Quantitative Precipitation Forecast(QPF)is a challenging issue in seamless prediction.QPF faces the following difficulties:(i)single rather than multiple model products are still used;(ii)most QPF methods require long...Quantitative Precipitation Forecast(QPF)is a challenging issue in seamless prediction.QPF faces the following difficulties:(i)single rather than multiple model products are still used;(ii)most QPF methods require long-term training samples not easily available,and(iii)local features are insufficiently reflected.In this work,a multi-model blending(MMB)algorithm with supplemental grid points(SGPs)is experimented to overcome these shortcomings.The MMB algorithm includes three steps:(1)single-model bias-correction,(2)dynamic weight MMB,and(3)light-precipitation elimination.In step 1,quantile mapping(QM)is used and SGPs are configured to expand the sample size.The SGPs are chosen based on similarity of topography,spatial distance,and climatic characteristics of local precipitation.In step 2,the dynamic weight MMB uses the idea of ensemble forecasting:a precipitation process can be forecast if more than 40% of the models predict such a case;moreover,threat score(TS)is used to update the weights of ensemble members.Finally,in step 3,the number of false alarms of light precipitation is reduced,thus alleviating unreasonable expansion of the precipitation area caused by the blending of multiple models.Verification results show that using the MMB algorithm has effectively improved the TS and bias score(BS)for blended 6-h QPF.The rate of increase in TS for heavy rainfall(25-mm threshold)reaches 20%-40%;in particular,the improvement has reached 47.6% for forecast lead time of 24 h,compared with the ECMWF model.Meanwhile,the BS is closer to 1,which is better than any single-model forecast.In sum,the QPF using MMB with SGPs shows great potential to further improve the present operational QPF in China.展开更多
Based on a lot of measurement and analysis,this paper find that the unbalanced nature of 35 kV grids due to unsymmetrical capacitance values gives difficulty in neutral point operation in mountainous area.Improving co...Based on a lot of measurement and analysis,this paper find that the unbalanced nature of 35 kV grids due to unsymmetrical capacitance values gives difficulty in neutral point operation in mountainous area.Improving compensation of Petersen coil can rectify imbalance of voltage but bring up new problem that Petersen coil can not extinguish grounding arc effectively in fault.To put down contradiction mentioned above,this paper proposes a combination operation for neutral point of 35 kV grids as neutral point insulated in routine operation and grounding through Petersen coil in fault,then EMTP simulation is carried out.Simulation indicates that new neutral operation method can improve lightning withstand level and decrease trip-out rate of grids.展开更多
移动单线激光雷达(Laser detection and ranging,LiDAR)扫描(Mobile single-layer LiDAR scanning,MSLS)树冠叶面积估计方法使用单一视角的单线激光雷达采集树冠点云数据,获取的冠层信息不够全面,限制了树冠叶面积估计精度。本文提出一...移动单线激光雷达(Laser detection and ranging,LiDAR)扫描(Mobile single-layer LiDAR scanning,MSLS)树冠叶面积估计方法使用单一视角的单线激光雷达采集树冠点云数据,获取的冠层信息不够全面,限制了树冠叶面积估计精度。本文提出一种基于移动多线LiDAR扫描(Mobile multi-layer LiDAR scanning,MMLS)的树冠叶面积估计方法,使用多线LiDAR从多个视角采集树冠点云数据,提升树冠叶面积估计精度。首先,将多线LiDAR采集的点云数据变换到世界坐标系下,通过感兴趣区域(Region of interest,ROI)提取出树冠点云。然后,提出一种MMLS树冠点云融合方法,逐个融合单个激光器采集的树冠点云,设置距离阈值删除重复点,添加新点。最后,构建MMLS空间分辨率网格,建立基于树冠网格面积的树冠叶面积估计模型。实验使用VLP-16型多线LiDAR传感器搭建MMLS系统,设置1、1.5 m 2个测量距离和间隔45°的8个测量角度对6个具有不同冠层密度的树冠进行数据采集,共得到96个树冠样本。采用本文方法,树冠叶面积线性估计模型的均方根误差(Root mean squared error,RMSE)为0.1041 m^(2),比MSLS模型降低0.0578 m^(2),决定系数R^(2)为0.9526,比MSLS模型提高0.0675。实验结果表明,本文方法通过多线LiDAR多视角树冠点云数据采集、MMLS树冠点云融合和空间分辨率网格构建,有效提升了树冠叶面积估计精度。展开更多
高比例新能源接入电网的间歇性和波动性对系统稳定性有显著影响。因此,评估和提升含高比例可再生能源(Renewable Energy Source, RES)的配电网稳定性至关重要。文中提出了一种新的系统强度评估指标——集成短路比(Integrated Short Circ...高比例新能源接入电网的间歇性和波动性对系统稳定性有显著影响。因此,评估和提升含高比例可再生能源(Renewable Energy Source, RES)的配电网稳定性至关重要。文中提出了一种新的系统强度评估指标——集成短路比(Integrated Short Circuit Ratio, ISCR),该指标不仅考虑了RES之间的相互作用,还考虑了储能设备(Energy Storage Device, ESD)的影响,能更准确地辨识电网薄弱环节。另外,基于ISCR提出了通过双层优化方法调配RES和ESD的位置和容量的配电网稳定性提升方法,以增强系统强度并提高RES和ESD容量。在上层,对RES的位置和容量进行优化,确保节点处的ISCR值最大;在下层,对ESD的位置和容量进行优化,确保ISCR值高于临界短路比(Critical Short Circuit Ratio, CSCR),以保持系统强大。位置优化由节点处的ISCR值确定。容量优化采用线性规划方法求解。最后,案例研究验证了所提优化方法在保持系统强度的同时增加RES和ESD容量的有效性。展开更多
基金Supported by the National Key Research and Development Program of China(2017YFC1502004)Special Project for Forecasters of China Meteorological Administration(CMAYBY2020-162)Special Project for Forecasters of National Meteorological Center(Y202135)。
文摘Quantitative Precipitation Forecast(QPF)is a challenging issue in seamless prediction.QPF faces the following difficulties:(i)single rather than multiple model products are still used;(ii)most QPF methods require long-term training samples not easily available,and(iii)local features are insufficiently reflected.In this work,a multi-model blending(MMB)algorithm with supplemental grid points(SGPs)is experimented to overcome these shortcomings.The MMB algorithm includes three steps:(1)single-model bias-correction,(2)dynamic weight MMB,and(3)light-precipitation elimination.In step 1,quantile mapping(QM)is used and SGPs are configured to expand the sample size.The SGPs are chosen based on similarity of topography,spatial distance,and climatic characteristics of local precipitation.In step 2,the dynamic weight MMB uses the idea of ensemble forecasting:a precipitation process can be forecast if more than 40% of the models predict such a case;moreover,threat score(TS)is used to update the weights of ensemble members.Finally,in step 3,the number of false alarms of light precipitation is reduced,thus alleviating unreasonable expansion of the precipitation area caused by the blending of multiple models.Verification results show that using the MMB algorithm has effectively improved the TS and bias score(BS)for blended 6-h QPF.The rate of increase in TS for heavy rainfall(25-mm threshold)reaches 20%-40%;in particular,the improvement has reached 47.6% for forecast lead time of 24 h,compared with the ECMWF model.Meanwhile,the BS is closer to 1,which is better than any single-model forecast.In sum,the QPF using MMB with SGPs shows great potential to further improve the present operational QPF in China.
基金Project Supported by Natural Science Foundation of CQ CSTC ( 2005BA6021 ).
文摘Based on a lot of measurement and analysis,this paper find that the unbalanced nature of 35 kV grids due to unsymmetrical capacitance values gives difficulty in neutral point operation in mountainous area.Improving compensation of Petersen coil can rectify imbalance of voltage but bring up new problem that Petersen coil can not extinguish grounding arc effectively in fault.To put down contradiction mentioned above,this paper proposes a combination operation for neutral point of 35 kV grids as neutral point insulated in routine operation and grounding through Petersen coil in fault,then EMTP simulation is carried out.Simulation indicates that new neutral operation method can improve lightning withstand level and decrease trip-out rate of grids.
文摘移动单线激光雷达(Laser detection and ranging,LiDAR)扫描(Mobile single-layer LiDAR scanning,MSLS)树冠叶面积估计方法使用单一视角的单线激光雷达采集树冠点云数据,获取的冠层信息不够全面,限制了树冠叶面积估计精度。本文提出一种基于移动多线LiDAR扫描(Mobile multi-layer LiDAR scanning,MMLS)的树冠叶面积估计方法,使用多线LiDAR从多个视角采集树冠点云数据,提升树冠叶面积估计精度。首先,将多线LiDAR采集的点云数据变换到世界坐标系下,通过感兴趣区域(Region of interest,ROI)提取出树冠点云。然后,提出一种MMLS树冠点云融合方法,逐个融合单个激光器采集的树冠点云,设置距离阈值删除重复点,添加新点。最后,构建MMLS空间分辨率网格,建立基于树冠网格面积的树冠叶面积估计模型。实验使用VLP-16型多线LiDAR传感器搭建MMLS系统,设置1、1.5 m 2个测量距离和间隔45°的8个测量角度对6个具有不同冠层密度的树冠进行数据采集,共得到96个树冠样本。采用本文方法,树冠叶面积线性估计模型的均方根误差(Root mean squared error,RMSE)为0.1041 m^(2),比MSLS模型降低0.0578 m^(2),决定系数R^(2)为0.9526,比MSLS模型提高0.0675。实验结果表明,本文方法通过多线LiDAR多视角树冠点云数据采集、MMLS树冠点云融合和空间分辨率网格构建,有效提升了树冠叶面积估计精度。
文摘高比例新能源接入电网的间歇性和波动性对系统稳定性有显著影响。因此,评估和提升含高比例可再生能源(Renewable Energy Source, RES)的配电网稳定性至关重要。文中提出了一种新的系统强度评估指标——集成短路比(Integrated Short Circuit Ratio, ISCR),该指标不仅考虑了RES之间的相互作用,还考虑了储能设备(Energy Storage Device, ESD)的影响,能更准确地辨识电网薄弱环节。另外,基于ISCR提出了通过双层优化方法调配RES和ESD的位置和容量的配电网稳定性提升方法,以增强系统强度并提高RES和ESD容量。在上层,对RES的位置和容量进行优化,确保节点处的ISCR值最大;在下层,对ESD的位置和容量进行优化,确保ISCR值高于临界短路比(Critical Short Circuit Ratio, CSCR),以保持系统强大。位置优化由节点处的ISCR值确定。容量优化采用线性规划方法求解。最后,案例研究验证了所提优化方法在保持系统强度的同时增加RES和ESD容量的有效性。