Partial shading conditions(PSCs)caused by uneven illumination become one of the most common problems in photovoltaic(PV)systems,which can make the PV power-voltage(P-V)characteristics curve show multi-peaks.Traditiona...Partial shading conditions(PSCs)caused by uneven illumination become one of the most common problems in photovoltaic(PV)systems,which can make the PV power-voltage(P-V)characteristics curve show multi-peaks.Traditional maximum power point tracking(MPPT)methods have shortcomings in tracking to the global maximum power point(GMPP),resulting in a dramatic decrease in output power.In order to solve the above problems,intelligent algorithms are used in MPPT.However,the existing intelligent algorithms have some disadvantages,such as slow convergence speed and large search oscillation.Therefore,an improved whale algorithm(IWOA)combined with the P&O(IWOA-P&O)is proposed for the MPPT of PV power generation in this paper.Firstly,IWOA is used to track the range interval of the GMPP,and then P&O is used to accurately find the MPP in that interval.Compared with other algorithms,simulation results show that this method has an average tracking efficiency of 99.79%and an average tracking time of 0.16 s when tracking GMPP.Finally,experimental verification is conducted,and the results show that the proposed algorithm has better MPPT performance compared to popular particle swarm optimization(PSO)and PSO-P&O algorithms.展开更多
In the context of rising global energy demand and increasing awareness of environmental protection,photovoltaic power generation,as a clean and renewable form of energy,has become increasingly important and has receiv...In the context of rising global energy demand and increasing awareness of environmental protection,photovoltaic power generation,as a clean and renewable form of energy,has become increasingly important and has received widespread attention and application worldwide.However,during the construction and operation of mountain photovoltaic power generation projects,water and soil erosion has become a major challenge,which not only restricts the sustainable development process of the project,but also has a significant negative impact on the local ecological environment.This article deeply analyzes the multiple causes,extensive impacts and effective prevention and control strategies of water and soil erosion in mountain photovoltaic power generation projects.The results show that rainfall intensity,terrain slope,soil type and vegetation coverage are the four key factors leading to soil erosion.Soil erosion not only causes a sharp decline in soil fertility,but also aggravates the problem of sediment deposition in rivers and reservoirs,and poses a direct threat to the stability and operating efficiency of photovoltaic equipment.In order to deal with the above problems,this paper innovatively puts forward a series of soil and water conservation technologies,covering multiple dimensions such as engineering measures,plant measures,farming measures and temporary measures,and deeply discusses the application models and management strategies of these measures in key stages such as planning and design,construction,operation and maintenance.Through specific case analysis,the successful practical experience of soil and water conservation is refined and summarized,and the key role of community cooperation,technical support and modern monitoring technology in preventing and controlling soil and water erosion is further emphasized.This article aims to achieve a win-win situation of ecological environment protection and energy development and utilization through scientific planning and effective governance,and contribute to the construction of a green,low-carbon,and sustainable energy system.展开更多
With the rapid development of technology and economy,the demand for energy in society is increasing.People are gradually realizing that fossil energy is limited,and the development of new energy may also face situatio...With the rapid development of technology and economy,the demand for energy in society is increasing.People are gradually realizing that fossil energy is limited,and the development of new energy may also face situations where it cannot meet social needs.The problem of resource shortage is gradually exposed to people.Therefore,the development of usable new energy has become an urgent problem for society to solve.At present,electricity is the most widely used energy source worldwide and photovoltaic power generation technology is gradually becoming well-known.As an emerging industry,the development of photovoltaic power generation still requires continuous promotion by national and social policies to be extended to various industries and ensure the stability of its energy supply.This article mainly outlines the principles,characteristics,and advantages of photovoltaic power generation,and briefly explains the current technology types and application aspects of photovoltaic power generation to contribute to its promotion and better serve all aspects of social life with new energy.展开更多
With the introduction of the“dual carbon goals,”there has been a robust development of distributed photovoltaic power generation projects in the promotion of their construction.As part of this initiative,a comprehen...With the introduction of the“dual carbon goals,”there has been a robust development of distributed photovoltaic power generation projects in the promotion of their construction.As part of this initiative,a comprehensive and systematic analysis has been conducted to study the overall benefits of photovoltaic power generation projects.The evaluation process encompasses economic,technical,environmental,and social aspects,providing corresponding analysis methods and data references.Furthermore,targeted countermeasures and suggestions are proposed,signifying the research’s importance for the construction and development of subsequent distributed photovoltaic power generation projects.展开更多
In recent years,distributed photovoltaics(DPV)has ushered in a good development situation due to the advantages of pollution-free power generation,full utilization of the ground or roof of the installation site,and ba...In recent years,distributed photovoltaics(DPV)has ushered in a good development situation due to the advantages of pollution-free power generation,full utilization of the ground or roof of the installation site,and balancing a large number of loads nearby.However,under the background of a large-scale DPV grid-connected to the county distribution network,an effective analysis method is needed to analyze its impact on the voltage of the distribution network in the early development stage of DPV.Therefore,a DPV orderly grid-connected method based on photovoltaics grid-connected order degree(PGOD)is proposed.This method aims to orderly analyze the change of voltage in the distribution network when large-scale DPV will be connected.Firstly,based on the voltagemagnitude sensitivity(VMS)index of the photovoltaics permitted grid-connected node and the acceptance of grid-connected node(AoGCN)index of other nodes in the network,thePGODindex is constructed to determine the photovoltaics permitted grid-connected node of the current photovoltaics grid-connected state network.Secondly,a photovoltaics orderly grid-connected model with a continuous updating state is constructed to obtain an orderly DPV grid-connected order.The simulation results illustrate that the photovoltaics grid-connected order determined by this method based on PGOD can effectively analyze the voltage impact of large-scale photovoltaics grid-connected,and explore the internal factors and characteristics of the impact.展开更多
Increasing the efficiency and proportion of photovoltaic power generation installations is one of the best ways to reduce both CO_(2) emissions and reliance on fossil-fuel-based power supplies.Solar energy is a clean ...Increasing the efficiency and proportion of photovoltaic power generation installations is one of the best ways to reduce both CO_(2) emissions and reliance on fossil-fuel-based power supplies.Solar energy is a clean and renewable power source with excellent potential for further development and utilization.In 2021,the global solar installed capacity was about 749.7 GW.Establishing correlations between solar power generation,standard coal equivalent,carbon sinks,and green sinks is crucial.However,there have been few reports about correlations between the efficiency of tracking solar photovoltaic panels and the above parameters.This paper calculates the increased power generation achievable through the use of tracking photovoltaic panels compared with traditional fixed panels and establishes relationships between power generation,standard coal equivalent,and carbon sinks,providing a basis for attempts to reduce reliance on carbon-based fuels.The calculations show that power generation efficiency can be improved by about 26.12%by enabling solar panels to track the sun's rays during the day and from season to season.Through the use of this improved technology,global CO_(2) emissions can be reduced by 183.63 Mt,and the standard coal equivalent can be reduced by 73.67 Mt yearly.Carbon capture is worth approximately EUR 15.48 billion,and carbon accounting analysis plays a vital role in carbon trading.展开更多
To improve the operation efficiency of the photovoltaic power station complementary power generation system,an optimal allocation model of the photovoltaic power station complementary power generation capacity based o...To improve the operation efficiency of the photovoltaic power station complementary power generation system,an optimal allocation model of the photovoltaic power station complementary power generation capacity based on PSO-BP is proposed.Particle Swarm Optimization and BP neural network are used to establish the forecasting model,the Markov chain model is used to correct the forecasting error of the model,and the weighted fitting method is used to forecast the annual load curve,to complete the optimal allocation of complementary generating capacity of photovoltaic power stations.The experimental results show that thismethod reduces the average loss of photovoltaic output prediction,improves the prediction accuracy and recall rate of photovoltaic output prediction,and ensures the effective operation of the power system.展开更多
The power output state of photovoltaic power generation is affected by the earth’s rotation and solar radiation intensity.On the one hand,its output sequence has daily periodicity;on the other hand,it has discrete ra...The power output state of photovoltaic power generation is affected by the earth’s rotation and solar radiation intensity.On the one hand,its output sequence has daily periodicity;on the other hand,it has discrete randomness.With the development of new energy economy,the proportion of photovoltaic energy increased accordingly.In order to solve the problem of improving the energy conversion efficiency in the grid-connected optical network and ensure the stability of photovoltaic power generation,this paper proposes the short-termprediction of photovoltaic power generation based on the improvedmulti-scale permutation entropy,localmean decomposition and singular spectrum analysis algorithm.Firstly,taking the power output per unit day as the research object,the multi-scale permutation entropy is used to calculate the eigenvectors under different weather conditions,and the cluster analysis is used to reconstruct the historical power generation under typical weather rainy and snowy,sunny,abrupt,cloudy.Then,local mean decomposition(LMD)is used to decompose the output sequence,so as to extract more detail components of the reconstructed output sequence.Finally,combined with the weather forecast of the Meteorological Bureau for the next day,the singular spectrumanalysis algorithm is used to predict the photovoltaic classification of the recombination decomposition sequence under typical weather.Through the verification and analysis of examples,the hierarchical prediction experiments of reconstructed and non-reconstructed output sequences are compared.The results show that the algorithm proposed in this paper is effective in realizing the short-term prediction of photovoltaic generator,and has the advantages of simple structure and high prediction accuracy.展开更多
Due to the unpredictable output characteristics of distributed photovoltaics,their integration into the grid can lead to voltage fluctuations within the regional power grid.Therefore,the development of spatial-tempora...Due to the unpredictable output characteristics of distributed photovoltaics,their integration into the grid can lead to voltage fluctuations within the regional power grid.Therefore,the development of spatial-temporal coordination and optimization control methods for distributed photovoltaics and energy storage systems is of utmost importance in various scenarios.This paper approaches the issue from the perspective of spatiotemporal forecasting of distributed photovoltaic(PV)generation and proposes a Temporal Convolutional-Long Short-Term Memory prediction model that combines Temporal Convolutional Networks(TCN)and Long Short-Term Memory(LSTM).To begin with,an analysis of the spatiotemporal distribution patterns of PV generation is conducted,and outlier data is handled using the 3σ rule.Subsequently,a novel approach that combines temporal convolution and LSTM networks is introduced,with TCN extracting spatial features and LSTM capturing temporal features.Finally,a real spatiotemporal dataset from Gansu,China,is established to compare the performance of the proposed network against other models.The results demonstrate that the model presented in this paper exhibits the highest predictive accuracy,with a single-step Mean Absolute Error(MAE)of 1.782 and an average Root Mean Square Error(RMSE)of 3.72 for multi-step predictions.展开更多
The networking of microgrids has received significant attention in the form of a smart grid.In this paper,a set of smart railway stations,which is assumed as microgrids,is connected together.It has been tried to manag...The networking of microgrids has received significant attention in the form of a smart grid.In this paper,a set of smart railway stations,which is assumed as microgrids,is connected together.It has been tried to manage the energy exchanged between the networked microgrids to reduce received energy from the utility grid.Also,the operational costs of stations under various conditions decrease by applying the proposed method.The smart railway stations are studied in the presence of photovoltaic(PV)units,energy storage systems(ESSs),and regenerative braking strategies.Studying regenerative braking is one of the essential contributions.Moreover,the stochastic behaviors of the ESS’s initial state of energy and the uncertainty of PV power generation are taken into account through a scenario-based method.The networked microgrid scheme of railway stations(based on coordinated operation and scheduling)and independent operation of railway stations are studied.The proposed method is applied to realistic case studies,including three stations of Line 3 of Tehran Urban and Suburban Railway Operation Company(TUSROC).The rolling stock is simulated in the MATLAB environment.Thus,the coordinated operation of networked microgrids and independent operation of railway stations are optimized in the GAMS environment utilizing mixed-integer linear programming(MILP).展开更多
This study aims to develop an economic evaluation method for installing photovoltaic power generation in ordinary homes using GIS (Geographic Information Systems). The conclusions can be summarized in the following th...This study aims to develop an economic evaluation method for installing photovoltaic power generation in ordinary homes using GIS (Geographic Information Systems). The conclusions can be summarized in the following three points: 1) This method determines the profit and loss and payback period in order to evaluate the installation of photovoltaic power generation, taking into account the price of equipment, solar battery module conversion efficiency, subsidy, electricity purchase price, service life and rate for selling electricity. 2) The proposed evaluation method was applied to Kanagawa Prefecture in Japan, providing plural scenarios. Using a solar battery module conversion efficiency of more than 15%, it is possible to make the payback period shorter than the 20-year service life and anticipate a profit in almost the whole area. 3) The areas suitable for photovoltaic power generation are Kawasaki City and Ninomiya-machi. It is necessary to adopt measures to increase the subsidy and install photovoltaic power generating systems in specific places in areas where subsidies are not provided in enough amounts.展开更多
Some energy experts believe that solar energy photovoltaic power generation is hopeful to be applied in a large amount and possesses a certain proportion in the structure of energy in the future. In this paper, based ...Some energy experts believe that solar energy photovoltaic power generation is hopeful to be applied in a large amount and possesses a certain proportion in the structure of energy in the future. In this paper, based on the forecasting of electric load demand and energy structure of power generation in the middle of 21 century, the pictures of VLS-PV power genera- tion is composed, the operation characteristic of VLS-PV power generation and the adaptability of electric power grid for it is analyzed, the ways for transmitting large amount of PV power and the economic and technical bottlenecks for applying VLS-PV power generation are discussed. Finally, the steps and suggestions for developing VLS-PV power generation and its electric power system in China are proposed.展开更多
This paper introduces a set of electrical energy-saving system for commercial office buildings,aiming at making better use of solar energy and photovoltaic power generation.Solar energy is a renewable energy source,wh...This paper introduces a set of electrical energy-saving system for commercial office buildings,aiming at making better use of solar energy and photovoltaic power generation.Solar energy is a renewable energy source,which is inexhaustible clean energy and has great commercial application value.Based on this fact,we plan to design a unique and novel solar shutter in combination with the daily observation and the shape of solar panels.The shutter blades are equipped with an automatic light tracking system,and the angle of the blades can be adjusted in time through photoresistor induction,that is,as much solar energy as possible can be converted into electric energy for load use,and at the same time,comfortable light can be provided for the house.In essence,the system is a small photovoltaic power generation system,which runs all day with high-efficiency based on automatic sun tracking.Among them,the basic operation route includes:solar position detection,computer data processing,photovoltaic and electric volt energy conversion,circuit connection,etc.From the current debugging results,the shutter has the characteristics of humanization,high efficiency,cleanliness and so on.Through this energy-saving system,we hope to maximize the use of solar energy in the premise of low cost,so as to achieve the purpose of energy saving.展开更多
This paper proposed a new function of photovoltaic thermal(PVT)module to produce nocturnal cool water not just only generating electrical power and hot water during daytime.Experimental tests were carried out under Ch...This paper proposed a new function of photovoltaic thermal(PVT)module to produce nocturnal cool water not just only generating electrical power and hot water during daytime.Experimental tests were carried out under Chiang Mai tropical climate with a 200 Wp monocrystalline PVT module having dimensions of 1.601 m×0.828 m connected with two water tanks each of 60 L taken for hot and cool water storages.The module was facing south with 18o inclination.The electrical load was a 200 W halogen lamp.From experiments,by taking the module as a nocturnal radiative cooling surface,the cool water temperature in the cool storage tank could be reduced 2℃–3℃each night and the temperature could be reduced from 31.5℃to 22.1℃within 4 consecutive days.The cool water at approximately 23℃was also used to cool down the PVT module from noon when the PVT module temperature was rather high,and then the module temperature immediately dropped around 5℃and approximately 10%increase of electrical power could be achieved.A set of mathematical models was also developed to predict the PVT module temperature and the hot water temperature including the cool water temperature in the storage tanks during daytime and nighttime.The simulated results agreed well with the experimental data.展开更多
This paper presents a comprehensive study that includes the sizing and power flow by series and parallel inverters in a distributed generation system(DGs)that integrates the system of hybrid wind photovoltaic with a u...This paper presents a comprehensive study that includes the sizing and power flow by series and parallel inverters in a distributed generation system(DGs)that integrates the system of hybrid wind photovoltaic with a unified power quality conditioner(UPQC).In addition to supplying active power to the utility grid,the system of hybrid wind photovoltaic functions as a UPQC,compensating reactive power and suppressing the harmonic load currents.Additionally,the load is supplied with harmonic-free,balanced and regulated output voltages.Since PVWind-UPQC is established on a dual compensation scheme,the series inverter works like a sinusoidal current source,while the parallel inverter works like a sinusoidal voltage source.Consequently,a smooth alteration from interconnected operating modes to island operating modes and vice versa can be achieved without load voltage transients.Since PV-Wind-UPQC inverters handle the energy generated through the hybrid wind photovoltaic system and the energy demanded through the load,the converters should be sized cautiously.A detailed study of the flow of power via the PV-Wind-UPQC is imperative to gain a complete understanding of the system operation and the proper design of the converters.Thus,curves that allow the sizing of the power converters according to the power flow via the converters are presented and discussed.Simulation results are presented to assess both steady state and dynamic performances of the grid connected hybrid system of PV-Wind-UPQC.This investigation is verified by simulating and analyzing the results with Matlab/Simulink.展开更多
Methods to remove dust deposits by high-speed airflow have significant potential applications,with optimal design of flow velocity being the core technology.In this paper,we discuss the wind speed required for particl...Methods to remove dust deposits by high-speed airflow have significant potential applications,with optimal design of flow velocity being the core technology.In this paper,we discuss the wind speed required for particle removal from photovoltaic(PV)panels by compressed air by analyzing the force exerted on the dust deposited on inclined photovoltaic panels,which also included different electrification mechanisms of dust while it is in contact with the PV panel.The results show that the effect of the particle charging mechanism in the electric field generated by the PV panel is greatly smaller than the effect of the Van der Waals force and gravity,but the effect of the particle charged by the contact electrification mechanism in the electrostatic field is very pronounced.The wind speed required for dust removal from the PV panel increases linearly with the PV panel electric field,so we suggest that the nighttime,when the PV electric field is relatively small,would be more appropriate time for dust removal.The above results are of great scientific importance for accurately grasping the dust distribution law and for achieving scientific removal of dust on PV panels.展开更多
The analysis of the loss of distributed photovoltaic power generation systems involves the interests of energy users,energy-saving service companies,and power grid companies,so it has always been the focus of the indu...The analysis of the loss of distributed photovoltaic power generation systems involves the interests of energy users,energy-saving service companies,and power grid companies,so it has always been the focus of the industry and society in some manner or another.However,the related analysis for an actual case that considers different cooperative corporations’benefits is lacking in the presently available literature.This paper takes the distributed rooftop photovoltaic power generation project in an industrial park as the object,studies the analysis and calculation methods of line loss and transformer loss,analyzes the change of transformer loss under different temperatures and different load rates,and compares the data and trend of electricity consumption and power generation in industrial parks before and after the photovoltaic operation.This paper explores and practices the analysis method of the operating loss of distributed photovoltaic power generation and provides an essential reference for the benefit analysis and investment cost estimation of distributed photovoltaic power generation systems in industrial parks.The analyzed results reveal that the change loss is stable after the photovoltaic is connected,and there is no additional transformer loss.And before and after the photovoltaic system installation,there was no significant change in the total monthly data difference between the total meter and the sub-meter.展开更多
This paper presents a new optimization study of the placement and size of a photovoltaic source(PVS)in a distribution grid,based on annual records of meteorological parameters(irradiance,temperature).Based on the reco...This paper presents a new optimization study of the placement and size of a photovoltaic source(PVS)in a distribution grid,based on annual records of meteorological parameters(irradiance,temperature).Based on the recorded data,the production output as well as the daily average power(24-h vector)of the PVS is extracted over the year.When a power vector is available,it can be used as an input when searching for the optimal size of the PVS.This allows to take into account the constraint of the variation of the power generated by this source considering the variation of the power consumed by the electrical loads during the whole day.A multi-objective fitness function has been considered.The latter minimizes the active losses and maximizes the voltage stability index during the day,while considering the constraints of the system,that is,the security,technical,geographical,and meteorological constraints.This problem was solved using the Non-dominated Sorting Genetic Algorithm NSGA-II optimization technique under MATLAB 2021.It was applied to the distribution network of Ghardaïa of 59 nodes.展开更多
Currently, there are significant investments in the study of distributed generation, including solar energy by the photovoltaic conversion method. Basically, a cell directly converts solar energy to electricity. For t...Currently, there are significant investments in the study of distributed generation, including solar energy by the photovoltaic conversion method. Basically, a cell directly converts solar energy to electricity. For this, static converters are required. However, relevant issues arise in this process: point of maximum efficiency of module generation, strategy of control of the flow of energy to the network. The aim of this work is to monitor the main variables of a photovoltaic system, specifically the voltage and current module and their derivates. The goal is to implement the maximum power tracking technique using Fuzzy logic. In addition, the energy provided by the cell will be employed in an inverter stage that can operate as an active filter, voltage regulator, or generator of reactive and active power. The feasibility of using Fuzzy logic will also be studied. The first stage of this work involves parameterization and simulation of photovoltaic modules. The initial study examines the compatibility of a commercial module and its catalog data with the results of simulation. The simulated I-V characteristics show almost identical results to the catalog data. In sequence, a boost or lift DC-DC converter is employed to emulate variable load for maximum power transfer.展开更多
For a standalone PV (photovoltaic) power generation system, the author previously proposed a new MPPT (maximum power point tracking) control method in which the I-V characteristics are scanned with a detection int...For a standalone PV (photovoltaic) power generation system, the author previously proposed a new MPPT (maximum power point tracking) control method in which the I-V characteristics are scanned with a detection interval control that operates at specified intervals and monitors the maximum power point. The author has obtained satisfactory results using this new MPPT control method. This paper investigates the application of the new MPPT control method for a PCS (power conditioning system) in a grid-connected type PV power generation system. The experimental results clearly demonstrate that the developed PCS offers outstanding effectiveness in tracking the maximum power point in partially shaded environments.展开更多
基金supported in part by the Natural Science Foundation of Jiangsu Province under Grant BK20200969(L.Z.,URL:http://std.jiangsu.gov.cn/)in part by Basic Science(Natural Science)Research Project of Colleges and Universities in Jiangsu Province under Grant 22KJB470025(L.R.,URL:http://jyt.jiangsu.gov.cn/)in part by Social People’s Livelihood Technology Plan General Project of Nantong under Grant MS12021015(L.Q.,URL:http://kjj.nantong.gov.cn/).
文摘Partial shading conditions(PSCs)caused by uneven illumination become one of the most common problems in photovoltaic(PV)systems,which can make the PV power-voltage(P-V)characteristics curve show multi-peaks.Traditional maximum power point tracking(MPPT)methods have shortcomings in tracking to the global maximum power point(GMPP),resulting in a dramatic decrease in output power.In order to solve the above problems,intelligent algorithms are used in MPPT.However,the existing intelligent algorithms have some disadvantages,such as slow convergence speed and large search oscillation.Therefore,an improved whale algorithm(IWOA)combined with the P&O(IWOA-P&O)is proposed for the MPPT of PV power generation in this paper.Firstly,IWOA is used to track the range interval of the GMPP,and then P&O is used to accurately find the MPP in that interval.Compared with other algorithms,simulation results show that this method has an average tracking efficiency of 99.79%and an average tracking time of 0.16 s when tracking GMPP.Finally,experimental verification is conducted,and the results show that the proposed algorithm has better MPPT performance compared to popular particle swarm optimization(PSO)and PSO-P&O algorithms.
文摘In the context of rising global energy demand and increasing awareness of environmental protection,photovoltaic power generation,as a clean and renewable form of energy,has become increasingly important and has received widespread attention and application worldwide.However,during the construction and operation of mountain photovoltaic power generation projects,water and soil erosion has become a major challenge,which not only restricts the sustainable development process of the project,but also has a significant negative impact on the local ecological environment.This article deeply analyzes the multiple causes,extensive impacts and effective prevention and control strategies of water and soil erosion in mountain photovoltaic power generation projects.The results show that rainfall intensity,terrain slope,soil type and vegetation coverage are the four key factors leading to soil erosion.Soil erosion not only causes a sharp decline in soil fertility,but also aggravates the problem of sediment deposition in rivers and reservoirs,and poses a direct threat to the stability and operating efficiency of photovoltaic equipment.In order to deal with the above problems,this paper innovatively puts forward a series of soil and water conservation technologies,covering multiple dimensions such as engineering measures,plant measures,farming measures and temporary measures,and deeply discusses the application models and management strategies of these measures in key stages such as planning and design,construction,operation and maintenance.Through specific case analysis,the successful practical experience of soil and water conservation is refined and summarized,and the key role of community cooperation,technical support and modern monitoring technology in preventing and controlling soil and water erosion is further emphasized.This article aims to achieve a win-win situation of ecological environment protection and energy development and utilization through scientific planning and effective governance,and contribute to the construction of a green,low-carbon,and sustainable energy system.
文摘With the rapid development of technology and economy,the demand for energy in society is increasing.People are gradually realizing that fossil energy is limited,and the development of new energy may also face situations where it cannot meet social needs.The problem of resource shortage is gradually exposed to people.Therefore,the development of usable new energy has become an urgent problem for society to solve.At present,electricity is the most widely used energy source worldwide and photovoltaic power generation technology is gradually becoming well-known.As an emerging industry,the development of photovoltaic power generation still requires continuous promotion by national and social policies to be extended to various industries and ensure the stability of its energy supply.This article mainly outlines the principles,characteristics,and advantages of photovoltaic power generation,and briefly explains the current technology types and application aspects of photovoltaic power generation to contribute to its promotion and better serve all aspects of social life with new energy.
文摘With the introduction of the“dual carbon goals,”there has been a robust development of distributed photovoltaic power generation projects in the promotion of their construction.As part of this initiative,a comprehensive and systematic analysis has been conducted to study the overall benefits of photovoltaic power generation projects.The evaluation process encompasses economic,technical,environmental,and social aspects,providing corresponding analysis methods and data references.Furthermore,targeted countermeasures and suggestions are proposed,signifying the research’s importance for the construction and development of subsequent distributed photovoltaic power generation projects.
基金supported by North China Electric Power Research Institute’s Self-Funded Science and Technology Project“Research on Distributed Energy Storage Optimal Configuration and Operation Control Technology for Photovoltaic Promotion in the Entire County”(KJZ2022049).
文摘In recent years,distributed photovoltaics(DPV)has ushered in a good development situation due to the advantages of pollution-free power generation,full utilization of the ground or roof of the installation site,and balancing a large number of loads nearby.However,under the background of a large-scale DPV grid-connected to the county distribution network,an effective analysis method is needed to analyze its impact on the voltage of the distribution network in the early development stage of DPV.Therefore,a DPV orderly grid-connected method based on photovoltaics grid-connected order degree(PGOD)is proposed.This method aims to orderly analyze the change of voltage in the distribution network when large-scale DPV will be connected.Firstly,based on the voltagemagnitude sensitivity(VMS)index of the photovoltaics permitted grid-connected node and the acceptance of grid-connected node(AoGCN)index of other nodes in the network,thePGODindex is constructed to determine the photovoltaics permitted grid-connected node of the current photovoltaics grid-connected state network.Secondly,a photovoltaics orderly grid-connected model with a continuous updating state is constructed to obtain an orderly DPV grid-connected order.The simulation results illustrate that the photovoltaics grid-connected order determined by this method based on PGOD can effectively analyze the voltage impact of large-scale photovoltaics grid-connected,and explore the internal factors and characteristics of the impact.
文摘Increasing the efficiency and proportion of photovoltaic power generation installations is one of the best ways to reduce both CO_(2) emissions and reliance on fossil-fuel-based power supplies.Solar energy is a clean and renewable power source with excellent potential for further development and utilization.In 2021,the global solar installed capacity was about 749.7 GW.Establishing correlations between solar power generation,standard coal equivalent,carbon sinks,and green sinks is crucial.However,there have been few reports about correlations between the efficiency of tracking solar photovoltaic panels and the above parameters.This paper calculates the increased power generation achievable through the use of tracking photovoltaic panels compared with traditional fixed panels and establishes relationships between power generation,standard coal equivalent,and carbon sinks,providing a basis for attempts to reduce reliance on carbon-based fuels.The calculations show that power generation efficiency can be improved by about 26.12%by enabling solar panels to track the sun's rays during the day and from season to season.Through the use of this improved technology,global CO_(2) emissions can be reduced by 183.63 Mt,and the standard coal equivalent can be reduced by 73.67 Mt yearly.Carbon capture is worth approximately EUR 15.48 billion,and carbon accounting analysis plays a vital role in carbon trading.
文摘To improve the operation efficiency of the photovoltaic power station complementary power generation system,an optimal allocation model of the photovoltaic power station complementary power generation capacity based on PSO-BP is proposed.Particle Swarm Optimization and BP neural network are used to establish the forecasting model,the Markov chain model is used to correct the forecasting error of the model,and the weighted fitting method is used to forecast the annual load curve,to complete the optimal allocation of complementary generating capacity of photovoltaic power stations.The experimental results show that thismethod reduces the average loss of photovoltaic output prediction,improves the prediction accuracy and recall rate of photovoltaic output prediction,and ensures the effective operation of the power system.
文摘The power output state of photovoltaic power generation is affected by the earth’s rotation and solar radiation intensity.On the one hand,its output sequence has daily periodicity;on the other hand,it has discrete randomness.With the development of new energy economy,the proportion of photovoltaic energy increased accordingly.In order to solve the problem of improving the energy conversion efficiency in the grid-connected optical network and ensure the stability of photovoltaic power generation,this paper proposes the short-termprediction of photovoltaic power generation based on the improvedmulti-scale permutation entropy,localmean decomposition and singular spectrum analysis algorithm.Firstly,taking the power output per unit day as the research object,the multi-scale permutation entropy is used to calculate the eigenvectors under different weather conditions,and the cluster analysis is used to reconstruct the historical power generation under typical weather rainy and snowy,sunny,abrupt,cloudy.Then,local mean decomposition(LMD)is used to decompose the output sequence,so as to extract more detail components of the reconstructed output sequence.Finally,combined with the weather forecast of the Meteorological Bureau for the next day,the singular spectrumanalysis algorithm is used to predict the photovoltaic classification of the recombination decomposition sequence under typical weather.Through the verification and analysis of examples,the hierarchical prediction experiments of reconstructed and non-reconstructed output sequences are compared.The results show that the algorithm proposed in this paper is effective in realizing the short-term prediction of photovoltaic generator,and has the advantages of simple structure and high prediction accuracy.
基金The Science and Technology Project of the State Grid Corporation of China(Research and Demonstration of Loss Reduction Technology Based on Reactive Power Potential Exploration and Excitation of Distributed Photovoltaic-Energy Storage Converters:5400-202333241 A-1-1-ZN).
文摘Due to the unpredictable output characteristics of distributed photovoltaics,their integration into the grid can lead to voltage fluctuations within the regional power grid.Therefore,the development of spatial-temporal coordination and optimization control methods for distributed photovoltaics and energy storage systems is of utmost importance in various scenarios.This paper approaches the issue from the perspective of spatiotemporal forecasting of distributed photovoltaic(PV)generation and proposes a Temporal Convolutional-Long Short-Term Memory prediction model that combines Temporal Convolutional Networks(TCN)and Long Short-Term Memory(LSTM).To begin with,an analysis of the spatiotemporal distribution patterns of PV generation is conducted,and outlier data is handled using the 3σ rule.Subsequently,a novel approach that combines temporal convolution and LSTM networks is introduced,with TCN extracting spatial features and LSTM capturing temporal features.Finally,a real spatiotemporal dataset from Gansu,China,is established to compare the performance of the proposed network against other models.The results demonstrate that the model presented in this paper exhibits the highest predictive accuracy,with a single-step Mean Absolute Error(MAE)of 1.782 and an average Root Mean Square Error(RMSE)of 3.72 for multi-step predictions.
文摘The networking of microgrids has received significant attention in the form of a smart grid.In this paper,a set of smart railway stations,which is assumed as microgrids,is connected together.It has been tried to manage the energy exchanged between the networked microgrids to reduce received energy from the utility grid.Also,the operational costs of stations under various conditions decrease by applying the proposed method.The smart railway stations are studied in the presence of photovoltaic(PV)units,energy storage systems(ESSs),and regenerative braking strategies.Studying regenerative braking is one of the essential contributions.Moreover,the stochastic behaviors of the ESS’s initial state of energy and the uncertainty of PV power generation are taken into account through a scenario-based method.The networked microgrid scheme of railway stations(based on coordinated operation and scheduling)and independent operation of railway stations are studied.The proposed method is applied to realistic case studies,including three stations of Line 3 of Tehran Urban and Suburban Railway Operation Company(TUSROC).The rolling stock is simulated in the MATLAB environment.Thus,the coordinated operation of networked microgrids and independent operation of railway stations are optimized in the GAMS environment utilizing mixed-integer linear programming(MILP).
文摘This study aims to develop an economic evaluation method for installing photovoltaic power generation in ordinary homes using GIS (Geographic Information Systems). The conclusions can be summarized in the following three points: 1) This method determines the profit and loss and payback period in order to evaluate the installation of photovoltaic power generation, taking into account the price of equipment, solar battery module conversion efficiency, subsidy, electricity purchase price, service life and rate for selling electricity. 2) The proposed evaluation method was applied to Kanagawa Prefecture in Japan, providing plural scenarios. Using a solar battery module conversion efficiency of more than 15%, it is possible to make the payback period shorter than the 20-year service life and anticipate a profit in almost the whole area. 3) The areas suitable for photovoltaic power generation are Kawasaki City and Ninomiya-machi. It is necessary to adopt measures to increase the subsidy and install photovoltaic power generating systems in specific places in areas where subsidies are not provided in enough amounts.
文摘Some energy experts believe that solar energy photovoltaic power generation is hopeful to be applied in a large amount and possesses a certain proportion in the structure of energy in the future. In this paper, based on the forecasting of electric load demand and energy structure of power generation in the middle of 21 century, the pictures of VLS-PV power genera- tion is composed, the operation characteristic of VLS-PV power generation and the adaptability of electric power grid for it is analyzed, the ways for transmitting large amount of PV power and the economic and technical bottlenecks for applying VLS-PV power generation are discussed. Finally, the steps and suggestions for developing VLS-PV power generation and its electric power system in China are proposed.
文摘This paper introduces a set of electrical energy-saving system for commercial office buildings,aiming at making better use of solar energy and photovoltaic power generation.Solar energy is a renewable energy source,which is inexhaustible clean energy and has great commercial application value.Based on this fact,we plan to design a unique and novel solar shutter in combination with the daily observation and the shape of solar panels.The shutter blades are equipped with an automatic light tracking system,and the angle of the blades can be adjusted in time through photoresistor induction,that is,as much solar energy as possible can be converted into electric energy for load use,and at the same time,comfortable light can be provided for the house.In essence,the system is a small photovoltaic power generation system,which runs all day with high-efficiency based on automatic sun tracking.Among them,the basic operation route includes:solar position detection,computer data processing,photovoltaic and electric volt energy conversion,circuit connection,etc.From the current debugging results,the shutter has the characteristics of humanization,high efficiency,cleanliness and so on.Through this energy-saving system,we hope to maximize the use of solar energy in the premise of low cost,so as to achieve the purpose of energy saving.
文摘This paper proposed a new function of photovoltaic thermal(PVT)module to produce nocturnal cool water not just only generating electrical power and hot water during daytime.Experimental tests were carried out under Chiang Mai tropical climate with a 200 Wp monocrystalline PVT module having dimensions of 1.601 m×0.828 m connected with two water tanks each of 60 L taken for hot and cool water storages.The module was facing south with 18o inclination.The electrical load was a 200 W halogen lamp.From experiments,by taking the module as a nocturnal radiative cooling surface,the cool water temperature in the cool storage tank could be reduced 2℃–3℃each night and the temperature could be reduced from 31.5℃to 22.1℃within 4 consecutive days.The cool water at approximately 23℃was also used to cool down the PVT module from noon when the PVT module temperature was rather high,and then the module temperature immediately dropped around 5℃and approximately 10%increase of electrical power could be achieved.A set of mathematical models was also developed to predict the PVT module temperature and the hot water temperature including the cool water temperature in the storage tanks during daytime and nighttime.The simulated results agreed well with the experimental data.
文摘This paper presents a comprehensive study that includes the sizing and power flow by series and parallel inverters in a distributed generation system(DGs)that integrates the system of hybrid wind photovoltaic with a unified power quality conditioner(UPQC).In addition to supplying active power to the utility grid,the system of hybrid wind photovoltaic functions as a UPQC,compensating reactive power and suppressing the harmonic load currents.Additionally,the load is supplied with harmonic-free,balanced and regulated output voltages.Since PVWind-UPQC is established on a dual compensation scheme,the series inverter works like a sinusoidal current source,while the parallel inverter works like a sinusoidal voltage source.Consequently,a smooth alteration from interconnected operating modes to island operating modes and vice versa can be achieved without load voltage transients.Since PV-Wind-UPQC inverters handle the energy generated through the hybrid wind photovoltaic system and the energy demanded through the load,the converters should be sized cautiously.A detailed study of the flow of power via the PV-Wind-UPQC is imperative to gain a complete understanding of the system operation and the proper design of the converters.Thus,curves that allow the sizing of the power converters according to the power flow via the converters are presented and discussed.Simulation results are presented to assess both steady state and dynamic performances of the grid connected hybrid system of PV-Wind-UPQC.This investigation is verified by simulating and analyzing the results with Matlab/Simulink.
基金Project supported by the National Natural Science Foundation of China(Grant No.12064034)the Leading Talents Project of Science and Technology Innovation in Ningxia Hui Autonomous Region,China(Grant No.2020GKLRLX08)+1 种基金the Natural Science Foundation of Ningxia Hui Autonomous Region,China(Grant Nos.2022AAC03643 and2022AAC03117)the Major Science and Technology Project of Ningxia Hui Autonomous Region,China(Grant No.2022BDE03006)。
文摘Methods to remove dust deposits by high-speed airflow have significant potential applications,with optimal design of flow velocity being the core technology.In this paper,we discuss the wind speed required for particle removal from photovoltaic(PV)panels by compressed air by analyzing the force exerted on the dust deposited on inclined photovoltaic panels,which also included different electrification mechanisms of dust while it is in contact with the PV panel.The results show that the effect of the particle charging mechanism in the electric field generated by the PV panel is greatly smaller than the effect of the Van der Waals force and gravity,but the effect of the particle charged by the contact electrification mechanism in the electrostatic field is very pronounced.The wind speed required for dust removal from the PV panel increases linearly with the PV panel electric field,so we suggest that the nighttime,when the PV electric field is relatively small,would be more appropriate time for dust removal.The above results are of great scientific importance for accurately grasping the dust distribution law and for achieving scientific removal of dust on PV panels.
基金supported by the State Grid Corporation of China Science and Technology Project(5216AG21000 K).
文摘The analysis of the loss of distributed photovoltaic power generation systems involves the interests of energy users,energy-saving service companies,and power grid companies,so it has always been the focus of the industry and society in some manner or another.However,the related analysis for an actual case that considers different cooperative corporations’benefits is lacking in the presently available literature.This paper takes the distributed rooftop photovoltaic power generation project in an industrial park as the object,studies the analysis and calculation methods of line loss and transformer loss,analyzes the change of transformer loss under different temperatures and different load rates,and compares the data and trend of electricity consumption and power generation in industrial parks before and after the photovoltaic operation.This paper explores and practices the analysis method of the operating loss of distributed photovoltaic power generation and provides an essential reference for the benefit analysis and investment cost estimation of distributed photovoltaic power generation systems in industrial parks.The analyzed results reveal that the change loss is stable after the photovoltaic is connected,and there is no additional transformer loss.And before and after the photovoltaic system installation,there was no significant change in the total monthly data difference between the total meter and the sub-meter.
基金the deanship of Scientific Research at Jouf University for founding this work through research grant no(DSR2020-02-387).https://www.ju.edu.sa/.
文摘This paper presents a new optimization study of the placement and size of a photovoltaic source(PVS)in a distribution grid,based on annual records of meteorological parameters(irradiance,temperature).Based on the recorded data,the production output as well as the daily average power(24-h vector)of the PVS is extracted over the year.When a power vector is available,it can be used as an input when searching for the optimal size of the PVS.This allows to take into account the constraint of the variation of the power generated by this source considering the variation of the power consumed by the electrical loads during the whole day.A multi-objective fitness function has been considered.The latter minimizes the active losses and maximizes the voltage stability index during the day,while considering the constraints of the system,that is,the security,technical,geographical,and meteorological constraints.This problem was solved using the Non-dominated Sorting Genetic Algorithm NSGA-II optimization technique under MATLAB 2021.It was applied to the distribution network of Ghardaïa of 59 nodes.
文摘Currently, there are significant investments in the study of distributed generation, including solar energy by the photovoltaic conversion method. Basically, a cell directly converts solar energy to electricity. For this, static converters are required. However, relevant issues arise in this process: point of maximum efficiency of module generation, strategy of control of the flow of energy to the network. The aim of this work is to monitor the main variables of a photovoltaic system, specifically the voltage and current module and their derivates. The goal is to implement the maximum power tracking technique using Fuzzy logic. In addition, the energy provided by the cell will be employed in an inverter stage that can operate as an active filter, voltage regulator, or generator of reactive and active power. The feasibility of using Fuzzy logic will also be studied. The first stage of this work involves parameterization and simulation of photovoltaic modules. The initial study examines the compatibility of a commercial module and its catalog data with the results of simulation. The simulated I-V characteristics show almost identical results to the catalog data. In sequence, a boost or lift DC-DC converter is employed to emulate variable load for maximum power transfer.
文摘For a standalone PV (photovoltaic) power generation system, the author previously proposed a new MPPT (maximum power point tracking) control method in which the I-V characteristics are scanned with a detection interval control that operates at specified intervals and monitors the maximum power point. The author has obtained satisfactory results using this new MPPT control method. This paper investigates the application of the new MPPT control method for a PCS (power conditioning system) in a grid-connected type PV power generation system. The experimental results clearly demonstrate that the developed PCS offers outstanding effectiveness in tracking the maximum power point in partially shaded environments.