In order to evaluate the effects of mesh generation techniques and grid convergence on pump performance in centrifugal pump model, three widely used mesh styles including structured hexahedral, unstructured tetrahedra...In order to evaluate the effects of mesh generation techniques and grid convergence on pump performance in centrifugal pump model, three widely used mesh styles including structured hexahedral, unstructured tetrahedral and hybrid prismatic/tetrahedral meshes were generated for a centrifugal pump model. And quantitative grid convergence was assessed based on a grid convergence index(GCI), which accounts for the degree of grid refinement. The structured, unstructured or hybrid meshes are found to have certain difference for velocity distributions in impeller with the change of grid cell number. And the simulation results have errors to different degrees compared with experimental data. The GCI-value for structured meshes calculated is lower than that for the unstructured and hybrid meshes. Meanwhile, the structured meshes are observed to get more vortexes in impeller passage.Nevertheless, the hybrid meshes are found to have larger low-velocity area at outlet and more secondary vortexes at a specified location than structured meshes and unstructured meshes.展开更多
The driven-dissipative Langevin dynamics simulation is used to produce a two-dimensional(2D) dense cloud, which is composed of charged dust particles trapped in a quadratic potential. A 2D mesh grid is built to analyz...The driven-dissipative Langevin dynamics simulation is used to produce a two-dimensional(2D) dense cloud, which is composed of charged dust particles trapped in a quadratic potential. A 2D mesh grid is built to analyze the center-to-wall dust density. It is found that the local dust density in the outer region relative to that of the inner region is more nonuniform,being consistent with the feature of quadratic potential. The dependences of the global dust density on equilibrium temperature, particle size, confinement strength, and confinement shape are investigated. It is found that the particle size, the confinement strength, and the confinement shape strongly affect the global dust density, while the equilibrium temperature plays a minor effect on it. In the direction where there is a stronger confinement, the dust density gradient is bigger.展开更多
Urban vegetation has been an important indicator for the evaluation of eco-cities, which is of great significance to promote eeo-city construction. We study and discuss the commonly used urban vegetation extrac-tion m...Urban vegetation has been an important indicator for the evaluation of eco-cities, which is of great significance to promote eeo-city construction. We study and discuss the commonly used urban vegetation extrac-tion methods. The extraction of vegetation points in this study is completed through mathematical statistics, mean-square error, successive differences and iterative algorithm which are based on the analysis of different spatial morphological characteristics in urban point clouds. Linyi, a city of Shandong Province in China, is se-lected as the study area to test this method and the result shows that the proposed method has a strong practicali- ty in urban vegetation point cloud extraction. Only 3D coordinate properties of the LiDAR point clouds are used in this method and it does not require additional information, for instance, return intensity, which makes the method more applicable and operable.展开更多
A new approach on cutter path generation for plane milling is proposed. The cutter feed status at the position of each grid mesh can be determined by using a specific algorithm consisting of data pro- cessing and some...A new approach on cutter path generation for plane milling is proposed. The cutter feed status at the position of each grid mesh can be determined by using a specific algorithm consisting of data pro- cessing and some heuristic rules. From the cutter feed status and the coordinates of the grid meshes, the cutter path for milling plane can be generated.展开更多
The effective valuation of catalyst supports in the catalytic oxidation makes the contribution to understand the support effect of great interest.Here,the role of active substrate in the performance and stability of C...The effective valuation of catalyst supports in the catalytic oxidation makes the contribution to understand the support effect of great interest.Here,the role of active substrate in the performance and stability of CuFe-Co ternary oxides was studied towards the complete catalytic oxidation of CO.The Cu-Fe-Co oxide thin films were deposited on copper grid mesh(CUGM)using one-step pulsed-spray evaporation chemical vapor deposition method.Crystalline structure and morphology analyses revealed nano-crystallite sizes and do me-top-like morphology.Synergistic effects between Cu,Fe and Co,which affect the surface Cu^2+,Fe^3+,Co^3+and chemisorbed oxygen species(O2 and OH)of thin films over the active support and thus result in better reducibility.The thin film catalysts supported on CUGM exhibited attractive catalytic activity compared to the te rnary oxides supported on ine rt grid mesh at a high gas hourly space velocity.Moreove r,the stability in time-on-stream of the ternary oxides on CUGM was evaluated in the CO oxidation for 30 h.The ad opted deposition strategy ofternary oxides on CUGM presents an excessive amount of adsorbed active oxygen species that play an impo rtant role in the complete CO oxidation.The catalysts supported on CUGM showed better catalytic conve rsion than that on inert grid mesh and some literature-reported noble metal oxides as well as transition metal oxides counterparts,revealing the beneficial effect of the CUGM suppo rt in the improvement of the catalytic performance.展开更多
Based on the comparison of existing power flow controllers(PFC)in meshed HVDC grids,the full-bridge modular multilevel converter based PFC(MMPFC)is proposed.At first,the general branch current calculation method of me...Based on the comparison of existing power flow controllers(PFC)in meshed HVDC grids,the full-bridge modular multilevel converter based PFC(MMPFC)is proposed.At first,the general branch current calculation method of meshed HVDC grids with the PFC is presented,and then,the issue of over-voltage on the thyristor based PFC is described and analyzed.Through the analysis of different operating modes of the full-bridge sub-module,the mechanism of over-voltage ride through of the MMPFC is indicated.The control strategy of the MMPFC,which is used to control branch current and keep capacitor voltage balancing,is elaborated.Finally,the performance on current regulation,bidirectional operation and over-voltage ride through is simulated and verified in a built model with PSCAD/EMTDC.展开更多
This paper proposes the design of a novel DC current flow controller(CFC)and evaluates the control performance of balancing and regulating the DC branch currents using the DC CFC in a meshed multi-terminal HVDC(MTDC)g...This paper proposes the design of a novel DC current flow controller(CFC)and evaluates the control performance of balancing and regulating the DC branch currents using the DC CFC in a meshed multi-terminal HVDC(MTDC)grid.The DC CFC consists of two identical full bridge DC-DC converters with the capacitors of the two converters being connected in parallel.The scalability of the DC CFC is easily achievable due to the identical bridge converter topology;the cost of this DC CFC is also relatively low due to its simple physical structure and low voltage ratings.The control performance of the DC CFC is tested on a meshed 3-terminal(3-T)HVDC grid,which is based on modular multilevel converters(MMC).The DC branch current control in the meshed MTDC grid is achieved using the proposed control strategy of the DC CFC,and is verified through case studies on the real-time digital simulator(RTDS).展开更多
The grid fin is an unconventional control surface used on missiles and rockets. Although aerodynamics of grid fin has been studied by many researchers, few considers the aeroelastic effects.In this paper, the static a...The grid fin is an unconventional control surface used on missiles and rockets. Although aerodynamics of grid fin has been studied by many researchers, few considers the aeroelastic effects.In this paper, the static aeroelastic simulations are performed by the coupled viscous computational fluid dynamics with structural flexibility method in transonic and supersonic regimes. The developed coupling strategy including fluid–structure interpolation and volume mesh motion schemes is based on radial basis functions. Results are presented for a vertical and a horizontal grid fin mounted on a body. Horizontal fin results show that the deformed fin is swept backward and the axial force is increased. The deformations also induce the movement of center of pressure, causing the reduction and reversal in hinge moment for the transonic flow and the supersonic flow,respectively. For the vertical fin, the local effective incidences are increased due to the deformations so that the deformed normal force is greater than the original one. At high angles of attack, both the deformed and original normal forces experience a sudden reduction due to the interference of leeward separated vortices on the fin. Additionally, the increment in axial force is shown to correlate strongly with the increment in the square of normal force.展开更多
Controllability of DC current/power flow is essentialin multi-terminal HVDC (MTDC) grids, particularly for theMTDC grids in a meshed topology. In this paper, consideringmeshed MTDC (M2TDC) grids with the installation ...Controllability of DC current/power flow is essentialin multi-terminal HVDC (MTDC) grids, particularly for theMTDC grids in a meshed topology. In this paper, consideringmeshed MTDC (M2TDC) grids with the installation of twoline/multi-lineDC current flow controllers (CFCs), a small-signalmodel of the DC CFCs integrated M2TDC grids is derived,studying the impact of the power losses of the DC CFC andtheir influence on the analysis of energy exchanges. The systemstability analysis is analysed using the Nyquist diagram, which ismore suitable for analyzing complex nonlinear systems with morecompact and reliable indicators of stability in comparison withgain/phase margins shown in the Bode diagram. In addition, aselection method of the interconnected capacitor of the DC CFCis proposed under different operating conditions. The impact ofthe switching frequencies of the DC CFC on the control ranges ofthe DC current flows is analyzed. The effectiveness of the Nyquistanalysis and the capacitance selection method is verified bysimulation studies using PSCAD/EMTDC. The obtained control ranges of the DC CFC with different switching frequenciesand capacitances would be useful for practical engineeringapplications.展开更多
Multi-terminal direct current(MTDC)grids provide the possibility of meshed interconnections between regional power systems and various renewable energy resources to boost supply reliability and economy.The modular mul...Multi-terminal direct current(MTDC)grids provide the possibility of meshed interconnections between regional power systems and various renewable energy resources to boost supply reliability and economy.The modular multilevel converter(MMC)has become the basic building block for MTDC and DC grids due to its salient features,i.e.,modularity and scalability.Therefore,the MMC-based MTDC systems should be pervasively embedded into the present power system to improve system performance.However,several technical challenges hamper their practical applications and deployment,including modeling,control,and protection of the MMC-MTDC grids.This paper presents a comprehensive investigation and reference in modeling,control,and protection of the MMC-MTDC grids.A general overview of state-of-the-art modeling techniques of the MMC along with their performance in simulation analysis for MTDC applications is provided.A review of control strategies of the MMC-MTDC grids which provide AC system support is presented.State-of-the art protection techniques of the MMCMTDC systems are also investigated.Finally,the associated research challenges and trends are highlighted.展开更多
The commercial and public services sectors including shopping centers,worship buildings,theatres,and other types,account for more than 20%of the electricity consumption in the world.These building typologies are chara...The commercial and public services sectors including shopping centers,worship buildings,theatres,and other types,account for more than 20%of the electricity consumption in the world.These building typologies are characterized by large spaces and high and temporary occupation.Besides,the horizontal temperature distribution in these buildings becomes one of the important parameters on occupant's comfort and energy efficiency.In the present study,a thermo-aeraulic zonal model using TRNSYS and CONTAM simulation tools is developed to analyze the spatial temperature distribution in a large building.Parametric studies relating to mesh discretization of building volume are performed to optimize the computational time and convergence.Extensive computational simulation is carried out to analyze the impact of building height,internal loads,natural ventilation and climatic conditions on the spatial temperature distribution,building energy performance,and thermal comfort.The developed simulation model in this study is effective to predict the horizontal temperature distribution with reasonable computation time compared to CFD simulations.The results show that the internal heat gains lead to an increase in the horizontal temperature gradient which should not be negligible especially in the case of large buildings.On the other side,natural night ventilation can reduce the peak tempearture in building by 3℃ for normal occupation building with limited internal gains.Furthermore,good spatial temperature distribution can decrease annual building energy needs about 32%.It can be helpful for architects and building developers to make an optimal choice regarding to building envelope and HVAC design.展开更多
基金Projects(51109095,51179075,51309119)supported by the National Natural Science Foundation of ChinaProject(BE2012131)supported by Science and Technology Support Program of Jiangsu Province,China
文摘In order to evaluate the effects of mesh generation techniques and grid convergence on pump performance in centrifugal pump model, three widely used mesh styles including structured hexahedral, unstructured tetrahedral and hybrid prismatic/tetrahedral meshes were generated for a centrifugal pump model. And quantitative grid convergence was assessed based on a grid convergence index(GCI), which accounts for the degree of grid refinement. The structured, unstructured or hybrid meshes are found to have certain difference for velocity distributions in impeller with the change of grid cell number. And the simulation results have errors to different degrees compared with experimental data. The GCI-value for structured meshes calculated is lower than that for the unstructured and hybrid meshes. Meanwhile, the structured meshes are observed to get more vortexes in impeller passage.Nevertheless, the hybrid meshes are found to have larger low-velocity area at outlet and more secondary vortexes at a specified location than structured meshes and unstructured meshes.
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 12275354 and 11805272)the Civil Aviation University of China (Grant No. 3122023PT08)。
文摘The driven-dissipative Langevin dynamics simulation is used to produce a two-dimensional(2D) dense cloud, which is composed of charged dust particles trapped in a quadratic potential. A 2D mesh grid is built to analyze the center-to-wall dust density. It is found that the local dust density in the outer region relative to that of the inner region is more nonuniform,being consistent with the feature of quadratic potential. The dependences of the global dust density on equilibrium temperature, particle size, confinement strength, and confinement shape are investigated. It is found that the particle size, the confinement strength, and the confinement shape strongly affect the global dust density, while the equilibrium temperature plays a minor effect on it. In the direction where there is a stronger confinement, the dust density gradient is bigger.
文摘Urban vegetation has been an important indicator for the evaluation of eco-cities, which is of great significance to promote eeo-city construction. We study and discuss the commonly used urban vegetation extrac-tion methods. The extraction of vegetation points in this study is completed through mathematical statistics, mean-square error, successive differences and iterative algorithm which are based on the analysis of different spatial morphological characteristics in urban point clouds. Linyi, a city of Shandong Province in China, is se-lected as the study area to test this method and the result shows that the proposed method has a strong practicali- ty in urban vegetation point cloud extraction. Only 3D coordinate properties of the LiDAR point clouds are used in this method and it does not require additional information, for instance, return intensity, which makes the method more applicable and operable.
文摘A new approach on cutter path generation for plane milling is proposed. The cutter feed status at the position of each grid mesh can be determined by using a specific algorithm consisting of data pro- cessing and some heuristic rules. From the cutter feed status and the coordinates of the grid meshes, the cutter path for milling plane can be generated.
基金financial support from the MOST(No.2017YFA0402800)the Basic Science Center Program for Ordered Energy Conversion of the National Natural Science Foundation of China(No.51888103)。
文摘The effective valuation of catalyst supports in the catalytic oxidation makes the contribution to understand the support effect of great interest.Here,the role of active substrate in the performance and stability of CuFe-Co ternary oxides was studied towards the complete catalytic oxidation of CO.The Cu-Fe-Co oxide thin films were deposited on copper grid mesh(CUGM)using one-step pulsed-spray evaporation chemical vapor deposition method.Crystalline structure and morphology analyses revealed nano-crystallite sizes and do me-top-like morphology.Synergistic effects between Cu,Fe and Co,which affect the surface Cu^2+,Fe^3+,Co^3+and chemisorbed oxygen species(O2 and OH)of thin films over the active support and thus result in better reducibility.The thin film catalysts supported on CUGM exhibited attractive catalytic activity compared to the te rnary oxides supported on ine rt grid mesh at a high gas hourly space velocity.Moreove r,the stability in time-on-stream of the ternary oxides on CUGM was evaluated in the CO oxidation for 30 h.The ad opted deposition strategy ofternary oxides on CUGM presents an excessive amount of adsorbed active oxygen species that play an impo rtant role in the complete CO oxidation.The catalysts supported on CUGM showed better catalytic conve rsion than that on inert grid mesh and some literature-reported noble metal oxides as well as transition metal oxides counterparts,revealing the beneficial effect of the CUGM suppo rt in the improvement of the catalytic performance.
基金supported by the National High Technology Research and Development Program of China("863"Program)(Grant No.2012AA050205)
文摘Based on the comparison of existing power flow controllers(PFC)in meshed HVDC grids,the full-bridge modular multilevel converter based PFC(MMPFC)is proposed.At first,the general branch current calculation method of meshed HVDC grids with the PFC is presented,and then,the issue of over-voltage on the thyristor based PFC is described and analyzed.Through the analysis of different operating modes of the full-bridge sub-module,the mechanism of over-voltage ride through of the MMPFC is indicated.The control strategy of the MMPFC,which is used to control branch current and keep capacitor voltage balancing,is elaborated.Finally,the performance on current regulation,bidirectional operation and over-voltage ride through is simulated and verified in a built model with PSCAD/EMTDC.
基金supported by UK-China Smart Grid Project ERIFT via UK EPSRC,University of Birmingham SiGuang Li Scholarship and China Scholarship Council。
文摘This paper proposes the design of a novel DC current flow controller(CFC)and evaluates the control performance of balancing and regulating the DC branch currents using the DC CFC in a meshed multi-terminal HVDC(MTDC)grid.The DC CFC consists of two identical full bridge DC-DC converters with the capacitors of the two converters being connected in parallel.The scalability of the DC CFC is easily achievable due to the identical bridge converter topology;the cost of this DC CFC is also relatively low due to its simple physical structure and low voltage ratings.The control performance of the DC CFC is tested on a meshed 3-terminal(3-T)HVDC grid,which is based on modular multilevel converters(MMC).The DC branch current control in the meshed MTDC grid is achieved using the proposed control strategy of the DC CFC,and is verified through case studies on the real-time digital simulator(RTDS).
文摘The grid fin is an unconventional control surface used on missiles and rockets. Although aerodynamics of grid fin has been studied by many researchers, few considers the aeroelastic effects.In this paper, the static aeroelastic simulations are performed by the coupled viscous computational fluid dynamics with structural flexibility method in transonic and supersonic regimes. The developed coupling strategy including fluid–structure interpolation and volume mesh motion schemes is based on radial basis functions. Results are presented for a vertical and a horizontal grid fin mounted on a body. Horizontal fin results show that the deformed fin is swept backward and the axial force is increased. The deformations also induce the movement of center of pressure, causing the reduction and reversal in hinge moment for the transonic flow and the supersonic flow,respectively. For the vertical fin, the local effective incidences are increased due to the deformations so that the deformed normal force is greater than the original one. At high angles of attack, both the deformed and original normal forces experience a sudden reduction due to the interference of leeward separated vortices on the fin. Additionally, the increment in axial force is shown to correlate strongly with the increment in the square of normal force.
基金National Natural Science Foundation of China under Grant 51807091Natural Science Foundation of Jiangsu Province BK20180478+1 种基金the China Postdoctoral Science Foundation under Grant 2019M661846EPSRC under Grant EP/N032888/1.
文摘Controllability of DC current/power flow is essentialin multi-terminal HVDC (MTDC) grids, particularly for theMTDC grids in a meshed topology. In this paper, consideringmeshed MTDC (M2TDC) grids with the installation of twoline/multi-lineDC current flow controllers (CFCs), a small-signalmodel of the DC CFCs integrated M2TDC grids is derived,studying the impact of the power losses of the DC CFC andtheir influence on the analysis of energy exchanges. The systemstability analysis is analysed using the Nyquist diagram, which ismore suitable for analyzing complex nonlinear systems with morecompact and reliable indicators of stability in comparison withgain/phase margins shown in the Bode diagram. In addition, aselection method of the interconnected capacitor of the DC CFCis proposed under different operating conditions. The impact ofthe switching frequencies of the DC CFC on the control ranges ofthe DC current flows is analyzed. The effectiveness of the Nyquistanalysis and the capacitance selection method is verified bysimulation studies using PSCAD/EMTDC. The obtained control ranges of the DC CFC with different switching frequenciesand capacitances would be useful for practical engineeringapplications.
基金funded by SGCC Science and Technology Program under project Research on Electromagnetic Transient Simulation Technology for Large-scale MMC-HVDC Systems.
文摘Multi-terminal direct current(MTDC)grids provide the possibility of meshed interconnections between regional power systems and various renewable energy resources to boost supply reliability and economy.The modular multilevel converter(MMC)has become the basic building block for MTDC and DC grids due to its salient features,i.e.,modularity and scalability.Therefore,the MMC-based MTDC systems should be pervasively embedded into the present power system to improve system performance.However,several technical challenges hamper their practical applications and deployment,including modeling,control,and protection of the MMC-MTDC grids.This paper presents a comprehensive investigation and reference in modeling,control,and protection of the MMC-MTDC grids.A general overview of state-of-the-art modeling techniques of the MMC along with their performance in simulation analysis for MTDC applications is provided.A review of control strategies of the MMC-MTDC grids which provide AC system support is presented.State-of-the art protection techniques of the MMCMTDC systems are also investigated.Finally,the associated research challenges and trends are highlighted.
文摘The commercial and public services sectors including shopping centers,worship buildings,theatres,and other types,account for more than 20%of the electricity consumption in the world.These building typologies are characterized by large spaces and high and temporary occupation.Besides,the horizontal temperature distribution in these buildings becomes one of the important parameters on occupant's comfort and energy efficiency.In the present study,a thermo-aeraulic zonal model using TRNSYS and CONTAM simulation tools is developed to analyze the spatial temperature distribution in a large building.Parametric studies relating to mesh discretization of building volume are performed to optimize the computational time and convergence.Extensive computational simulation is carried out to analyze the impact of building height,internal loads,natural ventilation and climatic conditions on the spatial temperature distribution,building energy performance,and thermal comfort.The developed simulation model in this study is effective to predict the horizontal temperature distribution with reasonable computation time compared to CFD simulations.The results show that the internal heat gains lead to an increase in the horizontal temperature gradient which should not be negligible especially in the case of large buildings.On the other side,natural night ventilation can reduce the peak tempearture in building by 3℃ for normal occupation building with limited internal gains.Furthermore,good spatial temperature distribution can decrease annual building energy needs about 32%.It can be helpful for architects and building developers to make an optimal choice regarding to building envelope and HVAC design.