter tuning of the ML models,and cross-validation and learning curve analysis were used for training the models.The models were built on a database of 240 experimental results and three input variables:temperature,normal pressure,and tack coat rate.Model validation was performed using three statistical criteria:the coefficient of determination(R2),the Root Mean Square Error(RMSE),and the mean absolute error(MAE).Additionally,SHAP analysis was also used to validate the importance of the input variables in the prediction of the SBS.Results show that these models accurately predict SBS,with LGBM providing outstanding performance.SHAP(Shapley Additive explanation)analysis for LGBM indicates that temperature is the most influential factor on SBS.Consequently,the proposed ML models can quickly and accurately predict SBS between two layers of asphalt concrete,serving practical applications in flexible pavement structure design.展开更多
Prediction of stability in SG(Smart Grid)is essential in maintaining consistency and reliability of power supply in grid infrastructure.Analyzing the fluctuations in power generation and consumption patterns of smart ...Prediction of stability in SG(Smart Grid)is essential in maintaining consistency and reliability of power supply in grid infrastructure.Analyzing the fluctuations in power generation and consumption patterns of smart cities assists in effectively managing continuous power supply in the grid.It also possesses a better impact on averting overloading and permitting effective energy storage.Even though many traditional techniques have predicted the consumption rate for preserving stability,enhancement is required in prediction measures with minimized loss.To overcome the complications in existing studies,this paper intends to predict stability from the smart grid stability prediction dataset using machine learning algorithms.To accomplish this,pre-processing is performed initially to handle missing values since it develops biased models when missing values are mishandled and performs feature scaling to normalize independent data features.Then,the pre-processed data are taken for training and testing.Following that,the regression process is performed using Modified PSO(Particle Swarm Optimization)optimized XGBoost Technique with dynamic inertia weight update,which analyses variables like gamma(G),reaction time(tau1–tau4),and power balance(p1–p4)for providing effective future stability in SG.Since PSO attains optimal solution by adjusting position through dynamic inertial weights,it is integrated with XGBoost due to its scalability and faster computational speed characteristics.The hyperparameters of XGBoost are fine-tuned in the training process for achieving promising outcomes on prediction.Regression results are measured through evaluation metrics such as MSE(Mean Square Error)of 0.011312781,MAE(Mean Absolute Error)of 0.008596322,and RMSE(Root Mean Square Error)of 0.010636156 and MAPE(Mean Absolute Percentage Error)value of 0.0052 which determine the efficacy of the system.展开更多
This paper mainly studies scheduling type photovoltaic generation system, and establishes a three-phase photovoltaic grid-connected model in Matlab/Simulink, which uses the MPPT control that can make full use of the s...This paper mainly studies scheduling type photovoltaic generation system, and establishes a three-phase photovoltaic grid-connected model in Matlab/Simulink, which uses the MPPT control that can make full use of the solar energy. At the same time, energy storage device is added. The inverter of the energy storage device adopts V/f control. In the running state of the islanding because of a certain power failure, it can maintain a constant voltage and frequency. The simulation shows that as the output of the photovoltaic power increases, harmonic rate decreases under the same conditions, and the energy storage device can increase the stability of photovoltaic grid and reduce harmonic contents. So it’s very necessary to add energy storage device in the photovoltaic system.展开更多
Photovoltaic(PV)systems are electric power systems designed to sup-ply usable solar power by means of photovoltaics,which is the conversion of light into electricity using semiconducting materials.PV systems have gain...Photovoltaic(PV)systems are electric power systems designed to sup-ply usable solar power by means of photovoltaics,which is the conversion of light into electricity using semiconducting materials.PV systems have gained much attention and are a very attractive energy resource nowadays.The substantial advantage of PV systems is the usage of the most abundant and free energy from the sun.PV systems play an important role in reducing feeder losses,improving voltage profiles and providing ancillary services to local loads.However,large PV grid-connected systems may have a destructive impact on the stability of the elec-tric grid.This is due to thefluctuations of the output AC power generated from the PV systems according to the variations in the solar energy levels.Thus,the elec-trical distribution system with high penetration of PV systems is subject to perfor-mance degradation and instabilities.For that,this project attempts to enhance the integration process of PV systems into electrical grids by analyzing the impact of installing grid-connected PV plants.To accomplish this,an indicative representa-tion of solar irradiation datasets is used for planning and powerflow studies of the electric network prior to PV systems installation.Those datasets contain lengthy historical observations of solar energy data,that requires extensive analysis and simulations.To overcome that the lengthy historical datasets are reduced and clus-tered while preserving the original data characteristics.The resultant clusters can be utilized in the planning stage and simulation studies.Accordingly,studies related to PV systems integration into the electric grid are conducted in an efficient manner,avoiding computing resources and processing times with easier and practical implementation.展开更多
This paper proposes a new Predictive Direct Power Control(P-DPC) solution for three-phase grid-connected inverters, which combines direct power control strategy with the predictive control strategy and space vector pu...This paper proposes a new Predictive Direct Power Control(P-DPC) solution for three-phase grid-connected inverters, which combines direct power control strategy with the predictive control strategy and space vector pulse width modulation(SVPWM), obtaining both high transient performance and a constant switching frequency. This control solution can achieve decoupling control for active and reactive power and an adjustable power factor. Meanwhile, the grid-connected current can approximately be sinusoidal. The feasibility and advantages of the control strategy are verified by the simulation and experiment compared with another existing P-DPC.展开更多
The impact of Bapco 5 MW solar PV grid-connected project on Bahrain’s outlook for clean energy and energy-mix production was analyzed since solar electricity obtained from PV installation is considered as a non-linea...The impact of Bapco 5 MW solar PV grid-connected project on Bahrain’s outlook for clean energy and energy-mix production was analyzed since solar electricity obtained from PV installation is considered as a non-linear system. Several positive impacts were counted. These impacts were on business, economy, environment, research, green jobs creation and rooftop installation and other large-scale installation. This project had attracted public, investors, developers to invest in similar projects in the Kingdom of Bahrain;especially it is an environmentally friendly and smart technology. This innovative smart grid-connected 5 MW solar PV power plant is enough to electrify 500 houses @ 10 kW and had answered lots of frustrating questions such as the effect of dust on PV performance, need of man-made cleaning compared to naturally cleaned PV panels, reliability of the system, greenhouse gases reduction and pay-back period.展开更多
Global energy demand is growing rapidly owing to industrial growth and urbanization.Alternative energy sources are driven by limited reserves and rapid depletion of conventional energy sources(e.g.,fossil fuels).Solar...Global energy demand is growing rapidly owing to industrial growth and urbanization.Alternative energy sources are driven by limited reserves and rapid depletion of conventional energy sources(e.g.,fossil fuels).Solar photovol-taic(PV),as a source of electricity,has grown in popularity over the last few dec-ades because of their clean,noise-free,low-maintenance,and abundant availability of solar energy.There are two types of maximum power point track-ing(MPPT)techniques:classical and evolutionary algorithm-based techniques.Precise and less complex perturb and observe(P&O)and incremental conduc-tance(INC)approaches are extensively employed among classical techniques.This study used afield-programmable gate array(FPGA)-based hardware arrange-ment for a grid-connected photovoltaic(PV)system.The PV panels,MPPT con-trollers,and battery management systems are all components of the proposed system.In the developed hardware prototype,various modes of operation of the grid-connected PV system were examined using P&O and incremental con-ductance MPPT approaches.展开更多
The generation of electricity based on renewable energy sources,parti-cularly Photovoltaic(PV)system has been greatly increased and it is simply insti-gated for both domestic and commercial uses.The power generated fr...The generation of electricity based on renewable energy sources,parti-cularly Photovoltaic(PV)system has been greatly increased and it is simply insti-gated for both domestic and commercial uses.The power generated from the PV system is erratic and hence there is a need for an efficient converter to perform the extraction of maximum power.An improved interleaved Single-ended Primary Inductor-Converter(SEPIC)converter is employed in proposed work to extricate most of power from renewable source.This proposed converter minimizes ripples,reduces electromagnetic interference due tofilter elements and the contin-uous input current improves the power output of PV panel.A Crow Search Algo-rithm(CSA)based Proportional Integral(PI)controller is utilized for controlling the converter switches effectively by optimizing the parameters of PI controller.The optimized PI controller reduces ripples present in Direct Current(DC)vol-tage,maintains constant voltage at proposed converter output and reduces over-shoots with minimum settling and rise time.This voltage is given to single phase grid via 1�Voltage Source Inverter(VSI).The command pulses of 1�VSI are produced by simple PI controller.The response of the proposed converter is thus improved with less input current.After implementing CSA based PI the efficiency of proposed converter obtained is 96%and the Total Harmonic Distor-tion(THD)is found to be 2:4%.The dynamics and closed loop operation is designed and modeled using MATLAB Simulink tool and its behavior is performed.展开更多
Voltage space vector pulse-width modulation(SVPWM) has been widely applied to control current in three-phase voltage source inverters(VSI).However,as a voltage type modulator,SVPWM has certain drawbacks compared with ...Voltage space vector pulse-width modulation(SVPWM) has been widely applied to control current in three-phase voltage source inverters(VSI).However,as a voltage type modulator,SVPWM has certain drawbacks compared with current type modulators for grid-connected applications.For a grid-connected VSI,the performance of existing current controllers based on SVPWM is compromised by grid harmonics,control delay and system nonlinearities such as switching dead time.Moreover,unlike current type PWM,SVPWM does not inherently have over-current protection.A novel SVPWM-based current controller is proposed for three-phase grid-connected VSIs for small wind turbine appli-cations.To overcome the drawbacks of SVPWM,a grid harmonic compensation method is proposed along with compen-sation for control delays.Both simulation and experimental results have established excellent steady-state response and fast dynamic response of the current controller.In addition,the DSP-based control system has both improved real-time control performance and fast response for over-current protection.展开更多
A novel topology of the current-source grid-connected inverter is proposed based on the immittance converter theory. A control strategy of sine-sine pulse width modulation (PWM) is studied. Compared with the traditi...A novel topology of the current-source grid-connected inverter is proposed based on the immittance converter theory. A control strategy of sine-sine pulse width modulation (PWM) is studied. Compared with the traditional current-source inverter, the power frequency inductors and power frequency transformer are replaced with high frequency inductors and a high frequency transformer. Thus, the proposed inverter has advantages of small volume, low cost, low total harmonic distortion (THD), low power losses, high power factor (PF) and simple control. Furthermore, grid voltage cannot influence output current of the grid-connected inverter and the current-source inverter with a high PF that approaches one has been realized. Finally, validity of the theory analysis and feasibility of the control scheme are shown by simulation and experimental results.展开更多
In order to ease the fossil energy crunch,new energy sources need to be fully utilized.Clean energy sources such as wind,light,and nuclear energy are important tools to solve environmental and energy problems.However,...In order to ease the fossil energy crunch,new energy sources need to be fully utilized.Clean energy sources such as wind,light,and nuclear energy are important tools to solve environmental and energy problems.However,in the process of researching new energy farms,there are some problems when they are integrated into the power system.In order to ensure the stability of new energy power plants,it is necessary to conduct an in-depth analysis of the grid connection technology of new energy farms.In the study,it is necessary to learn about the specific problems of the stability of the grid connection of new energy power plants,and to clarify the specific application of the grid connection technology of new energy power plants from the application principle and advantages of the grid connection technology of new energy power plants.Through simulation experiments,the positive effect of grid connection technology of new energy power plants in improving the stability of power systems was determined.展开更多
基金supported by Delta Power Electronic Science and Education Development in 2007 (Grant No.DRES2007002)
文摘In wind power generation system the grid-connected inverter is an important section for energy conversion and transmission, of which the performance has a direct influence on the entire wind power generation system. The mathematical model of the grid-connected inverter is deduced firstly. Then, the space vector pulse width modulation (SVPWM) is analyzed. The power factor can be controlled close to unity, leading or lagging, which is realized based on H-type current controller and grid voltage vector-oriented control. The control strategy is verified by the simulation and experimental results with a good sinusoidal current, a small harmonic component and a fast dynamic response.
基金supported in part by the National Natural Science Foundation of China under Grant 51537007。
文摘The brushless doubly-fed wind power system based on conventional power control strategies lacks ‘inertia’ and the ability to support grid,which leads to the decline of grid stability.Therefore,a control strategy of brushless doubly-fed reluctance generator(BDFRG) based on virtual synchronous generator(VSG) control is proposed to solve the problem in this paper.The output characteristics of BDFRG based on VSG are similar to a synchronous generator(SG),which can support the grid frequency and increase the system ‘inertia’.According to the mathematical model of BDFRG,the inner loop voltage source control of BDFRG is derived.In addition,the specific structure and parameter selection principle of outer loop VSG control are expounded.The voltage source control inner loop of BDFRG is combined with the VSG control outer loop to establish the overall architecture of BDFRG-VSG control strategy.Finally,the effectiveness and feasibility of the proposed strategy are verified in the simulation.
文摘This paper proposes a robust dichotomy-based model predictive control(DS-MPC)with a fixed switching frequency for the grid-connected inverter(GCI).The proposed fast dichotomy algorithm can select and deduce the optimal voltage vector dynamically through the space vector plane.Therefore,the proposed DS-MPC strategy could ensure dynamic performance and steady-state performance as well.Also,the current control robustness can be improved through DS-MPC with disturbance observer(DO)based on the extended Kalman filter(EKF).The novelty of this control is that the current control with fast dynamic response can be realized in the weak grid,even if the grid voltages are greatly distorted.Simulation and hardware experiments on the weak grid validate the effectiveness of the proposed DS-MPC with the EKF observer approach.
基金the University of Transport Technology under grant number DTTD2022-12.
文摘Determination of Shear Bond strength(SBS)at interlayer of double-layer asphalt concrete is crucial in flexible pavement structures.The study used three Machine Learning(ML)models,including K-Nearest Neighbors(KNN),Extra Trees(ET),and Light Gradient Boosting Machine(LGBM),to predict SBS based on easily determinable input parameters.Also,the Grid Search technique was employed for hyper-parameter tuning of the ML models,and cross-validation and learning curve analysis were used for training the models.The models were built on a database of 240 experimental results and three input variables:temperature,normal pressure,and tack coat rate.Model validation was performed using three statistical criteria:the coefficient of determination(R2),the Root Mean Square Error(RMSE),and the mean absolute error(MAE).Additionally,SHAP analysis was also used to validate the importance of the input variables in the prediction of the SBS.Results show that these models accurately predict SBS,with LGBM providing outstanding performance.SHAP(Shapley Additive explanation)analysis for LGBM indicates that temperature is the most influential factor on SBS.Consequently,the proposed ML models can quickly and accurately predict SBS between two layers of asphalt concrete,serving practical applications in flexible pavement structure design.
基金Prince Sattam bin Abdulaziz University project number(PSAU/2023/R/1445)。
文摘Prediction of stability in SG(Smart Grid)is essential in maintaining consistency and reliability of power supply in grid infrastructure.Analyzing the fluctuations in power generation and consumption patterns of smart cities assists in effectively managing continuous power supply in the grid.It also possesses a better impact on averting overloading and permitting effective energy storage.Even though many traditional techniques have predicted the consumption rate for preserving stability,enhancement is required in prediction measures with minimized loss.To overcome the complications in existing studies,this paper intends to predict stability from the smart grid stability prediction dataset using machine learning algorithms.To accomplish this,pre-processing is performed initially to handle missing values since it develops biased models when missing values are mishandled and performs feature scaling to normalize independent data features.Then,the pre-processed data are taken for training and testing.Following that,the regression process is performed using Modified PSO(Particle Swarm Optimization)optimized XGBoost Technique with dynamic inertia weight update,which analyses variables like gamma(G),reaction time(tau1–tau4),and power balance(p1–p4)for providing effective future stability in SG.Since PSO attains optimal solution by adjusting position through dynamic inertial weights,it is integrated with XGBoost due to its scalability and faster computational speed characteristics.The hyperparameters of XGBoost are fine-tuned in the training process for achieving promising outcomes on prediction.Regression results are measured through evaluation metrics such as MSE(Mean Square Error)of 0.011312781,MAE(Mean Absolute Error)of 0.008596322,and RMSE(Root Mean Square Error)of 0.010636156 and MAPE(Mean Absolute Percentage Error)value of 0.0052 which determine the efficacy of the system.
文摘This paper mainly studies scheduling type photovoltaic generation system, and establishes a three-phase photovoltaic grid-connected model in Matlab/Simulink, which uses the MPPT control that can make full use of the solar energy. At the same time, energy storage device is added. The inverter of the energy storage device adopts V/f control. In the running state of the islanding because of a certain power failure, it can maintain a constant voltage and frequency. The simulation shows that as the output of the photovoltaic power increases, harmonic rate decreases under the same conditions, and the energy storage device can increase the stability of photovoltaic grid and reduce harmonic contents. So it’s very necessary to add energy storage device in the photovoltaic system.
文摘Photovoltaic(PV)systems are electric power systems designed to sup-ply usable solar power by means of photovoltaics,which is the conversion of light into electricity using semiconducting materials.PV systems have gained much attention and are a very attractive energy resource nowadays.The substantial advantage of PV systems is the usage of the most abundant and free energy from the sun.PV systems play an important role in reducing feeder losses,improving voltage profiles and providing ancillary services to local loads.However,large PV grid-connected systems may have a destructive impact on the stability of the elec-tric grid.This is due to thefluctuations of the output AC power generated from the PV systems according to the variations in the solar energy levels.Thus,the elec-trical distribution system with high penetration of PV systems is subject to perfor-mance degradation and instabilities.For that,this project attempts to enhance the integration process of PV systems into electrical grids by analyzing the impact of installing grid-connected PV plants.To accomplish this,an indicative representa-tion of solar irradiation datasets is used for planning and powerflow studies of the electric network prior to PV systems installation.Those datasets contain lengthy historical observations of solar energy data,that requires extensive analysis and simulations.To overcome that the lengthy historical datasets are reduced and clus-tered while preserving the original data characteristics.The resultant clusters can be utilized in the planning stage and simulation studies.Accordingly,studies related to PV systems integration into the electric grid are conducted in an efficient manner,avoiding computing resources and processing times with easier and practical implementation.
基金supported by the national 863 program (2011AA050204)
文摘This paper proposes a new Predictive Direct Power Control(P-DPC) solution for three-phase grid-connected inverters, which combines direct power control strategy with the predictive control strategy and space vector pulse width modulation(SVPWM), obtaining both high transient performance and a constant switching frequency. This control solution can achieve decoupling control for active and reactive power and an adjustable power factor. Meanwhile, the grid-connected current can approximately be sinusoidal. The feasibility and advantages of the control strategy are verified by the simulation and experiment compared with another existing P-DPC.
文摘The impact of Bapco 5 MW solar PV grid-connected project on Bahrain’s outlook for clean energy and energy-mix production was analyzed since solar electricity obtained from PV installation is considered as a non-linear system. Several positive impacts were counted. These impacts were on business, economy, environment, research, green jobs creation and rooftop installation and other large-scale installation. This project had attracted public, investors, developers to invest in similar projects in the Kingdom of Bahrain;especially it is an environmentally friendly and smart technology. This innovative smart grid-connected 5 MW solar PV power plant is enough to electrify 500 houses @ 10 kW and had answered lots of frustrating questions such as the effect of dust on PV performance, need of man-made cleaning compared to naturally cleaned PV panels, reliability of the system, greenhouse gases reduction and pay-back period.
文摘Global energy demand is growing rapidly owing to industrial growth and urbanization.Alternative energy sources are driven by limited reserves and rapid depletion of conventional energy sources(e.g.,fossil fuels).Solar photovol-taic(PV),as a source of electricity,has grown in popularity over the last few dec-ades because of their clean,noise-free,low-maintenance,and abundant availability of solar energy.There are two types of maximum power point track-ing(MPPT)techniques:classical and evolutionary algorithm-based techniques.Precise and less complex perturb and observe(P&O)and incremental conduc-tance(INC)approaches are extensively employed among classical techniques.This study used afield-programmable gate array(FPGA)-based hardware arrange-ment for a grid-connected photovoltaic(PV)system.The PV panels,MPPT con-trollers,and battery management systems are all components of the proposed system.In the developed hardware prototype,various modes of operation of the grid-connected PV system were examined using P&O and incremental con-ductance MPPT approaches.
文摘The generation of electricity based on renewable energy sources,parti-cularly Photovoltaic(PV)system has been greatly increased and it is simply insti-gated for both domestic and commercial uses.The power generated from the PV system is erratic and hence there is a need for an efficient converter to perform the extraction of maximum power.An improved interleaved Single-ended Primary Inductor-Converter(SEPIC)converter is employed in proposed work to extricate most of power from renewable source.This proposed converter minimizes ripples,reduces electromagnetic interference due tofilter elements and the contin-uous input current improves the power output of PV panel.A Crow Search Algo-rithm(CSA)based Proportional Integral(PI)controller is utilized for controlling the converter switches effectively by optimizing the parameters of PI controller.The optimized PI controller reduces ripples present in Direct Current(DC)vol-tage,maintains constant voltage at proposed converter output and reduces over-shoots with minimum settling and rise time.This voltage is given to single phase grid via 1�Voltage Source Inverter(VSI).The command pulses of 1�VSI are produced by simple PI controller.The response of the proposed converter is thus improved with less input current.After implementing CSA based PI the efficiency of proposed converter obtained is 96%and the Total Harmonic Distor-tion(THD)is found to be 2:4%.The dynamics and closed loop operation is designed and modeled using MATLAB Simulink tool and its behavior is performed.
文摘Voltage space vector pulse-width modulation(SVPWM) has been widely applied to control current in three-phase voltage source inverters(VSI).However,as a voltage type modulator,SVPWM has certain drawbacks compared with current type modulators for grid-connected applications.For a grid-connected VSI,the performance of existing current controllers based on SVPWM is compromised by grid harmonics,control delay and system nonlinearities such as switching dead time.Moreover,unlike current type PWM,SVPWM does not inherently have over-current protection.A novel SVPWM-based current controller is proposed for three-phase grid-connected VSIs for small wind turbine appli-cations.To overcome the drawbacks of SVPWM,a grid harmonic compensation method is proposed along with compen-sation for control delays.Both simulation and experimental results have established excellent steady-state response and fast dynamic response of the current controller.In addition,the DSP-based control system has both improved real-time control performance and fast response for over-current protection.
基金supported by the Shanghai Leading Academic Discipline Project (Grant No.T0103)
文摘A novel topology of the current-source grid-connected inverter is proposed based on the immittance converter theory. A control strategy of sine-sine pulse width modulation (PWM) is studied. Compared with the traditional current-source inverter, the power frequency inductors and power frequency transformer are replaced with high frequency inductors and a high frequency transformer. Thus, the proposed inverter has advantages of small volume, low cost, low total harmonic distortion (THD), low power losses, high power factor (PF) and simple control. Furthermore, grid voltage cannot influence output current of the grid-connected inverter and the current-source inverter with a high PF that approaches one has been realized. Finally, validity of the theory analysis and feasibility of the control scheme are shown by simulation and experimental results.
文摘In order to ease the fossil energy crunch,new energy sources need to be fully utilized.Clean energy sources such as wind,light,and nuclear energy are important tools to solve environmental and energy problems.However,in the process of researching new energy farms,there are some problems when they are integrated into the power system.In order to ensure the stability of new energy power plants,it is necessary to conduct an in-depth analysis of the grid connection technology of new energy farms.In the study,it is necessary to learn about the specific problems of the stability of the grid connection of new energy power plants,and to clarify the specific application of the grid connection technology of new energy power plants from the application principle and advantages of the grid connection technology of new energy power plants.Through simulation experiments,the positive effect of grid connection technology of new energy power plants in improving the stability of power systems was determined.