There is a growing need to explore the potential of coal-fired power plants(CFPPs)to enhance the utilization rate of wind power(wind)and photovoltaic power(PV)in the green energy field.This study developed a load regu...There is a growing need to explore the potential of coal-fired power plants(CFPPs)to enhance the utilization rate of wind power(wind)and photovoltaic power(PV)in the green energy field.This study developed a load regulation model for a multi-power generation system comprising wind,PV,and coal energy storage using realworld data.The power supply process was divided into eight fundamental load regulation scenarios,elucidating the influence of each scenario on load regulation.Within the framework of the multi-power generation system with the wind(50 MW)and PV(50 MW)alongside a CFPP(330 MW),a lithium-iron phosphate energy storage system(LIPBESS)was integrated to improve the system’s load regulation flexibility.The energy storage operation strategy was formulated based on the charging and discharging priority of the LIPBESS for each basic scenario and the charging and discharging load calculation method of LIPBESS auxiliary regulation.Through optimization using the particle swarm algorithm,the optimal capacity of LIPBESS was determined to be within the 5.24-4.88 MWh range.From an economic perspective,the LIPBESS operating with CFPP as the regulating power source was 49.1% lower in capacity compared to the renewable energy-based storage mode.展开更多
For a standalone PV (photovoltaic) power generation system, the author previously proposed a new MPPT (maximum power point tracking) control method in which the I-V characteristics are scanned with a detection int...For a standalone PV (photovoltaic) power generation system, the author previously proposed a new MPPT (maximum power point tracking) control method in which the I-V characteristics are scanned with a detection interval control that operates at specified intervals and monitors the maximum power point. The author has obtained satisfactory results using this new MPPT control method. This paper investigates the application of the new MPPT control method for a PCS (power conditioning system) in a grid-connected type PV power generation system. The experimental results clearly demonstrate that the developed PCS offers outstanding effectiveness in tracking the maximum power point in partially shaded environments.展开更多
As wind and photovoltaic energy become more prevalent,the optimization of power systems is becoming increasingly crucial.The current state of research in renewable generation and power forecasting technology,such as w...As wind and photovoltaic energy become more prevalent,the optimization of power systems is becoming increasingly crucial.The current state of research in renewable generation and power forecasting technology,such as wind and photovoltaic power(PV),is described in this paper,with a focus on the ensemble sequential LSTMs approach with optimized hidden-layers topology for short-term multivariable wind power forecasting.The methods for forecasting wind power and PV production.The physical model,statistical learningmethod,andmachine learning approaches based on historical data are all evaluated for the forecasting of wind power and PV production.Moreover,the experiments demonstrated that cloud map identification has a significant impact on PV generation.With a focus on the impact of photovoltaic and wind power generation systems on power grid operation and its causes,this paper summarizes the classification of wind power and PV generation systems,as well as the benefits and drawbacks of PV systems and wind power forecasting methods based on various typologies and analysis methods.展开更多
Because of system constraints caused by the external environment and grid faults,the conventional maximum power point tracking(MPPT)and inverter control methods of a PV power generation system cannot achieve optimal p...Because of system constraints caused by the external environment and grid faults,the conventional maximum power point tracking(MPPT)and inverter control methods of a PV power generation system cannot achieve optimal power output.They can also lead to misjudgments and poor dynamic performance.To address these issues,this paper proposes a new MPPT method of PV modules based on model predictive control(MPC)and a finite control set model predictive current control(FCS-MPCC)of an inverter.Using the identification model of PV arrays,the module-based MPC controller is designed,and maximum output power is achieved by coordinating the optimal combination of spectral wavelength and module temperature.An FCS-MPCC algorithm is then designed to predict the inverter current under different voltage vectors,the optimal voltage vector is selected according to the optimal value function,and the corresponding optimal switching state is applied to power semiconductor devices of the inverter.The MPPT performance of the MPC controller and the responses of the inverter under different constraints are verified,and the steady-state and dynamic control effects of the inverter using FCS-MPCC are compared with the traditional feedforward decoupling PI control in Matlab/Simulink.The results show that MPC has better tracking performance under constraints,and the system has faster and more accurate dynamic response and flexibility than conventional PI control.展开更多
The degree of accuracy in predicting the photovoltaic power generation plays an important role in appropriate allocations and economic operations of the power plants based on the generating capacity data gathered from...The degree of accuracy in predicting the photovoltaic power generation plays an important role in appropriate allocations and economic operations of the power plants based on the generating capacity data gathered from the geographically separated photovoltaic plants through network. In this paper, a forecasting model is designed with an optimization algorithm which is developed with the combination of PSO (Particle Swarm Optimization) and BP (Back Propagation) neural network. The proposed model is further validated and the experiment results show that the predication model assures the prediction accuracy regardless the day type transitions and other relevant factors, in the proposed model, the prediction error rate is worth less than 20% in all different climatic conditions and most of the prediction error accuracy is less than 10% in sunny day, and whose precision satisfies the management requirements of the power grid companies, reflecting the significance of the proposed model in engineering applications.展开更多
In recent years, environmental problems are becoming serious and renewable energy has attracted attention as their solutions. However, the electricity generation using the renewable energy has a demerit that the outpu...In recent years, environmental problems are becoming serious and renewable energy has attracted attention as their solutions. However, the electricity generation using the renewable energy has a demerit that the output becomes unstable because of intermittent characteristics, such as variations of wind speed or solar radiation intensity. Frequency fluctuations due to the installation of large scale wind farm (WF) and photovoltaics (PV) into the power system is a major concern. In order to solve the problem, this paper proposes two control methods using High Voltage Direct Current (HVDC) interconnection line to suppress the frequency fluctuations due to large scale of WF and PV. Comparative analysis between these two control methods is presented in this paper. One proposed method is a frequency control using a notch filter, and the other is using a deadband. Validity of the proposed methods is verified through simulation analyses, which is performed on a multi-machine power system model.展开更多
Electrical energy consumption is growing and is necessary to improve the technologies related to energy production. We have carried out a pilot study about environmental impacts during the manufacturing process of PV ...Electrical energy consumption is growing and is necessary to improve the technologies related to energy production. We have carried out a pilot study about environmental impacts during the manufacturing process of PV (photovoltaic) modules and compared between the energy requirement for the production of PV cells and modules and generation throughout the life time of the finished good that is PV module. It was taken into account the generation of environmental aspects and impacts in the manufacture of monocrystalline silicon PV modules (consisting of three components: silicon cell, fiat tempered glass and aluminum frame), and an analysis of a grid-connected PV system using an energetic alternative in residences was considered. Results show that, this kind of renewable energy is really clean and can be considered as a way to change the energy technology.展开更多
This paper describes the research on a largescale dispatchable grid-connected photovoltaic(PV)system for supplying power to the grid for dispatch instead of supplying the electricity to a local load.In order to maximi...This paper describes the research on a largescale dispatchable grid-connected photovoltaic(PV)system for supplying power to the grid for dispatch instead of supplying the electricity to a local load.In order to maximise the value of the solar energy,a hybrid electricity storage consisting of batteries and supercapacitors is used with the PV system.This paper proposes a control strategy focusing on theDCpower at theDClink rather than at the grid-connected inverter.Two typical sets of real data,collected from existing sites,are used to demonstrate the practicality of the system.Finally,the simulation results are used to demonstrate the good performance and feasibility of the proposed system together with the proposed control strategy.展开更多
Herein,a novel wind power grid-connection system based on inductive filtering is proposed to improve grid-connection compatibility,and is implemented in a 50-MW real system.First,the topology and wiring configuration ...Herein,a novel wind power grid-connection system based on inductive filtering is proposed to improve grid-connection compatibility,and is implemented in a 50-MW real system.First,the topology and wiring configuration of the proposed system are discussed.Thereafter,an equivalent circuit and mathematical model are established to reveal the filtering characteristics and resonance damping mechanism of the proposed system.Finally,a 50-MW wind farm-based experimental study,which is conducted to validate the effectiveness and availability of the system is discussed.The experimental results show that the main harmonics,power factor,voltage fluctuation,and flicker satisfy national standards.展开更多
基金supported by the Natural Science Foundation of China(Grant Nos.52076079,52206010)Natural Science Foundation of Hebei Province,China(Grant No.E2020502013)the Fundamental Research Funds for the Central Universities(2021MS076,2021MS079).
文摘There is a growing need to explore the potential of coal-fired power plants(CFPPs)to enhance the utilization rate of wind power(wind)and photovoltaic power(PV)in the green energy field.This study developed a load regulation model for a multi-power generation system comprising wind,PV,and coal energy storage using realworld data.The power supply process was divided into eight fundamental load regulation scenarios,elucidating the influence of each scenario on load regulation.Within the framework of the multi-power generation system with the wind(50 MW)and PV(50 MW)alongside a CFPP(330 MW),a lithium-iron phosphate energy storage system(LIPBESS)was integrated to improve the system’s load regulation flexibility.The energy storage operation strategy was formulated based on the charging and discharging priority of the LIPBESS for each basic scenario and the charging and discharging load calculation method of LIPBESS auxiliary regulation.Through optimization using the particle swarm algorithm,the optimal capacity of LIPBESS was determined to be within the 5.24-4.88 MWh range.From an economic perspective,the LIPBESS operating with CFPP as the regulating power source was 49.1% lower in capacity compared to the renewable energy-based storage mode.
文摘For a standalone PV (photovoltaic) power generation system, the author previously proposed a new MPPT (maximum power point tracking) control method in which the I-V characteristics are scanned with a detection interval control that operates at specified intervals and monitors the maximum power point. The author has obtained satisfactory results using this new MPPT control method. This paper investigates the application of the new MPPT control method for a PCS (power conditioning system) in a grid-connected type PV power generation system. The experimental results clearly demonstrate that the developed PCS offers outstanding effectiveness in tracking the maximum power point in partially shaded environments.
基金This project is supported by the National Natural Science Foundation of China(NSFC)(Nos.61806087,61902158).
文摘As wind and photovoltaic energy become more prevalent,the optimization of power systems is becoming increasingly crucial.The current state of research in renewable generation and power forecasting technology,such as wind and photovoltaic power(PV),is described in this paper,with a focus on the ensemble sequential LSTMs approach with optimized hidden-layers topology for short-term multivariable wind power forecasting.The methods for forecasting wind power and PV production.The physical model,statistical learningmethod,andmachine learning approaches based on historical data are all evaluated for the forecasting of wind power and PV production.Moreover,the experiments demonstrated that cloud map identification has a significant impact on PV generation.With a focus on the impact of photovoltaic and wind power generation systems on power grid operation and its causes,this paper summarizes the classification of wind power and PV generation systems,as well as the benefits and drawbacks of PV systems and wind power forecasting methods based on various typologies and analysis methods.
基金supported by National Science Foundation of China(61563032,61963025)Project supported by Gansu Basic Research Innovation Group(18JR3RA133)+1 种基金Industrial Support and Guidance Project for Higher Education Institutions of Gansu Province(2019C-05)Open Fund Project of Key Laboratory of Industrial Process Advanced Control of Gansu Province(2019KFJJ02).
文摘Because of system constraints caused by the external environment and grid faults,the conventional maximum power point tracking(MPPT)and inverter control methods of a PV power generation system cannot achieve optimal power output.They can also lead to misjudgments and poor dynamic performance.To address these issues,this paper proposes a new MPPT method of PV modules based on model predictive control(MPC)and a finite control set model predictive current control(FCS-MPCC)of an inverter.Using the identification model of PV arrays,the module-based MPC controller is designed,and maximum output power is achieved by coordinating the optimal combination of spectral wavelength and module temperature.An FCS-MPCC algorithm is then designed to predict the inverter current under different voltage vectors,the optimal voltage vector is selected according to the optimal value function,and the corresponding optimal switching state is applied to power semiconductor devices of the inverter.The MPPT performance of the MPC controller and the responses of the inverter under different constraints are verified,and the steady-state and dynamic control effects of the inverter using FCS-MPCC are compared with the traditional feedforward decoupling PI control in Matlab/Simulink.The results show that MPC has better tracking performance under constraints,and the system has faster and more accurate dynamic response and flexibility than conventional PI control.
基金the National Natural Science Foundation of China under Grant No.61261016,Wuhan Science and technology project for the Solar energy intelligent management system development and application demonstration
文摘The degree of accuracy in predicting the photovoltaic power generation plays an important role in appropriate allocations and economic operations of the power plants based on the generating capacity data gathered from the geographically separated photovoltaic plants through network. In this paper, a forecasting model is designed with an optimization algorithm which is developed with the combination of PSO (Particle Swarm Optimization) and BP (Back Propagation) neural network. The proposed model is further validated and the experiment results show that the predication model assures the prediction accuracy regardless the day type transitions and other relevant factors, in the proposed model, the prediction error rate is worth less than 20% in all different climatic conditions and most of the prediction error accuracy is less than 10% in sunny day, and whose precision satisfies the management requirements of the power grid companies, reflecting the significance of the proposed model in engineering applications.
文摘In recent years, environmental problems are becoming serious and renewable energy has attracted attention as their solutions. However, the electricity generation using the renewable energy has a demerit that the output becomes unstable because of intermittent characteristics, such as variations of wind speed or solar radiation intensity. Frequency fluctuations due to the installation of large scale wind farm (WF) and photovoltaics (PV) into the power system is a major concern. In order to solve the problem, this paper proposes two control methods using High Voltage Direct Current (HVDC) interconnection line to suppress the frequency fluctuations due to large scale of WF and PV. Comparative analysis between these two control methods is presented in this paper. One proposed method is a frequency control using a notch filter, and the other is using a deadband. Validity of the proposed methods is verified through simulation analyses, which is performed on a multi-machine power system model.
文摘Electrical energy consumption is growing and is necessary to improve the technologies related to energy production. We have carried out a pilot study about environmental impacts during the manufacturing process of PV (photovoltaic) modules and compared between the energy requirement for the production of PV cells and modules and generation throughout the life time of the finished good that is PV module. It was taken into account the generation of environmental aspects and impacts in the manufacture of monocrystalline silicon PV modules (consisting of three components: silicon cell, fiat tempered glass and aluminum frame), and an analysis of a grid-connected PV system using an energetic alternative in residences was considered. Results show that, this kind of renewable energy is really clean and can be considered as a way to change the energy technology.
基金This work was supported by National High Technology Research and Development Program,“863 key technologies and development on large-scale grid-connected PV plants”(No.2011AA05A301).
文摘This paper describes the research on a largescale dispatchable grid-connected photovoltaic(PV)system for supplying power to the grid for dispatch instead of supplying the electricity to a local load.In order to maximise the value of the solar energy,a hybrid electricity storage consisting of batteries and supercapacitors is used with the PV system.This paper proposes a control strategy focusing on theDCpower at theDClink rather than at the grid-connected inverter.Two typical sets of real data,collected from existing sites,are used to demonstrate the practicality of the system.Finally,the simulation results are used to demonstrate the good performance and feasibility of the proposed system together with the proposed control strategy.
基金Supported by the International Science and Technology Cooperation Program of China(2018YFE0125300)the Fundamental Research Funds for the Central Universities(531118010661)+3 种基金the National Natural Science Foundation of China(52061130217)the Innovative Construction Program of Hunan Province of China(2019RS1016)the 111 Project of China(B17016)the Excellent Innovation Youth Program of Changsha of China(KQ2009037).
文摘Herein,a novel wind power grid-connection system based on inductive filtering is proposed to improve grid-connection compatibility,and is implemented in a 50-MW real system.First,the topology and wiring configuration of the proposed system are discussed.Thereafter,an equivalent circuit and mathematical model are established to reveal the filtering characteristics and resonance damping mechanism of the proposed system.Finally,a 50-MW wind farm-based experimental study,which is conducted to validate the effectiveness and availability of the system is discussed.The experimental results show that the main harmonics,power factor,voltage fluctuation,and flicker satisfy national standards.