This paper presents, tests and compares three earthing systems (TT, TN and IT) for Micro-Grid (MG) protection against various fault types during the connected mode. The main contribution of this work is including the ...This paper presents, tests and compares three earthing systems (TT, TN and IT) for Micro-Grid (MG) protection against various fault types during the connected mode. The main contribution of this work is including the models of all the micro sources which interfaced to the MG by power electronic inverters. Inverters in turns are provided with current limiters and this also included in the inverter models to exactly simulate the real situation in the MG during fault times. Results proved that the most suitable earthing system for MG protection during the connecting mode is the TN earthing system. That system leads to a suitable amount of fault current sufficient to activate over current protection relays. With using TN system, Touch voltages at the faulted bus and all other consumer’s buses are less than the safety limited value if current limiter is included with the transformer of the main grid which connects MG. For the two others earthing systems (TT and IT), fault current is small and nearly equal to the over load current which make over current protection relay can not differentiate between fault current and overload current. All models of micro sources, earthing systems, inverters, main grid and control schemes are built using Matlab?/Simulink? environment.展开更多
In India most part receives 4 - 7 kWh of solar radiation per square meter per day with 200 - 250 sunny days in a year. Tamilnadu state also receives the highest annual radiation in India. In this paper, the grid conne...In India most part receives 4 - 7 kWh of solar radiation per square meter per day with 200 - 250 sunny days in a year. Tamilnadu state also receives the highest annual radiation in India. In this paper, the grid connected photovoltaic plant has a peak power of 80 KWp supplies electricity requirement of GRT IET campus during day time (7 hrs) and reduces load demand and generates useful data for future implementation of such PV plant projects in the Tamilnadu region. Photovoltaic plant was installed in April 2015, monitored during 6 months, and the performance ratio and the various power losses (power electronics, temperature, soiling, internal, network, grid availability and interconnection) were calculated. The PV plant supplied 64,182.86 KWh to the grid from April to September 2015, ranging from 11,510.900 to 10,200.9 kWh. The final yield ranged from 143.886 (h/d) to 127.51 (y/d), reference yield ranged from 201.6 (h/d) to 155.31 (h/d) and performance ratio ranged from 71.3% to 82.1%, for a duration of six months, it had given a performance ratio of 83.82%, system efficiency was 4.16% and the capacity factor of GRT IET Campus for six months was 18.26%. Payback period in years = 9 years 4 months, energy saving per year = 204,400 KWh, cost reduction per year = 1,737,400, Indian rupee = 26,197.30 USD and total CO<sub>2</sub> reductions per year = 102,200 tons CO<sub>2</sub>/year.展开更多
This document presents the evaluation and the monitoring of the performances of the first grid-connected photovoltaic system installed in the Center of Studies and Researches on the Renewable Energies (CERER) inaugura...This document presents the evaluation and the monitoring of the performances of the first grid-connected photovoltaic system installed in the Center of Studies and Researches on the Renewable Energies (CERER) inaugurated on December 4th, 2012 by the governmental authorities of Senegal and Tenerife. This mini power plant of 3.15 kWc is a perfect example of the political will of the government which is to reduce the production cost of the electricity, with the diversification of the sources of production, and the greater use of the other sources such as the natural gas, the coal, the renewable energies. The evaluation of the performances of the installation is realized by using the indicators of efficiency and performance as the photovoltaic surface yield, the ratio of photovoltaic performance, the photovoltaic specific yield, and the losses of captures. The obtained results show that a big part of the energy shone during the period of observation was not able to be used further to circumstances such as the losses of conductivity, the heat losses or for example the defects on components. The analysis also shows that a large part of the produced energy is not injected because of the dilapidation of the network, the defects of landing but especially one disjunction sees frequently at the level of the point of injection.展开更多
This paper proposes a high performance double-interleaved dual boost (DIDB) technique to solve the problems of high ripple current, large inductor size and the requirement of step-up transformer in many case found i...This paper proposes a high performance double-interleaved dual boost (DIDB) technique to solve the problems of high ripple current, large inductor size and the requirement of step-up transformer in many case found in the conventional DC-DC boost converter. The 3-phase grid connected converter with decoupling control give an independent control between active and reactive power using the load current feed-forward. With this technique, the disturbance rejection and the output power quality can be improved. Experiments are conducted with three case studies: 1) a test of the DIDB converter to determine current ripple and voltage gain, 2) a test of the 3-phase grid connected converter to determine DC-link voltage regulation, power factor and total harmonic distortion (THD), and 3) a test of the overall system with a 7.5 kW wind turbine simulator by step and various input wind speeds to determine the output power at the grid side and verify the maximum peak power tracking (MPPT) performance. The results can confirm that the DIDB converter gives lower ripple current and higher voltage gain than the conventional converter. For the grid side, the 3-phase grid connected converter can regulate the DC-link with fast dynamic response to disturbance rejection and low overshoot while complying with the THD standard defined in IEEE 519-1992. In addition, the MPPT controller is able to achieve the maximum energy capture with the various input wind speeds.展开更多
The merits of compressed air energy storage(CAES)include large power generation capacity,long service life,and environmental safety.When a CAES plant is switched to the grid-connected mode and participates in grid reg...The merits of compressed air energy storage(CAES)include large power generation capacity,long service life,and environmental safety.When a CAES plant is switched to the grid-connected mode and participates in grid regulation,using the traditional control mode with low accuracy can result in excess grid-connected impulse current and junction voltage.This occurs because the CAES output voltage does not match the frequency,amplitude,and phase of the power grid voltage.Therefore,an adaptive linear active disturbance-rejection control(A-LADRC)strategy was proposed.Based on the LADRC strategy,which is more accurate than the traditional proportional integral controller,the proposed controller is enhanced to allow adaptive adjustment of bandwidth parameters,resulting in improved accuracy and response speed.The problem of large impulse current when CAES is switched to the grid-connected mode is addressed,and the frequency fluctuation is reduced.Finally,the effectiveness of the proposed strategy in reducing the impact of CAES on the grid connection was verified using a hardware-in-the-loop simulation platform.The influence of the k value in the adaptive-adjustment formula on the A-LADRC was analyzed through simulation.The anti-interference performance of the control was verified by increasing and decreasing the load during the presynchronization process.展开更多
In this paper,the seismic behaviors of precast bridge columns connected with grouted corrugated-metal duct(GCMD)were investigated through the biaxial quasi-static experiment and numerical simulation.With a geometric s...In this paper,the seismic behaviors of precast bridge columns connected with grouted corrugated-metal duct(GCMD)were investigated through the biaxial quasi-static experiment and numerical simulation.With a geometric scale ratio of 1:5,five specimens were fabricated,including four precast bridge columns connected with GCMD and one cast-in-place(CIP)bridge column.A finite element analysis model was also established by using OpenSees and was then calibrated by using the experimental results for parameter analysis.The results show the biaxial seismic performance of the precast bridge columns connected with GCMD was similar to the CIP bridge columns regarding ultimate bearing capacity and hysteresis energy,and further,that it could meet the design goal of equivalent performance.The seismic performance of the precast bridge columns connected with GCMD deteriorated more significantly under bi-directional load than under uni-directional load.A proper slenderness ratio(e.g.,7.0-10.0)and longitudinal reinforcement ratio could significantly improve the energy dissipation capacity and deformation capacity of the precast bridge columns,while the axial load ratio and concrete strength had little influence on the above properties.The research results could bring insights to the development of the seismic design of precast bridge columns connected with GCMD.展开更多
Local arterials can be significantly impacted by diversions from adjacent work zones. These diversions often occur on unofficial detour routes due to guidance received on personal navigation devices. Often, these rout...Local arterials can be significantly impacted by diversions from adjacent work zones. These diversions often occur on unofficial detour routes due to guidance received on personal navigation devices. Often, these routes do not have sufficien<span style="font-family:Verdana;">t sensing or communication equipment to obtain infrastructure-based tra</span><span style="font-family:Verdana;">ffic signal performance measures, so other data sources are required to identify locations being significantly affected by diversions. This paper examines the network impact caused by the start of an 18-month closure of the I-65/70 interchange (North Split), which usually serves approximately 214,000 vehicles per day in Indianapolis, IN. In anticipation of some proportion of the public diverting from official detour routes to local streets, a connected vehicle monitoring program was established to provide daily performances measures for over 100 intersections in the area without the need for vehicle sensing equipment. This study reports on 13 of the most impacted signals on an alternative arterial to identify locations and time of day where operations are most degraded, so that decision makers have quantitative information to make informed adjustments to the system. Individual vehicle movements at the studied locations are analyzed to estimate changes in volume, split failures, downstream blockage, arrivals on green, and travel times. Over 130,000 trajectories were analyzed in an 11-week period. Weekly afternoon peak period volumes increased by approximately 455%, split failures increased 3%, downstream blockage increased 10%, arrivals on green decreased 16%, and travel time increase 74%. The analysis performed in this paper will serve as a framework for any agency that wants to assess traffic signal performance at hundreds of locations with little or no existing sensing or communication infrastructure to prioritize tactical retiming and/or longer-term infrastructure investments.</span>展开更多
Since the first Diverging Diamond Interchange (DDI) implementation in 2009, most of the performance studies developed for this type of interchange have been based on simulations and historical crash data, with a small...Since the first Diverging Diamond Interchange (DDI) implementation in 2009, most of the performance studies developed for this type of interchange have been based on simulations and historical crash data, with a small numbe<span style="font-family:Verdana;">r of studies using Automated Traffic Signal Performance Measures (ATS</span><span style="font-family:Verdana;">PM). Simulation models require considerable effort to collect volumes and to model actual controller operations. Safety studies based on historical crashes usually require from 3 to 5 years of data collection. ATSPMs rely on sensing equipment. This study describes the use of connected vehicle trajectory data to analyze the performance of a DDI located in the metropolitan area of Fort Wayne, IN. An extension of the Purdue Probe Diagram (PPD) is proposed to assess the levels of delay, progression, and saturation. Further, an additional PPD variation is presented that provides a convenient visualization to qualitatively understand progression patterns and to evaluate queue length for spillback in the critical interior crossover. Over 7000 trajectories and 130,000 GPS points were analyzed between the 7</span><sup><span style="font-family:Verdana;">th</span></sup><span style="font-family:Verdana;"> and the 11</span><sup><span style="font-family:Verdana;">th</span></sup><span style="font-family:Verdana;"> of June 2021 from 5:00 AM to 10:00 PM to estimate the DDI’s arrivals on green, level of service, split failures, and downstream blockage. Although this technique was demonstrated for weekdays, the ubiquity of connected vehicle data makes it very ea</span><span style="font-family:Verdana;">sy to adapt these techniques to analysis during special events, winter sto</span><span style="font-family:Verdana;">rms, and weekends. Furthermore, the methodologies presented in this paper can be applied by any agency wanting to assess the performance of any DDI in their jurisdiction.</span>展开更多
There are over 8000 roundabouts in the United States. The current techniques for assessing their performance require field counts to provide inputs to analysis or simulation models. These techniques are labor-intensiv...There are over 8000 roundabouts in the United States. The current techniques for assessing their performance require field counts to provide inputs to analysis or simulation models. These techniques are labor-intensive and do not scale well. This paper presents a methodology to use connected vehicle (CV) trajectory data to estimate delay and level of service for roundabout approaches by adapting the Purdue Probe Diagram used for traffic signal analytics. By linear referencing vehicle trajectories with a particular movement based on the location and time they exit a roundabout, delay can be calculated. The scalability is demonstrated by applying these techniques to assess over 100 roundabouts in Carmel, IN during the weekday afternoon peak period in July 2021. Over 264,000 trajectories and 3,600,000 GPS points were analyzed to rank over 300 roundabout approaches by delay and summarize in Pareto-sorted graphics and maps. The paper concludes by discussing how </span><span style="font-family:Verdana;">these techniques can also be used to analyze queue</span></span><span style="font-family:""> </span><span style="font-family:Verdana;">lengths and origin</span><span style="font-family:Verdana;">-destination characteristics at roundabouts. The methodology presented in this study can be used by any agency that wants to assess the performance of all roundabouts in their system.展开更多
To improve the heat transfer performance of microchannels,a novel microchannel embedded with connected grooves crossing two sidewalls and the bottom surface(type A)was designed.A comparative study of heat transfer was...To improve the heat transfer performance of microchannels,a novel microchannel embedded with connected grooves crossing two sidewalls and the bottom surface(type A)was designed.A comparative study of heat transfer was conducted regarding the performances of type A microchannels,microchannels embedded with grooves on their bottom(including types B and C),or on the sidewalls(type D)as well as smooth rectangular microchannels(type E)via a three-dimensional numerical simulation and experimental validation(at Reynolds numbers from 118 to 430).Numerical results suggested that the average Nusselt number of types A,B,C,and D microchannels were 106,73.4,50.1,and 12.6%higher than that of type E microchannel,respectively.The smallest synergy angle β and entropy generation number Ns,a were determined for type A microchannels based on field synergy and nondimensional entropy analysis,which indicated that type A exhibited the best heat transfer performance.Numerical flow analysis indicated that connected grooves induced fluid to flow along two different temperature gradients,which contributed to enhanced heat transfer performance.展开更多
Diamond interchanges are frequently used where a freeway intersects a two-way surface street. Most of the techniques to evaluate the performance of diamond interchanges rely on the Highway Capacity Manual (HCM), simul...Diamond interchanges are frequently used where a freeway intersects a two-way surface street. Most of the techniques to evaluate the performance of diamond interchanges rely on the Highway Capacity Manual (HCM), simulation, Automated Traffic Signal Performance Measures (ATSPMs), and historical crash data. HCM and simulation techniques require on-site data collection to obtain models’ inputs. ATSPMs need high-resolution controller event data acquired from roadway sensing equipment. Safety studies typically need 3 to 5 years of crash data to provide statistically significant results. This study utilizes commercially available connected vehicle (CV) data to assess the performance and operation of a three- and four-phase diamond interchange located in Indianapolis, Indiana, and Dallas, Texas, respectively. Over 92,000 trajectories and 1,400,000 GPS points are analyzed from August 2020 weekdays CV data. Trajectories are linear-referenced to generate Purdue Probe Diagrams (PPDs) from which arrivals on green (AOG), split failures, downstream blockage, and movement-based control delay are estimated. In addition, an extension of the PPD is presented that characterizes the complete journey of a vehicle travelling through both signals of the diamond interchange. This enhanced PPD is a significant contribution as it provides an analytical framework and graphical summary of the operational characteristics of how the external movements traverse the entire system. The four-phase control showed high internal progression (99% AOG) compared to the moderate internal progression of the three-phase operation (64% AOG). This is consistent with the design objectives of three- and four-phase control models, but historically these quantitative AOG measures were not possible to obtain with just detector data. Additionally, a graphical summary that illustrates the spatial distribution of hard-braking and hard-acceleration events is also provided. The presented techniques can be used by any agency to evaluate the performance of their diamond interchanges without on-site data collection or capital investments in sensing infrastructure.展开更多
Continuous flow intersections (CFIs), also known as displaced left turns (DLTs), are a type of alternative intersection designed to improve operations at locations with heavy left-turn movements by reallocating these ...Continuous flow intersections (CFIs), also known as displaced left turns (DLTs), are a type of alternative intersection designed to improve operations at locations with heavy left-turn movements by reallocating these vehicles to the left side of opposing traffic. Currently, simulation is commonly used to evaluate operational performance of CFIs. However, this approach requires significant on-site data collection and is highly dependent on the analyst’s ability to correctly model the intersection and driver behavior. Recently, connected vehicle (CV) trajectory data has become widely available and presents opportunities for the direct measurement of traffic signal performance measures. This study utilizes CV trajectory data to analyze the performance of a CFI located in West Valley City, UT. Over 4500 trajectories and 105,000 GPS points are analyzed from August 2021 weekday data. Trajectories are linear-referenced to generate Purdue Probe Diagrams (PPDs) and extended PPDs to estimate split failures (SF), arrivals on green (AOG), traditional Highway Capacity Manual (HCM) level of service (LOS), and the distribution of stops. The estimated operational performance showed effective progression during the PM peak period at all the critical internal storage areas with AOG levels at exit traffic signals between 83% and 100%. In contrast, all external approaches with longer queue storage areas had AOG values ranging from 2% to 81% during the same time period. The presented analytical techniques and summary graphics provide practitioners with tools to evaluate the performance of any CFI where CV trajectories are available without the need for on-site data collection.展开更多
Emerging connected vehicle (CV) data sets have recently become commercially available, enabling analysts to develop a variety of powerful performance measures without deploying any field infrastructure. This paper pre...Emerging connected vehicle (CV) data sets have recently become commercially available, enabling analysts to develop a variety of powerful performance measures without deploying any field infrastructure. This paper presents several tools using CV data to evaluate traffic progression quality along a signalized corridor. These include both performance measures for high-level analysis as well as visualizations to examine details of the coordinated operation. With the use of CV data, it is possible to assess not only the movement of traffic on the corridor but also to consider its origin-destination (O-D) path through the corridor. Results for the real-world operation of an eight-intersection signalized arterial are presented. A series of high-level performance measures are used to evaluate overall performance by time of day, with differing results by metric. Next, the details of the operation are examined with the use of two visualization tools: a cyclic time-space diagram (TSD) and an empirical platoon progression diagram (PPD). Comparing flow visualizations developed with different included O-D paths reveals several features, such as the presence of secondary and tertiary platoons on certain sections that cannot be seen when only end-to-end journeys are included. In addition, speed heat maps are generated, providing both speed performance along the corridor and locations and the extent of the queue. The proposed visualization tools portray the corridor’s performance holistically instead of combining individual signal performance metrics. The techniques exhibited in this study are compelling for identifying locations where engineering solutions such as access management or timing plan change are required. The recent progress in infrastructure-free sensing technology has significantly increased the scope of CV data-based traffic management systems, enhancing the significance of this study. The study demonstrates the utility of CV trajectory data for obtaining high-level details of the corridor performance as well as drilling down into the minute specifics.展开更多
To achieve high quality of service (QoS) on computational grids, the QoS-aware job scheduling is investigated for a hierarchical decentralized grid architecture that consists of multilevel schedulers. An integrated ...To achieve high quality of service (QoS) on computational grids, the QoS-aware job scheduling is investigated for a hierarchical decentralized grid architecture that consists of multilevel schedulers. An integrated QoS-aware job dispatching policy is proposed, which correlates priorities of incoming jobs used for job selecting at the local scheduler of the grid node with the job dispatching policies at the global scheduler for computational grids. The stochastic high-level Petri net (SHLPN) model of a two-level hierarchy computational grid architecture is presented, and a model refinement is made to reduce the complexity of the model solution. A performance analysis technique based on the SHLPN is proposed to investigate the QoS-aware job scheduling policy. Numerical results show that the QoS-aware job dispatching policy outperforms the QoS-unaware job dispatching policy in balancing the high-priority jobs, and thus enables priority-based QoS.展开更多
The effect of through-thickness reinforcement by composite pins (Z-pins) on the static tensile strength and failure mechanisms of the joints made from ceramic matrix composite (CMC) is investigated. Overlap length...The effect of through-thickness reinforcement by composite pins (Z-pins) on the static tensile strength and failure mechanisms of the joints made from ceramic matrix composite (CMC) is investigated. Overlap length of the single lap joint is 15 mm, 20 mm, 23 mm, 37 mm, and 60 mm, respectively. The experimental results indicate that the final failure modes of the joints can be divided into two groups, (a) the bond-line stops debonding until crack encounters Z-pins; and then the adherends break at the location of Z-pins, when overlap length is more than 20 mm; (b) the bond-line detaches entirely and Z-pins are drawn from adherends, when overlap length is equal to 15 mm. A simple efficient computational approach is presented for analyzing the benefit of through-thickness pins for restricting failure in the single lap joints. Here, the mechanics problem is simplified by representing the effect of the pins by tractions acting on the fracture surfaces of the cracked bond-line. The tractions are prescribed as functions of the crack displacement, which are available in simple forms that summarize the complex deformations to a reasonable accuracy. The resulting model can be used to track the evolution of complete failure mechanisms, for example, bond-line initial delamination and ultimate failure associated with Z-pin pullout, ultimate failure of the adherends. The paper simulates connecting performance of the single lap joints with different Z-pins' diameter, spacing and overlap length; the numerical results agree with the experimental results; the numerical results indicate enlarging diameter and decreasing spacing of Z-pins are in favor of improving the connecting performance of the joints. By numerical analysis method, the critical overlap length that lies between two final failure modes is between 18 mm and 19 mm, when Z-pins' diameter and spacing are 0.4 mm, 5 mm, respectively.展开更多
The synchronous virtual machine uses inverter power to imitate the performance of the conventional synchronous machine.It also has the same inertia,damping,frequency,voltage regulation,and other external performance a...The synchronous virtual machine uses inverter power to imitate the performance of the conventional synchronous machine.It also has the same inertia,damping,frequency,voltage regulation,and other external performance as the generator.It is the key technology to realize new energy grid connections’stable and reliable operation.This project studies a dynamic simulation model of an extensive new energy power system based on the virtual synchronous motor.A new energy storage method is proposed.The mathematical energy storage model is established by combining the fixed rotor model of a synchronous virtual machine with the charge-discharge power,state of charge,operation efficiency,dead zone,and inverter constraint.The rapid conversion of energy storage devices absorbs the excess instantaneous kinetic energy caused by interference.The branch transient of the critical cut set in the system can be confined to a limited area.Thus,the virtual synchronizer’s kinetic and potential energy can be efficiently converted into an instantaneous state.The simulation of power system analysis software package(PSASP)verifies the correctness of the theory and algorithm in this paper.This paper provides a theoretical basis for improving the transient stability of new energy-connected power grids.展开更多
文摘This paper presents, tests and compares three earthing systems (TT, TN and IT) for Micro-Grid (MG) protection against various fault types during the connected mode. The main contribution of this work is including the models of all the micro sources which interfaced to the MG by power electronic inverters. Inverters in turns are provided with current limiters and this also included in the inverter models to exactly simulate the real situation in the MG during fault times. Results proved that the most suitable earthing system for MG protection during the connecting mode is the TN earthing system. That system leads to a suitable amount of fault current sufficient to activate over current protection relays. With using TN system, Touch voltages at the faulted bus and all other consumer’s buses are less than the safety limited value if current limiter is included with the transformer of the main grid which connects MG. For the two others earthing systems (TT and IT), fault current is small and nearly equal to the over load current which make over current protection relay can not differentiate between fault current and overload current. All models of micro sources, earthing systems, inverters, main grid and control schemes are built using Matlab?/Simulink? environment.
文摘In India most part receives 4 - 7 kWh of solar radiation per square meter per day with 200 - 250 sunny days in a year. Tamilnadu state also receives the highest annual radiation in India. In this paper, the grid connected photovoltaic plant has a peak power of 80 KWp supplies electricity requirement of GRT IET campus during day time (7 hrs) and reduces load demand and generates useful data for future implementation of such PV plant projects in the Tamilnadu region. Photovoltaic plant was installed in April 2015, monitored during 6 months, and the performance ratio and the various power losses (power electronics, temperature, soiling, internal, network, grid availability and interconnection) were calculated. The PV plant supplied 64,182.86 KWh to the grid from April to September 2015, ranging from 11,510.900 to 10,200.9 kWh. The final yield ranged from 143.886 (h/d) to 127.51 (y/d), reference yield ranged from 201.6 (h/d) to 155.31 (h/d) and performance ratio ranged from 71.3% to 82.1%, for a duration of six months, it had given a performance ratio of 83.82%, system efficiency was 4.16% and the capacity factor of GRT IET Campus for six months was 18.26%. Payback period in years = 9 years 4 months, energy saving per year = 204,400 KWh, cost reduction per year = 1,737,400, Indian rupee = 26,197.30 USD and total CO<sub>2</sub> reductions per year = 102,200 tons CO<sub>2</sub>/year.
文摘This document presents the evaluation and the monitoring of the performances of the first grid-connected photovoltaic system installed in the Center of Studies and Researches on the Renewable Energies (CERER) inaugurated on December 4th, 2012 by the governmental authorities of Senegal and Tenerife. This mini power plant of 3.15 kWc is a perfect example of the political will of the government which is to reduce the production cost of the electricity, with the diversification of the sources of production, and the greater use of the other sources such as the natural gas, the coal, the renewable energies. The evaluation of the performances of the installation is realized by using the indicators of efficiency and performance as the photovoltaic surface yield, the ratio of photovoltaic performance, the photovoltaic specific yield, and the losses of captures. The obtained results show that a big part of the energy shone during the period of observation was not able to be used further to circumstances such as the losses of conductivity, the heat losses or for example the defects on components. The analysis also shows that a large part of the produced energy is not injected because of the dilapidation of the network, the defects of landing but especially one disjunction sees frequently at the level of the point of injection.
文摘This paper proposes a high performance double-interleaved dual boost (DIDB) technique to solve the problems of high ripple current, large inductor size and the requirement of step-up transformer in many case found in the conventional DC-DC boost converter. The 3-phase grid connected converter with decoupling control give an independent control between active and reactive power using the load current feed-forward. With this technique, the disturbance rejection and the output power quality can be improved. Experiments are conducted with three case studies: 1) a test of the DIDB converter to determine current ripple and voltage gain, 2) a test of the 3-phase grid connected converter to determine DC-link voltage regulation, power factor and total harmonic distortion (THD), and 3) a test of the overall system with a 7.5 kW wind turbine simulator by step and various input wind speeds to determine the output power at the grid side and verify the maximum peak power tracking (MPPT) performance. The results can confirm that the DIDB converter gives lower ripple current and higher voltage gain than the conventional converter. For the grid side, the 3-phase grid connected converter can regulate the DC-link with fast dynamic response to disturbance rejection and low overshoot while complying with the THD standard defined in IEEE 519-1992. In addition, the MPPT controller is able to achieve the maximum energy capture with the various input wind speeds.
基金supported by National Natural Science Foundation of China(Project No.52077079).
文摘The merits of compressed air energy storage(CAES)include large power generation capacity,long service life,and environmental safety.When a CAES plant is switched to the grid-connected mode and participates in grid regulation,using the traditional control mode with low accuracy can result in excess grid-connected impulse current and junction voltage.This occurs because the CAES output voltage does not match the frequency,amplitude,and phase of the power grid voltage.Therefore,an adaptive linear active disturbance-rejection control(A-LADRC)strategy was proposed.Based on the LADRC strategy,which is more accurate than the traditional proportional integral controller,the proposed controller is enhanced to allow adaptive adjustment of bandwidth parameters,resulting in improved accuracy and response speed.The problem of large impulse current when CAES is switched to the grid-connected mode is addressed,and the frequency fluctuation is reduced.Finally,the effectiveness of the proposed strategy in reducing the impact of CAES on the grid connection was verified using a hardware-in-the-loop simulation platform.The influence of the k value in the adaptive-adjustment formula on the A-LADRC was analyzed through simulation.The anti-interference performance of the control was verified by increasing and decreasing the load during the presynchronization process.
基金National Natural Science Foundation of China under Grant No.51408360the Natural Science Foundation of Fujian(NSFF)under Grant No.2020J01477the Technology Project of Fuzhou Science and Technology Bureau(TPFB)under Grant No.2020-GX-18。
文摘In this paper,the seismic behaviors of precast bridge columns connected with grouted corrugated-metal duct(GCMD)were investigated through the biaxial quasi-static experiment and numerical simulation.With a geometric scale ratio of 1:5,five specimens were fabricated,including four precast bridge columns connected with GCMD and one cast-in-place(CIP)bridge column.A finite element analysis model was also established by using OpenSees and was then calibrated by using the experimental results for parameter analysis.The results show the biaxial seismic performance of the precast bridge columns connected with GCMD was similar to the CIP bridge columns regarding ultimate bearing capacity and hysteresis energy,and further,that it could meet the design goal of equivalent performance.The seismic performance of the precast bridge columns connected with GCMD deteriorated more significantly under bi-directional load than under uni-directional load.A proper slenderness ratio(e.g.,7.0-10.0)and longitudinal reinforcement ratio could significantly improve the energy dissipation capacity and deformation capacity of the precast bridge columns,while the axial load ratio and concrete strength had little influence on the above properties.The research results could bring insights to the development of the seismic design of precast bridge columns connected with GCMD.
文摘Local arterials can be significantly impacted by diversions from adjacent work zones. These diversions often occur on unofficial detour routes due to guidance received on personal navigation devices. Often, these routes do not have sufficien<span style="font-family:Verdana;">t sensing or communication equipment to obtain infrastructure-based tra</span><span style="font-family:Verdana;">ffic signal performance measures, so other data sources are required to identify locations being significantly affected by diversions. This paper examines the network impact caused by the start of an 18-month closure of the I-65/70 interchange (North Split), which usually serves approximately 214,000 vehicles per day in Indianapolis, IN. In anticipation of some proportion of the public diverting from official detour routes to local streets, a connected vehicle monitoring program was established to provide daily performances measures for over 100 intersections in the area without the need for vehicle sensing equipment. This study reports on 13 of the most impacted signals on an alternative arterial to identify locations and time of day where operations are most degraded, so that decision makers have quantitative information to make informed adjustments to the system. Individual vehicle movements at the studied locations are analyzed to estimate changes in volume, split failures, downstream blockage, arrivals on green, and travel times. Over 130,000 trajectories were analyzed in an 11-week period. Weekly afternoon peak period volumes increased by approximately 455%, split failures increased 3%, downstream blockage increased 10%, arrivals on green decreased 16%, and travel time increase 74%. The analysis performed in this paper will serve as a framework for any agency that wants to assess traffic signal performance at hundreds of locations with little or no existing sensing or communication infrastructure to prioritize tactical retiming and/or longer-term infrastructure investments.</span>
文摘Since the first Diverging Diamond Interchange (DDI) implementation in 2009, most of the performance studies developed for this type of interchange have been based on simulations and historical crash data, with a small numbe<span style="font-family:Verdana;">r of studies using Automated Traffic Signal Performance Measures (ATS</span><span style="font-family:Verdana;">PM). Simulation models require considerable effort to collect volumes and to model actual controller operations. Safety studies based on historical crashes usually require from 3 to 5 years of data collection. ATSPMs rely on sensing equipment. This study describes the use of connected vehicle trajectory data to analyze the performance of a DDI located in the metropolitan area of Fort Wayne, IN. An extension of the Purdue Probe Diagram (PPD) is proposed to assess the levels of delay, progression, and saturation. Further, an additional PPD variation is presented that provides a convenient visualization to qualitatively understand progression patterns and to evaluate queue length for spillback in the critical interior crossover. Over 7000 trajectories and 130,000 GPS points were analyzed between the 7</span><sup><span style="font-family:Verdana;">th</span></sup><span style="font-family:Verdana;"> and the 11</span><sup><span style="font-family:Verdana;">th</span></sup><span style="font-family:Verdana;"> of June 2021 from 5:00 AM to 10:00 PM to estimate the DDI’s arrivals on green, level of service, split failures, and downstream blockage. Although this technique was demonstrated for weekdays, the ubiquity of connected vehicle data makes it very ea</span><span style="font-family:Verdana;">sy to adapt these techniques to analysis during special events, winter sto</span><span style="font-family:Verdana;">rms, and weekends. Furthermore, the methodologies presented in this paper can be applied by any agency wanting to assess the performance of any DDI in their jurisdiction.</span>
文摘There are over 8000 roundabouts in the United States. The current techniques for assessing their performance require field counts to provide inputs to analysis or simulation models. These techniques are labor-intensive and do not scale well. This paper presents a methodology to use connected vehicle (CV) trajectory data to estimate delay and level of service for roundabout approaches by adapting the Purdue Probe Diagram used for traffic signal analytics. By linear referencing vehicle trajectories with a particular movement based on the location and time they exit a roundabout, delay can be calculated. The scalability is demonstrated by applying these techniques to assess over 100 roundabouts in Carmel, IN during the weekday afternoon peak period in July 2021. Over 264,000 trajectories and 3,600,000 GPS points were analyzed to rank over 300 roundabout approaches by delay and summarize in Pareto-sorted graphics and maps. The paper concludes by discussing how </span><span style="font-family:Verdana;">these techniques can also be used to analyze queue</span></span><span style="font-family:""> </span><span style="font-family:Verdana;">lengths and origin</span><span style="font-family:Verdana;">-destination characteristics at roundabouts. The methodology presented in this study can be used by any agency that wants to assess the performance of all roundabouts in their system.
基金Supported by the Natural Science Foundation of China(Grant No.51922092)Natural Science Foundation of Fujian Province of China(Grant No.2017J06015)+1 种基金the Equipment Pre-research Foundation of China(Grant No.61409230206)Open Fund of the Key Laboratory for Metallurgical Equipment and Control of Ministry of Education in Wuhan University of Science and Technology(Grant No.MECOF2019A01).
文摘To improve the heat transfer performance of microchannels,a novel microchannel embedded with connected grooves crossing two sidewalls and the bottom surface(type A)was designed.A comparative study of heat transfer was conducted regarding the performances of type A microchannels,microchannels embedded with grooves on their bottom(including types B and C),or on the sidewalls(type D)as well as smooth rectangular microchannels(type E)via a three-dimensional numerical simulation and experimental validation(at Reynolds numbers from 118 to 430).Numerical results suggested that the average Nusselt number of types A,B,C,and D microchannels were 106,73.4,50.1,and 12.6%higher than that of type E microchannel,respectively.The smallest synergy angle β and entropy generation number Ns,a were determined for type A microchannels based on field synergy and nondimensional entropy analysis,which indicated that type A exhibited the best heat transfer performance.Numerical flow analysis indicated that connected grooves induced fluid to flow along two different temperature gradients,which contributed to enhanced heat transfer performance.
文摘Diamond interchanges are frequently used where a freeway intersects a two-way surface street. Most of the techniques to evaluate the performance of diamond interchanges rely on the Highway Capacity Manual (HCM), simulation, Automated Traffic Signal Performance Measures (ATSPMs), and historical crash data. HCM and simulation techniques require on-site data collection to obtain models’ inputs. ATSPMs need high-resolution controller event data acquired from roadway sensing equipment. Safety studies typically need 3 to 5 years of crash data to provide statistically significant results. This study utilizes commercially available connected vehicle (CV) data to assess the performance and operation of a three- and four-phase diamond interchange located in Indianapolis, Indiana, and Dallas, Texas, respectively. Over 92,000 trajectories and 1,400,000 GPS points are analyzed from August 2020 weekdays CV data. Trajectories are linear-referenced to generate Purdue Probe Diagrams (PPDs) from which arrivals on green (AOG), split failures, downstream blockage, and movement-based control delay are estimated. In addition, an extension of the PPD is presented that characterizes the complete journey of a vehicle travelling through both signals of the diamond interchange. This enhanced PPD is a significant contribution as it provides an analytical framework and graphical summary of the operational characteristics of how the external movements traverse the entire system. The four-phase control showed high internal progression (99% AOG) compared to the moderate internal progression of the three-phase operation (64% AOG). This is consistent with the design objectives of three- and four-phase control models, but historically these quantitative AOG measures were not possible to obtain with just detector data. Additionally, a graphical summary that illustrates the spatial distribution of hard-braking and hard-acceleration events is also provided. The presented techniques can be used by any agency to evaluate the performance of their diamond interchanges without on-site data collection or capital investments in sensing infrastructure.
文摘Continuous flow intersections (CFIs), also known as displaced left turns (DLTs), are a type of alternative intersection designed to improve operations at locations with heavy left-turn movements by reallocating these vehicles to the left side of opposing traffic. Currently, simulation is commonly used to evaluate operational performance of CFIs. However, this approach requires significant on-site data collection and is highly dependent on the analyst’s ability to correctly model the intersection and driver behavior. Recently, connected vehicle (CV) trajectory data has become widely available and presents opportunities for the direct measurement of traffic signal performance measures. This study utilizes CV trajectory data to analyze the performance of a CFI located in West Valley City, UT. Over 4500 trajectories and 105,000 GPS points are analyzed from August 2021 weekday data. Trajectories are linear-referenced to generate Purdue Probe Diagrams (PPDs) and extended PPDs to estimate split failures (SF), arrivals on green (AOG), traditional Highway Capacity Manual (HCM) level of service (LOS), and the distribution of stops. The estimated operational performance showed effective progression during the PM peak period at all the critical internal storage areas with AOG levels at exit traffic signals between 83% and 100%. In contrast, all external approaches with longer queue storage areas had AOG values ranging from 2% to 81% during the same time period. The presented analytical techniques and summary graphics provide practitioners with tools to evaluate the performance of any CFI where CV trajectories are available without the need for on-site data collection.
文摘Emerging connected vehicle (CV) data sets have recently become commercially available, enabling analysts to develop a variety of powerful performance measures without deploying any field infrastructure. This paper presents several tools using CV data to evaluate traffic progression quality along a signalized corridor. These include both performance measures for high-level analysis as well as visualizations to examine details of the coordinated operation. With the use of CV data, it is possible to assess not only the movement of traffic on the corridor but also to consider its origin-destination (O-D) path through the corridor. Results for the real-world operation of an eight-intersection signalized arterial are presented. A series of high-level performance measures are used to evaluate overall performance by time of day, with differing results by metric. Next, the details of the operation are examined with the use of two visualization tools: a cyclic time-space diagram (TSD) and an empirical platoon progression diagram (PPD). Comparing flow visualizations developed with different included O-D paths reveals several features, such as the presence of secondary and tertiary platoons on certain sections that cannot be seen when only end-to-end journeys are included. In addition, speed heat maps are generated, providing both speed performance along the corridor and locations and the extent of the queue. The proposed visualization tools portray the corridor’s performance holistically instead of combining individual signal performance metrics. The techniques exhibited in this study are compelling for identifying locations where engineering solutions such as access management or timing plan change are required. The recent progress in infrastructure-free sensing technology has significantly increased the scope of CV data-based traffic management systems, enhancing the significance of this study. The study demonstrates the utility of CV trajectory data for obtaining high-level details of the corridor performance as well as drilling down into the minute specifics.
基金The National Natural Science Foundation of China(No60673054,90412012)
文摘To achieve high quality of service (QoS) on computational grids, the QoS-aware job scheduling is investigated for a hierarchical decentralized grid architecture that consists of multilevel schedulers. An integrated QoS-aware job dispatching policy is proposed, which correlates priorities of incoming jobs used for job selecting at the local scheduler of the grid node with the job dispatching policies at the global scheduler for computational grids. The stochastic high-level Petri net (SHLPN) model of a two-level hierarchy computational grid architecture is presented, and a model refinement is made to reduce the complexity of the model solution. A performance analysis technique based on the SHLPN is proposed to investigate the QoS-aware job scheduling policy. Numerical results show that the QoS-aware job dispatching policy outperforms the QoS-unaware job dispatching policy in balancing the high-priority jobs, and thus enables priority-based QoS.
基金supported by the National Natural Science Foundation of China (No. 90405015)the Research Fund forthe Doctoral Program of Higher Education (No. 20030699040).
文摘The effect of through-thickness reinforcement by composite pins (Z-pins) on the static tensile strength and failure mechanisms of the joints made from ceramic matrix composite (CMC) is investigated. Overlap length of the single lap joint is 15 mm, 20 mm, 23 mm, 37 mm, and 60 mm, respectively. The experimental results indicate that the final failure modes of the joints can be divided into two groups, (a) the bond-line stops debonding until crack encounters Z-pins; and then the adherends break at the location of Z-pins, when overlap length is more than 20 mm; (b) the bond-line detaches entirely and Z-pins are drawn from adherends, when overlap length is equal to 15 mm. A simple efficient computational approach is presented for analyzing the benefit of through-thickness pins for restricting failure in the single lap joints. Here, the mechanics problem is simplified by representing the effect of the pins by tractions acting on the fracture surfaces of the cracked bond-line. The tractions are prescribed as functions of the crack displacement, which are available in simple forms that summarize the complex deformations to a reasonable accuracy. The resulting model can be used to track the evolution of complete failure mechanisms, for example, bond-line initial delamination and ultimate failure associated with Z-pin pullout, ultimate failure of the adherends. The paper simulates connecting performance of the single lap joints with different Z-pins' diameter, spacing and overlap length; the numerical results agree with the experimental results; the numerical results indicate enlarging diameter and decreasing spacing of Z-pins are in favor of improving the connecting performance of the joints. By numerical analysis method, the critical overlap length that lies between two final failure modes is between 18 mm and 19 mm, when Z-pins' diameter and spacing are 0.4 mm, 5 mm, respectively.
文摘The synchronous virtual machine uses inverter power to imitate the performance of the conventional synchronous machine.It also has the same inertia,damping,frequency,voltage regulation,and other external performance as the generator.It is the key technology to realize new energy grid connections’stable and reliable operation.This project studies a dynamic simulation model of an extensive new energy power system based on the virtual synchronous motor.A new energy storage method is proposed.The mathematical energy storage model is established by combining the fixed rotor model of a synchronous virtual machine with the charge-discharge power,state of charge,operation efficiency,dead zone,and inverter constraint.The rapid conversion of energy storage devices absorbs the excess instantaneous kinetic energy caused by interference.The branch transient of the critical cut set in the system can be confined to a limited area.Thus,the virtual synchronizer’s kinetic and potential energy can be efficiently converted into an instantaneous state.The simulation of power system analysis software package(PSASP)verifies the correctness of the theory and algorithm in this paper.This paper provides a theoretical basis for improving the transient stability of new energy-connected power grids.