The generation of photovoltaic(PV)solar energy is increasing continuously because it is renewable,unlimited,and clean energy.In the past,generation systems depended on non-renewable sources such as oil,coal,and gas.Th...The generation of photovoltaic(PV)solar energy is increasing continuously because it is renewable,unlimited,and clean energy.In the past,generation systems depended on non-renewable sources such as oil,coal,and gas.Therefore,this paper assesses the performance of a 51 kW PV solar power plant connected to a low-voltage grid to feed an administrative building in the 6th of October City,Egypt.The performance analysis of the considered grid-connected PV system is carried out using power system simulator for Engineering(PSS/E)software.Where the PSS/E program,monitors and uses the power analyzer that displays the parameters and measures some parameters such as current,voltage,total power,power factor,frequency,and current and voltage harmonics,the used inverter from the type of grid inverter for the considered system.The results conclude that when the maximum solar radiation is reached,the maximum current can be obtained from the solar panels,thus obtaining the maximum power and power factor.Decreasing total voltage harmonic distortion,a current harmonic distortion within permissible limits using active harmonic distortion because this type is fast in processing up to 300 microseconds.The connection between solar stations and the national grid makes the system more efficient.展开更多
Grid-tie voltage source converters(VSCs)can operate in three distinct modes:AC-dominant,DC-dominant,and balanced,depending on the placement of the stiff voltage sources.The distinct operation modes of the VSCs traditi...Grid-tie voltage source converters(VSCs)can operate in three distinct modes:AC-dominant,DC-dominant,and balanced,depending on the placement of the stiff voltage sources.The distinct operation modes of the VSCs traditionally demand different synchronization control techniques,leading to heterogeneous VSCs.It is challenging for the power system to accommodate and coordinate heterogeneous VSCs.A promising universal synchronization control technique for VSCs is the DC-link voltage synchronization control(DVSC)based on a lead compensator(LC).The LC DVSC stabilizes both the DC and AC voltages of a VSC while achieving synchronization with the AC grid.This results in a dual-port grid-forming(DGFM)characteristic for the VSC.However,there has been very limited study on the stability and synchronization controller design of the VSCs with the LC DVSC operating in various modes.To bridge this gap,the paper presents a quantitative analysis on the stability and steady-state performance of the LC DVSC in all three operation modes of the DGFM VSC.Based on the analysis,the paper provides step-by-step design guidelines for the LC DVSC.Furthermore,the paper uncovers an instability issue related to the LC DVSC when the DGFM VSC operates in the balanced mode.To tackle the instability issue,a virtual resistance control is proposed and integrated with the LC DVSC.Simulation results validate the analysis and demonstrate the effectiveness of the DGFM VSC with the LC DVSC designed using the proposed guidelines in all three operation modes.Overall,the paper demonstrates the feasibility of employing the DGFM VSC with the LC DVSC for all three possible operation modes,which can help overcome the challenges associated with accommodating and coordinating heterogeneous VSCs in the power system.展开更多
Microgrid (MG) is a small entity of electrical network which comprises of various Distributed Generation (DG) sources, storage devices, and group of loads in various classes. MG provides reliable and secure energy sup...Microgrid (MG) is a small entity of electrical network which comprises of various Distributed Generation (DG) sources, storage devices, and group of loads in various classes. MG provides reliable and secure energy supply to the critical loads of communities while operating either in on-grid or off-grid mode. In this study, a coordinated power management control strategy for a typical low voltage (LV) MG network with integration of solar Photovoltaic (PV) and storage facility has been developed and analysed in Matlab-Simu-link software environment at various modes (on-grid, off-grid, and on-grid to off-grid transition) of MG operation. Solar PV and battery power inverters are considered as grid-support grid-forming (GsGfm) Voltage Source Inverter (VSI) with the implementation of modified droop and virtual output impedance control strategies. Proposed control strategy supports coordinated control operation between PV units and battery storage, equal power sharing among the DG sources, and smooth MG mode transition with regulation of voltage and frequency level in MG network. In addition, voltage and current THD level were analysed and verified as per the standard of AS4777.展开更多
Battery energy storage systems,fuel cells,and photovoltaic generators are being adopted in distribution networks to achieve CO;emission reduction.These power sources require inverters to connect to AC networks.However...Battery energy storage systems,fuel cells,and photovoltaic generators are being adopted in distribution networks to achieve CO;emission reduction.These power sources require inverters to connect to AC networks.However,sub-networks,such as a microgrids containing inverter power sources,may be disconnected from the utility network and operated in a standalone mode during extended blackouts.This study focuses on a standalone microgrid supplied by inverter power sources without a synchronous generator and proposes a new microgrid inverter control.In this inverter control,a single grid forming inverter is operated as a master power source to determine frequency and voltage,and other inverters,called grid following inverters,are operated as subordinate power sources with active and reactive power control.The necessary functions in the energy management system are examined,and the coordinated operation of all inverters in the microgrid is demonstrated via simulation.展开更多
A new approach based on stereo vision technology is introduced to analyzesheet metal deformation. By measuring the deformed circle grids that are printed on the sheetsurface before forming, the strain distribution of ...A new approach based on stereo vision technology is introduced to analyzesheet metal deformation. By measuring the deformed circle grids that are printed on the sheetsurface before forming, the strain distribution of the workpiece is obtained. The measurement andanalysis results can be used to verify numerical simulation results and guide production. To getgood accuracy, some new techniques are employed: camera calibration based on genetic algorithm,feature abstraction based on self-adaptive technology, image matching based on structure feature andcamera modeling pre-constrains, and parameter calculation based on curve and surface optimization.The experimental values show that the approach proposed is rational and practical, which can providebetter measurement accuracy with less time than the conventional method.展开更多
This paper presents the development and performance capability of a comprehensive Low voltage ride through (LVRT) control scheme that makes use of both the DC chopper and the current limiting based on the required rea...This paper presents the development and performance capability of a comprehensive Low voltage ride through (LVRT) control scheme that makes use of both the DC chopper and the current limiting based on the required reactive power during fault time. The study is conducted on an 8.5 MW single stage PV power plant (PVPP) connected to the Rwandan grid. In the event of fault disturbance, this control scheme helps to overcome the problems of excessive DC-link voltage by fast activation of the DC chopper operation. At the same instance, AC current is limited to the maximum rating of the inverter as a function of the injected reactive current. This helps overcome AC-over- current that may possibly lead to damage or disconnection of the inverter. The control scheme also ensures voltage support and power balance through the injection of reactive current as per grid code requirements. Selected simulations using MATLAB are carried out in the events of different kinds of fault caused voltage dips. Results demonstrate the effectiveness of the proposed LVRT control scheme.展开更多
The formabilityof AZ31 sheet begins to increase drastically at 150℃.The incremental forming technique was thus applied to AZ31 sheet at 150℃to utilize the formability to its fullest capacity at the lowest possible t...The formabilityof AZ31 sheet begins to increase drastically at 150℃.The incremental forming technique was thus applied to AZ31 sheet at 150℃to utilize the formability to its fullest capacity at the lowest possible temperature for forming applications.A surface scanning technique was used followed by the tool path generation to incrementally form an egg surface.After thorough examination of various tool paths,the surface was most successfully produced by forming an intermediate shape followed by a series of tool paths.Flexible scale stickers were devised to improve the accuracy in the measurement of grid deformation.展开更多
This paper assesses 4 years of operation of a 1.75 kW roof top solar PV system installed in a Sydney suburban house. The system consists of 10 PV panels, a DC/AC inverter, and a grid connected gross meter. Solar elect...This paper assesses 4 years of operation of a 1.75 kW roof top solar PV system installed in a Sydney suburban house. The system consists of 10 PV panels, a DC/AC inverter, and a grid connected gross meter. Solar electricity delivered to grid is verified with the results from a computer simulation package (PVSYST) by adopting the installed component specifications, operation conditions, and weather data of the site. The results show high consistency between the values of energy delivered to the grid measured by the energy company and the energy estimated by system simulation. New system performance indicator is developed and called the optimum performance compliance ratio (PCR). It is a measure of the compliance of the output of the designed PV system with the output which would be produced by the same system with a solar tracker. This indicator provides system designers, contractors and energy providers with the actual capacity of the system that they can offer the end-users.展开更多
The energy assessment of the PV power systems is carried out by using different types of performance indicators that benchmark the output of these systems against the PV panel maximum output at hypothetical operation ...The energy assessment of the PV power systems is carried out by using different types of performance indicators that benchmark the output of these systems against the PV panel maximum output at hypothetical operation conditions. In this paper, a comparative analysis of six types of performance indicators is conducted and a new performance indicator which considers PV panel slope and orientation is proposed. The proposed indicator is benchmarking the PV system actual output against the maximum output of the same system if it would operate in two axis tracking mode. The proposed performance indicator is used to develop a friendly user calculator of PV system output that can be used by, energy providers and PV system installers to evaluate the output of the PV grid connect network. The advantage of the developed calculator is high-lighted by a case study that estimates energy capacity of different residential rooftop PV systems installed in a residential suburb in Sydney.展开更多
In this paper, we propose a two-grid algorithm for solving the stream function formulation of the stationary Navies-Stokes equations. The algorithm is constructed by reducing the original system to one small, nonlinea...In this paper, we propose a two-grid algorithm for solving the stream function formulation of the stationary Navies-Stokes equations. The algorithm is constructed by reducing the original system to one small, nonlinear system on the coarse mesh space and two similar linear systems (with same stiffness matrix but different right-hand side) on the fine mesh space. The convergence analysis and error estimation of the algorithm are given for the case of conforming elements. Furthermore, the Mgorithm produces a numerical solution with the optimal asymptotic H^2-error. Finally, we give a numerical illustration to demonstrate the effectiveness of the two-grid algorithm for solving the Navier-Stokes equations.展开更多
One main concern of power quality is harmonics because the distorted waveforms of current and voltage have a huge effect on electrical equipment. Due to the continuous increase of grid connected photovoltaic (PV) and ...One main concern of power quality is harmonics because the distorted waveforms of current and voltage have a huge effect on electrical equipment. Due to the continuous increase of grid connected photovoltaic (PV) and nonlinear loads, as a result of the fast development and growth of power electronics application, power quality becomes more important since it introduces harmonics to the power system. This paper presents a power quality study to the isolated northwest grid of Saudi Arabia in presence of PV system and battery storage. Moreover, the study includes nonlinear loads for more analysis regarding harmonics penetration and the design procedure for passive filters to eliminate the harmonics.展开更多
Rural electrification remains a great challenge for Sub-Saharan Africa (SSA) as access to electricity is a prerequisite to accelerate its development. The present paper reviews the measures adopted to promote access t...Rural electrification remains a great challenge for Sub-Saharan Africa (SSA) as access to electricity is a prerequisite to accelerate its development. The present paper reviews the measures adopted to promote access to electricity in rural and remote areas of SSA. The main barriers to rural electrification in these developing countries are presented before showing technologies used for the aforementioned purpose. Then, adopted methods for enhancing the use of renewable energy in SSA are shown. Moreover, the policy adopted by decision makers and project planners are also highlighted. In addition, the optimal solutions proposed by researchers are given such as the cost-effective off-grid system type that might be a viable alternative to diesel power generation.展开更多
The impact of Bapco 5 MW solar PV grid-connected project on Bahrain’s outlook for clean energy and energy-mix production was analyzed since solar electricity obtained from PV installation is considered as a non-linea...The impact of Bapco 5 MW solar PV grid-connected project on Bahrain’s outlook for clean energy and energy-mix production was analyzed since solar electricity obtained from PV installation is considered as a non-linear system. Several positive impacts were counted. These impacts were on business, economy, environment, research, green jobs creation and rooftop installation and other large-scale installation. This project had attracted public, investors, developers to invest in similar projects in the Kingdom of Bahrain;especially it is an environmentally friendly and smart technology. This innovative smart grid-connected 5 MW solar PV power plant is enough to electrify 500 houses @ 10 kW and had answered lots of frustrating questions such as the effect of dust on PV performance, need of man-made cleaning compared to naturally cleaned PV panels, reliability of the system, greenhouse gases reduction and pay-back period.展开更多
Global energy demand is growing rapidly owing to industrial growth and urbanization.Alternative energy sources are driven by limited reserves and rapid depletion of conventional energy sources(e.g.,fossil fuels).Solar...Global energy demand is growing rapidly owing to industrial growth and urbanization.Alternative energy sources are driven by limited reserves and rapid depletion of conventional energy sources(e.g.,fossil fuels).Solar photovol-taic(PV),as a source of electricity,has grown in popularity over the last few dec-ades because of their clean,noise-free,low-maintenance,and abundant availability of solar energy.There are two types of maximum power point track-ing(MPPT)techniques:classical and evolutionary algorithm-based techniques.Precise and less complex perturb and observe(P&O)and incremental conduc-tance(INC)approaches are extensively employed among classical techniques.This study used afield-programmable gate array(FPGA)-based hardware arrange-ment for a grid-connected photovoltaic(PV)system.The PV panels,MPPT con-trollers,and battery management systems are all components of the proposed system.In the developed hardware prototype,various modes of operation of the grid-connected PV system were examined using P&O and incremental con-ductance MPPT approaches.展开更多
This paper presents the results of research on the application of inverter in the grid connected solar photovoltaics (PV) system. The main content of the article is to control the three-phase grid connected inverter t...This paper presents the results of research on the application of inverter in the grid connected solar photovoltaics (PV) system. The main content of the article is to control the three-phase grid connected inverter to meet the requirement of controlling the reactive power to zero at a node of the distribution network while maximizing the active power transmitted to the grid. The control circuits are synthesized on the dq coordinate system and verified on the simulation model by Matlab/Simulink. Both simulation and experimental prototype on 5 kW inverter, being connected to low voltage grid, have been built to show the good results and the practical readiness for implementation.展开更多
In order to fully comprehend the developing status of wind power and photovoltaic (PV) power generation, a special investigation on the integration of wind power and PV power was launched by the agencies of the State ...In order to fully comprehend the developing status of wind power and photovoltaic (PV) power generation, a special investigation on the integration of wind power and PV power was launched by the agencies of the State Electricity Regulatory Commission (SERC) throughout China during July-October 2010. This report is completed based on the investigation along with routine supervisory and management programs. There are totally 573 wind power projects and 94 PV power projects involved. Existing problems in these projects are pointed out and proposals for regulation are put forward.展开更多
In this paper power electronics used in PV power generation systems have been reviewed and modelled. PV systems need converters for maximum power point tracking, power conditioning, voltage step-up/down as necessary, ...In this paper power electronics used in PV power generation systems have been reviewed and modelled. PV systems need converters for maximum power point tracking, power conditioning, voltage step-up/down as necessary, and for storage charge-controlling. Inverters are needed for AC loads and for utility grid interfacing. The four basic DC-DC converters commonly used with PV systems have been reviewed and modelled. Different DC-AC inverter types and operational architectures have also been reviewed with the two-stage DC-AC inverter, with the point of common coupling (PCC) at the inverter input, suggested as the most cost-effective and efficient architecture for PV-based communal grids. This is because only one inverter is used for the entire system as opposed to an inverter for every module string, resulting in higher efficiencies, low cost, and low harmonic distortions when compared to systems with PCC at AC terminal. The aim of power conversion/inversion is to extract maximum power possible from the PV system and where necessary, to invert it at close to 100% as possible. Highlight: 1) DC-DC converters are necessary for power conditioning in PV systems;2) DC-AC inverters are necessary for AC loads and for utility grid interfacing;3) DC-AC inverters are also used to control the PV systems when grid connected;4) Best inverter configuration cost-effectively and efficiently allows easy system modifications.展开更多
文摘The generation of photovoltaic(PV)solar energy is increasing continuously because it is renewable,unlimited,and clean energy.In the past,generation systems depended on non-renewable sources such as oil,coal,and gas.Therefore,this paper assesses the performance of a 51 kW PV solar power plant connected to a low-voltage grid to feed an administrative building in the 6th of October City,Egypt.The performance analysis of the considered grid-connected PV system is carried out using power system simulator for Engineering(PSS/E)software.Where the PSS/E program,monitors and uses the power analyzer that displays the parameters and measures some parameters such as current,voltage,total power,power factor,frequency,and current and voltage harmonics,the used inverter from the type of grid inverter for the considered system.The results conclude that when the maximum solar radiation is reached,the maximum current can be obtained from the solar panels,thus obtaining the maximum power and power factor.Decreasing total voltage harmonic distortion,a current harmonic distortion within permissible limits using active harmonic distortion because this type is fast in processing up to 300 microseconds.The connection between solar stations and the national grid makes the system more efficient.
基金supported in part by the Nebraska Center for Energy Sciences Research.
文摘Grid-tie voltage source converters(VSCs)can operate in three distinct modes:AC-dominant,DC-dominant,and balanced,depending on the placement of the stiff voltage sources.The distinct operation modes of the VSCs traditionally demand different synchronization control techniques,leading to heterogeneous VSCs.It is challenging for the power system to accommodate and coordinate heterogeneous VSCs.A promising universal synchronization control technique for VSCs is the DC-link voltage synchronization control(DVSC)based on a lead compensator(LC).The LC DVSC stabilizes both the DC and AC voltages of a VSC while achieving synchronization with the AC grid.This results in a dual-port grid-forming(DGFM)characteristic for the VSC.However,there has been very limited study on the stability and synchronization controller design of the VSCs with the LC DVSC operating in various modes.To bridge this gap,the paper presents a quantitative analysis on the stability and steady-state performance of the LC DVSC in all three operation modes of the DGFM VSC.Based on the analysis,the paper provides step-by-step design guidelines for the LC DVSC.Furthermore,the paper uncovers an instability issue related to the LC DVSC when the DGFM VSC operates in the balanced mode.To tackle the instability issue,a virtual resistance control is proposed and integrated with the LC DVSC.Simulation results validate the analysis and demonstrate the effectiveness of the DGFM VSC with the LC DVSC designed using the proposed guidelines in all three operation modes.Overall,the paper demonstrates the feasibility of employing the DGFM VSC with the LC DVSC for all three possible operation modes,which can help overcome the challenges associated with accommodating and coordinating heterogeneous VSCs in the power system.
文摘Microgrid (MG) is a small entity of electrical network which comprises of various Distributed Generation (DG) sources, storage devices, and group of loads in various classes. MG provides reliable and secure energy supply to the critical loads of communities while operating either in on-grid or off-grid mode. In this study, a coordinated power management control strategy for a typical low voltage (LV) MG network with integration of solar Photovoltaic (PV) and storage facility has been developed and analysed in Matlab-Simu-link software environment at various modes (on-grid, off-grid, and on-grid to off-grid transition) of MG operation. Solar PV and battery power inverters are considered as grid-support grid-forming (GsGfm) Voltage Source Inverter (VSI) with the implementation of modified droop and virtual output impedance control strategies. Proposed control strategy supports coordinated control operation between PV units and battery storage, equal power sharing among the DG sources, and smooth MG mode transition with regulation of voltage and frequency level in MG network. In addition, voltage and current THD level were analysed and verified as per the standard of AS4777.
文摘Battery energy storage systems,fuel cells,and photovoltaic generators are being adopted in distribution networks to achieve CO;emission reduction.These power sources require inverters to connect to AC networks.However,sub-networks,such as a microgrids containing inverter power sources,may be disconnected from the utility network and operated in a standalone mode during extended blackouts.This study focuses on a standalone microgrid supplied by inverter power sources without a synchronous generator and proposes a new microgrid inverter control.In this inverter control,a single grid forming inverter is operated as a master power source to determine frequency and voltage,and other inverters,called grid following inverters,are operated as subordinate power sources with active and reactive power control.The necessary functions in the energy management system are examined,and the coordinated operation of all inverters in the microgrid is demonstrated via simulation.
文摘A new approach based on stereo vision technology is introduced to analyzesheet metal deformation. By measuring the deformed circle grids that are printed on the sheetsurface before forming, the strain distribution of the workpiece is obtained. The measurement andanalysis results can be used to verify numerical simulation results and guide production. To getgood accuracy, some new techniques are employed: camera calibration based on genetic algorithm,feature abstraction based on self-adaptive technology, image matching based on structure feature andcamera modeling pre-constrains, and parameter calculation based on curve and surface optimization.The experimental values show that the approach proposed is rational and practical, which can providebetter measurement accuracy with less time than the conventional method.
文摘This paper presents the development and performance capability of a comprehensive Low voltage ride through (LVRT) control scheme that makes use of both the DC chopper and the current limiting based on the required reactive power during fault time. The study is conducted on an 8.5 MW single stage PV power plant (PVPP) connected to the Rwandan grid. In the event of fault disturbance, this control scheme helps to overcome the problems of excessive DC-link voltage by fast activation of the DC chopper operation. At the same instance, AC current is limited to the maximum rating of the inverter as a function of the injected reactive current. This helps overcome AC-over- current that may possibly lead to damage or disconnection of the inverter. The control scheme also ensures voltage support and power balance through the injection of reactive current as per grid code requirements. Selected simulations using MATLAB are carried out in the events of different kinds of fault caused voltage dips. Results demonstrate the effectiveness of the proposed LVRT control scheme.
基金Project(R01-2006-000-11076-0)supported by the Basic Research Program of the Korea Science and Engineering FoundationProjectsupported by the 2007 Hongik University Research Fund,Korea
文摘The formabilityof AZ31 sheet begins to increase drastically at 150℃.The incremental forming technique was thus applied to AZ31 sheet at 150℃to utilize the formability to its fullest capacity at the lowest possible temperature for forming applications.A surface scanning technique was used followed by the tool path generation to incrementally form an egg surface.After thorough examination of various tool paths,the surface was most successfully produced by forming an intermediate shape followed by a series of tool paths.Flexible scale stickers were devised to improve the accuracy in the measurement of grid deformation.
文摘This paper assesses 4 years of operation of a 1.75 kW roof top solar PV system installed in a Sydney suburban house. The system consists of 10 PV panels, a DC/AC inverter, and a grid connected gross meter. Solar electricity delivered to grid is verified with the results from a computer simulation package (PVSYST) by adopting the installed component specifications, operation conditions, and weather data of the site. The results show high consistency between the values of energy delivered to the grid measured by the energy company and the energy estimated by system simulation. New system performance indicator is developed and called the optimum performance compliance ratio (PCR). It is a measure of the compliance of the output of the designed PV system with the output which would be produced by the same system with a solar tracker. This indicator provides system designers, contractors and energy providers with the actual capacity of the system that they can offer the end-users.
文摘The energy assessment of the PV power systems is carried out by using different types of performance indicators that benchmark the output of these systems against the PV panel maximum output at hypothetical operation conditions. In this paper, a comparative analysis of six types of performance indicators is conducted and a new performance indicator which considers PV panel slope and orientation is proposed. The proposed indicator is benchmarking the PV system actual output against the maximum output of the same system if it would operate in two axis tracking mode. The proposed performance indicator is used to develop a friendly user calculator of PV system output that can be used by, energy providers and PV system installers to evaluate the output of the PV grid connect network. The advantage of the developed calculator is high-lighted by a case study that estimates energy capacity of different residential rooftop PV systems installed in a residential suburb in Sydney.
基金supported by National Foundation of Natural Science under the Grant 11071216
文摘In this paper, we propose a two-grid algorithm for solving the stream function formulation of the stationary Navies-Stokes equations. The algorithm is constructed by reducing the original system to one small, nonlinear system on the coarse mesh space and two similar linear systems (with same stiffness matrix but different right-hand side) on the fine mesh space. The convergence analysis and error estimation of the algorithm are given for the case of conforming elements. Furthermore, the Mgorithm produces a numerical solution with the optimal asymptotic H^2-error. Finally, we give a numerical illustration to demonstrate the effectiveness of the two-grid algorithm for solving the Navier-Stokes equations.
文摘One main concern of power quality is harmonics because the distorted waveforms of current and voltage have a huge effect on electrical equipment. Due to the continuous increase of grid connected photovoltaic (PV) and nonlinear loads, as a result of the fast development and growth of power electronics application, power quality becomes more important since it introduces harmonics to the power system. This paper presents a power quality study to the isolated northwest grid of Saudi Arabia in presence of PV system and battery storage. Moreover, the study includes nonlinear loads for more analysis regarding harmonics penetration and the design procedure for passive filters to eliminate the harmonics.
文摘Rural electrification remains a great challenge for Sub-Saharan Africa (SSA) as access to electricity is a prerequisite to accelerate its development. The present paper reviews the measures adopted to promote access to electricity in rural and remote areas of SSA. The main barriers to rural electrification in these developing countries are presented before showing technologies used for the aforementioned purpose. Then, adopted methods for enhancing the use of renewable energy in SSA are shown. Moreover, the policy adopted by decision makers and project planners are also highlighted. In addition, the optimal solutions proposed by researchers are given such as the cost-effective off-grid system type that might be a viable alternative to diesel power generation.
文摘The impact of Bapco 5 MW solar PV grid-connected project on Bahrain’s outlook for clean energy and energy-mix production was analyzed since solar electricity obtained from PV installation is considered as a non-linear system. Several positive impacts were counted. These impacts were on business, economy, environment, research, green jobs creation and rooftop installation and other large-scale installation. This project had attracted public, investors, developers to invest in similar projects in the Kingdom of Bahrain;especially it is an environmentally friendly and smart technology. This innovative smart grid-connected 5 MW solar PV power plant is enough to electrify 500 houses @ 10 kW and had answered lots of frustrating questions such as the effect of dust on PV performance, need of man-made cleaning compared to naturally cleaned PV panels, reliability of the system, greenhouse gases reduction and pay-back period.
文摘Global energy demand is growing rapidly owing to industrial growth and urbanization.Alternative energy sources are driven by limited reserves and rapid depletion of conventional energy sources(e.g.,fossil fuels).Solar photovol-taic(PV),as a source of electricity,has grown in popularity over the last few dec-ades because of their clean,noise-free,low-maintenance,and abundant availability of solar energy.There are two types of maximum power point track-ing(MPPT)techniques:classical and evolutionary algorithm-based techniques.Precise and less complex perturb and observe(P&O)and incremental conduc-tance(INC)approaches are extensively employed among classical techniques.This study used afield-programmable gate array(FPGA)-based hardware arrange-ment for a grid-connected photovoltaic(PV)system.The PV panels,MPPT con-trollers,and battery management systems are all components of the proposed system.In the developed hardware prototype,various modes of operation of the grid-connected PV system were examined using P&O and incremental con-ductance MPPT approaches.
文摘This paper presents the results of research on the application of inverter in the grid connected solar photovoltaics (PV) system. The main content of the article is to control the three-phase grid connected inverter to meet the requirement of controlling the reactive power to zero at a node of the distribution network while maximizing the active power transmitted to the grid. The control circuits are synthesized on the dq coordinate system and verified on the simulation model by Matlab/Simulink. Both simulation and experimental prototype on 5 kW inverter, being connected to low voltage grid, have been built to show the good results and the practical readiness for implementation.
文摘In order to fully comprehend the developing status of wind power and photovoltaic (PV) power generation, a special investigation on the integration of wind power and PV power was launched by the agencies of the State Electricity Regulatory Commission (SERC) throughout China during July-October 2010. This report is completed based on the investigation along with routine supervisory and management programs. There are totally 573 wind power projects and 94 PV power projects involved. Existing problems in these projects are pointed out and proposals for regulation are put forward.
文摘In this paper power electronics used in PV power generation systems have been reviewed and modelled. PV systems need converters for maximum power point tracking, power conditioning, voltage step-up/down as necessary, and for storage charge-controlling. Inverters are needed for AC loads and for utility grid interfacing. The four basic DC-DC converters commonly used with PV systems have been reviewed and modelled. Different DC-AC inverter types and operational architectures have also been reviewed with the two-stage DC-AC inverter, with the point of common coupling (PCC) at the inverter input, suggested as the most cost-effective and efficient architecture for PV-based communal grids. This is because only one inverter is used for the entire system as opposed to an inverter for every module string, resulting in higher efficiencies, low cost, and low harmonic distortions when compared to systems with PCC at AC terminal. The aim of power conversion/inversion is to extract maximum power possible from the PV system and where necessary, to invert it at close to 100% as possible. Highlight: 1) DC-DC converters are necessary for power conditioning in PV systems;2) DC-AC inverters are necessary for AC loads and for utility grid interfacing;3) DC-AC inverters are also used to control the PV systems when grid connected;4) Best inverter configuration cost-effectively and efficiently allows easy system modifications.